中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 821-838 DOI: 10.7536/PC230310 Previous Articles   Next Articles

• Review •

Condensed Matter Chemistry in Single-Atom Catalysis

Qinghe Li, Botao Qiao(), Tao Zhang   

  1. CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: bqiao@dicp.ac.cn
  • Supported by:
    The National Key Research and Development Program of China(2021YFA1500503); The National Natural Science Foundation of China(21961142006); The National Natural Science Foundation of China(21972135); The CAS Project for Young Scientists in Basic Research(YSBR-022)
Richhtml ( 49 ) PDF ( 509 ) Cited
Export

EndNote

Ris

BibTeX

Single-atom catalysis (SAC), the catalysis by single-atom catalysts (SACs), has been developed as one of the most active research frontiers in the field of heterogeneous catalysis. SACs are multilevel atomic aggregates with relatively clear active center consisting of single metal atoms stabilized on support atoms through covalent or coordination interaction. Their composition, structure and properties are typical research objects of condensed matter chemistry. This review paper starts from the view of condensed matter chemistry and the main contents are as follows: briefly describing the historical basis and development status of the concept of SAC; systematically summarizing the condensed matter phenomena involved in the field of SAC, that's the aggregate of the surrounding atoms and the metal center; elaborating the influence of coordination environment on the structure and properties of aggregates and the dynamic evolution of aggregate structure under real reaction condition. Finally, the application and future development trend of condensed matter effect of single atom in heterogeneous catalytic reactions are summarized and prospected.

Contents

1 Introduction

2 The concept of "single atom catalysis"

3 The development of "single atom catalysis"

3.1 Preparation of single atom catalyst

3.2 Characterization of single atom catalyst

3.3 Application of single atom catalyst

4 Condensation effect between metal center and coordination atoms

4.1 Interaction form between metal and support

4.2 Aggregates structure modulating via coordination atoms

4.3 Effect of metal aggregation form on catalytic performance

5 Dynamic evolution and characterization of aggregates under reactive conditions

6 Conclusion and outlook

Fig.1 Proposing the concept of "single atom catalysis"
Fig.2 The development of "single-atom catalysis"[27]. Copyright 2020, Springer
Fig.3 Various host materials for preparation of SACs[71]. Copyright 2018, Wiley
Table 1 Comparison of the different preparation methods for SACs
Table 2 Characterization methods for SACs
Fig.4 Aggregate configurations of SACs (a) tetrahedron, (b) Plane quadrilateral, (c) and (d) regular octahedron
Table 3 A list of the anchoring positions of metal single atoms (M) on the support (Sup)[19]. Copyright 2020, ACS
Fig.5 In situ CO-DRIFT spectra of Pt1/TiO2 catalyst[107]. Copyright 2020, Wiley
Fig.6 Sintering and dispersion of Pt on different supports[109]. Copyright 2019, Springer
Fig.7 (a) Geometric and (b) electronic structures of nanoparticles, clusters and single atoms[24]. Copyright 2018, ACS
Fig.8 Comparison of methanation activity of Ru single-atoms, clusters and nanoparticles supported on CeO2[125]. Copyright 2018, ACS
Fig.9 CO2 hydrogenation product selectivity of Re single-atoms, clusters and nanoparticles supported on In2O3[127]. Copyright 2022, ACS
Fig.10 Encapsulation nanoparticles while exposing single atoms to regulate hydrogenation product selectivity. Semi-hydrogenation of acetylene (a) The C2H2 conversion and (b) C2H4 selectivity of catalysts treated at different reduction temperatures (Pd/TiO2-H200: contains Pd single-atoms and Pd nanoparticles; Pd/TiO2-H600: Pd nanoparticles are encapsulated while exposing Pd single-atoms as the active center)[128]. Copyright 2022, Springer
Fig.11 Morphology, composition and structure analysis of Co-N-C SACs[132]. Copyright 2016, Wiley
Fig.12 The characterizations of SAA. (a,b) HAADF-STEM images of Pt1Cu catalyst, (c) Pt-L3 edge XANES and (d) XPS Pt 4f spectra for Pt1Sn SAA[139]. Copyright 2018, Springer
Fig.13 Structural changes of Cu SACs during the electrochemical reduction of N2[146]. Copyright 2018, ACS
Fig.14 Structural changes of Cu SACs during the electrochemical reduction of O2[147]. Copyright 2021, ACS
Fig.15 Reversible transition between Cu single-atoms and clusters[148]. Copyright 2022, ACS
[36]
Gao C, Low J, Long R, Kong T T, Zhu J F, Xiong Y J. Chem. Rev., 2020, 120(21): 12175.

doi: 10.1021/acs.chemrev.9b00840
[37]
Jiao L, Yan H Y, Wu Y, Gu W L, Zhu C Z, Du D, Lin Y H. Angew. Chem. Int. Ed., 2020, 59(7): 2565.

doi: 10.1002/anie.201905645 pmid: 31209985
[38]
Ji S F, Jiang B, Hao H G, Chen Y J, Dong J C, Mao Y, Zhang Z D, Gao R, Chen W X, Zhang R F, Liang Q, Li H J, Liu S H, Wang Y, Zhang Q H, Gu L, Duan D M, Liang M M, Wang D S, Yan X Y, Li Y D. Nat. Catal., 2021, 4(5): 407.

doi: 10.1038/s41929-021-00609-x
[39]
Lang R, Li T B, Matsumura D, Miao S, Ren Y J, Cui Y T, Tan Y, Qiao B T, Li L, Wang A Q, Wang X D, Zhang T. Angew. Chem. Int. Ed., 2016, 55(52): 16054.

doi: 10.1002/anie.201607885 pmid: 27862789
[40]
Chen F, Li T B, Pan X L, Guo Y L, Han B, Liu F, Qiao B T, Wang A Q, Zhang T. Sci. China Mater., 2020, 63(6): 959.

doi: 10.1007/s40843-019-1204-y
[41]
Cui X J, Li W, Ryabchuk P, Junge K, Beller M. Nat. Catal., 2018, 1(6): 385.

doi: 10.1038/s41929-018-0090-9
[42]
Kaiser S K, Chen Z P, Faust Akl D, Mitchell S, PÉrez-Ramírez J. Chem. Rev., 2020, 120(21): 11703.

doi: 10.1021/acs.chemrev.0c00576
[43]
Valden M, Pere J, Xiang N, Pessa M. Chem. Phys. Lett., 1996, 257(3/4): 289.

doi: 10.1016/0009-2614(96)00554-4
[44]
Wu X Y, Zhang Q, Li W F, Qiao B T, Ma D, Wang S L. ACS Catal., 2021, 11(22): 14038.

doi: 10.1021/acscatal.1c03985
[45]
Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Adv. Funct. Mater., 2021, 31(35): 2103558.

doi: 10.1002/adfm.v31.35
[46]
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y,. Chem. Rev., 2022, 122: 1273.

doi: 10.1021/acs.chemrev.1c00505
[47]
Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Chem. Rev., 2019, 119(3): 1806.

doi: 10.1021/acs.chemrev.8b00501
[48]
Liu P X, Zhao Y, Qin R X, Mo S G, Chen G X, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D D, Wu B H, Fu G, Zheng N F. Science, 2016, 352(6287): 797.

doi: 10.1126/science.aaf5251
[49]
Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C L, Li J J, Wei S Q, Lu J L. J. Am. Chem. Soc., 2015, 137(33): 10484.

doi: 10.1021/jacs.5b06485
[50]
Farrauto R. Science, 2012, 337: 659.

doi: 10.1126/science.1226310 pmid: 22879495
[51]
Abbet S, Heiz U, Schneider W. J. Am. Chem. Soc., 2000, 122: 3453.

doi: 10.1021/ja9922476
[52]
Lu J L, Elam J W, Stair P C. Acc. Chem. Res., 2013, 46(8): 1806.

doi: 10.1021/ar300229c
[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128
[3]
Zhang T. Nano Lett., 2021, 21(23): 9835.

doi: 10.1021/acs.nanolett.1c02681 pmid: 34806383
[4]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095
[5]
Liang X, Fu N H, Yao S C, Li Z, Li Y D. J. Am. Chem. Soc., 2022, 144(40): 18155.

doi: 10.1021/jacs.1c12642
[6]
Langmuir I. Trans. Faraday Soc., 1922, 17: 607.

doi: 10.1039/TF9221700607
[7]
Taylor H P. Roy. Soc. A, 1925, 108: 105.
[8]
Bond G C. Surf. Sci., 1985, 156: 966.

doi: 10.1016/0039-6028(85)90273-0
[9]
Hellman A, Resta A, Martin N M, Gustafson J, Trinchero A, Carlsson P A, Balmes O, Felici R, van Rijn R, Frenken J W M, Andersen J N, Lundgren E, Grönbeck H. J. Phys. Chem. Lett., 2012, 3(6): 678.

doi: 10.1021/jz300069s pmid: 26286272
[10]
Graham G W, König D, Poindexter B D, Remillard J T, Weber W H. Top. Catal., 1999, 8(1/2): 35.

doi: 10.1023/A:1019128203919
[11]
Nilsson J, Carlsson P A, Fouladvand S, Martin N M, Gustafson J, Newton M A, Lundgren E, Grönbeck H, Skoglundh M. ACS Catal., 2015, 5(4): 2481.

doi: 10.1021/cs502036d
[12]
William T, Kaden E, Kunkel W, Anderson S. Science, 2009, 326: 826.

doi: 10.1126/science.1180297 pmid: 19892976
[13]
Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Science, 2003, 301(5635): 935.

doi: 10.1126/science.1085721
[14]
Zhang X, Shi H, Xu B Q. Angew. Chem. Int. Ed., 2005, 44(43): 7132.

doi: 10.1002/(ISSN)1521-3773
[15]
Xiong H F, Lester K, Ressler T, Schlögl R, Allard L F, Datye A K. Catal. Lett., 2017, 147(5): 1095.

doi: 10.1007/s10562-017-2023-7
[16]
Uzun A, Ortalan V, Browning N, Gates B. Chem. Commun., 2009, 4657.
[17]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m
[53]
Fonseca J, Lu J L. ACS Catal., 2021, 11(12): 7018.

doi: 10.1021/acscatal.1c01200
[54]
Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K M, Zhang B. J. Am. Chem. Soc., 2018, 140(11): 3876.

doi: 10.1021/jacs.8b00752
[55]
Zhou M, Dick J E, Bard A J. J. Am. Chem. Soc., 2017, 139(48): 17677.

doi: 10.1021/jacs.7b10646 pmid: 29131602
[56]
Deng D H, Chen X Q, Yu L, Wu X, Liu Q F, Liu Y, Yang H X, Tian H F, Hu Y F, Du P P, Si R, Wang J H, Cui X J, Li H B, Xiao J P, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J G, Sun L T, Li J Q, Pan X L, Bao X H. Sci. Adv., 2015, 1(11): e1500462.

doi: 10.1126/sciadv.1500462
[57]
Chen X Q, Yu L, Wang S H, Deng D H, Bao X H. Nano Energy, 2017, 32: 353.

doi: 10.1016/j.nanoen.2016.12.056
[58]
Wu Y E, Wang D S, Li Y D. Sci. China Mater., 2016, 59(11): 938.

doi: 10.1007/s40843-016-5112-0
[59]
Zhang M L, Wang Y G, Chen W X, Dong J C, Zheng L R, Luo J, Wan J W, Tian S B, Cheong W C, Wang D S, Li Y D. J. Am. Chem. Soc., 2017, 139(32): 10976.

doi: 10.1021/jacs.7b05372
[60]
Zhang P F, Chen C, Zhang X H, Jiang Z G, Huang J L, Chen J H. Electrochim.Acta, 2019, 298: 570.

doi: 10.1016/j.electacta.2018.12.119
[61]
Wang X, Chen W X, Zhang L, Yao T, Liu W, Lin Y, Ju H X, Dong J C, Zheng L R, Yan W S, Zheng X S, Li Z J, Wang X Q, Yang J, He D S, Wang Y, Deng Z X, Wu Y E, Li Y D. J. Am. Chem. Soc., 2017, 139(28): 9419.

doi: 10.1021/jacs.7b01686 pmid: 28661130
[62]
Ji S F, Chen Y J, Fu Q, Chen Y F, Dong J C, Chen W X, Li Z, Wang Y, Gu L, He W, Chen C, Peng Q, Huang Y, Duan X F, Wang D S, Draxl C, Li Y D. J. Am. Chem. Soc., 2017, 139(29): 9795.

doi: 10.1021/jacs.7b05018
[63]
Cheng Y, Zhao S Y, Johannessen B, Veder J P, Saunders M, Rowles M R, Cheng M, Liu C, Chisholm M F, De Marco R, Cheng H M, Yang S Z, Jiang S P. Adv. Mater., 2018, 30(13): 1870088.

doi: 10.1002/adma.v30.13
[64]
Zhang B X, Zhang J L, Shi J B, Tan D X, Liu L F, Zhang F Y, Lu C, Su Z Z, Tan X N, Cheng X Y, Han B X, Zheng L R, Zhang J. Nat. Commun., 2019, 10: 2980.

doi: 10.1038/s41467-019-10854-1
[65]
Giugni A. Nat. Nanotechnol., 2019, 14(9): 814.

doi: 10.1038/s41565-019-0524-9
[66]
Huang Z W, Gu X, Cao Q Q, Hu P P, Hao J M, Li J H, Tang X F. Angew. Chem. Int. Ed., 2012, 51(17): 4198.

doi: 10.1002/anie.201109065
[67]
Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Nat. Nanotechnol., 2018, 13(9): 856.

doi: 10.1038/s41565-018-0197-9
[68]
Jones J, Xiong H F, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 2016, 353(6295): 150.

doi: 10.1126/science.aaf8800 pmid: 27387946
[69]
Qu Y T, Li Z J, Chen W X, Lin Y, Yuan T W, Yang Z K, Zhao C M, Wang J, Zhao C, Wang X, Zhou F Y, Zhuang Z B, Wu Y E, Li Y D. Nat. Catal., 2018, 1(10): 781.

doi: 10.1038/s41929-018-0146-x
[18]
Liu J Y. ACS Catal., 2017, 7(1): 34.

doi: 10.1021/acscatal.6b01534
[19]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.

doi: 10.1021/acs.chemrev.0c00797 pmid: 33112599
[20]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.

doi: 10.1038/s41570-018-0010-1
[21]
Flytzani-Stephanopoulos M, Gates B C. Annu. Rev. Chem. Biomol. Eng., 2012, 3: 545.

doi: 10.1146/annurev-chembioeng-062011-080939 pmid: 22559871
[22]
DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham G W, Pan X Q, Christopher P. J. Am. Chem. Soc., 2017, 139(40): 14150.

doi: 10.1021/jacs.7b07093 pmid: 28902501
[23]
Zhang L, Ren Y, Liu W, Wang A, Zhang T. Nat. Sci. Rev., 2018, 5: 653.

doi: 10.1093/nsr/nwy077
[24]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776
[25]
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2(7): 1242.

doi: 10.1016/j.joule.2018.06.019
[26]
Su X, Yang X F, Huang Y Q, Liu B, Zhang T. Acc. Chem. Res., 2019, 52(3): 656.

doi: 10.1021/acs.accounts.8b00478
[27]
Mitchell S, Perez-Ramirez J. Nat. Commun., 2020, 11: 4302.

doi: 10.1038/s41467-020-18182-5 pmid: 32855411
[28]
Zhang L, Zhou M, Wang A, Zhang T. Chem. Rev., 2020, 120: 683.

doi: 10.1021/acs.chemrev.9b00230
[29]
Zhuo H Y, Yu X H, Yu Q, Xiao H, Zhang X, Li J. Sci. China Mater., 2020, 63(9): 1741.

doi: 10.1007/s40843-020-1426-0
[30]
Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E C H. Chem. Rev., 2020, 120(21): 12044.

doi: 10.1021/acs.chemrev.0c00078
[31]
Qin R X, Liu K L, Wu Q Y, Zheng N F. Chem. Rev., 2020, 120(21): 11810.

doi: 10.1021/acs.chemrev.0c00094
[32]
Li L L, Chang X, Lin X Y, Zhao Z J, Gong J L. Chem. Soc. Rev., 2020, 49(22): 8156.

doi: 10.1039/D0CS00795A
[33]
Datye A K, Guo H. Nat. Commun., 2021, 12: 895.

doi: 10.1038/s41467-021-21152-0
[34]
Hulva J, Meier M, Bliem R, Jakub Z, Kraushofer F, Schmid M, Diebold U, Franchini C, Parkinson G S. Science, 2021, 371(6527): 375.

doi: 10.1126/science.abe5757 pmid: 33479148
[35]
Wang Y X, Su H Y, He Y H, Li L G, Zhu S Q, Shen H, Xie P F, Fu X B, Zhou G Y, Feng C, Zhao D K, Xiao F, Zhu X J, Zeng Y C, Shao M H, Chen S W, Wu G, Zeng J, Wang C. Chem. Rev., 2020, 120(21): 12217.

doi: 10.1021/acs.chemrev.0c00594
[70]
Qu Y T, Chen B X, Li Z J, Duan X Z, Wang L G, Lin Y, Yuan T W, Zhou F Y, Hu Y D, Yang Z K, Zhao C M, Wang J, Zhao C, Hu Y M, Wu G, Zhang Q H, Xu Q, Liu B Y, Gao P, You R, Huang W X, Zheng L R, Gu L, Wu Y E, Li Y D. J. Am. Chem. Soc., 2019, 141(11): 4505.

doi: 10.1021/jacs.8b09834
[71]
Mitchell S, Vorobyeva E, PÉrez-Ramírez J. Angew. Chem. Int. Ed., 2018, 57(47): 15316.

doi: 10.1002/anie.201806936 pmid: 30080958
[72]
Zhang X B, Han S B, Zhu B E, Zhang G H, Li X Y, Gao Y, Wu Z X, Yang B, Liu Y F, Baaziz W, Ersen O, Gu M, Miller J T, Liu W. Nat. Catal., 2020, 3(4): 411.

doi: 10.1038/s41929-020-0440-2
[73]
Li R T, Xu X Y, Zhu B E, Li X Y, Ning Y X, Mu R T, Du P F, Li M W, Wang H K, Liang J J, Chen Y S, Gao Y, Yang B, Fu Q, Bao X H. Nat. Commun., 2021, 12: 1406.

doi: 10.1038/s41467-021-21552-2
[74]
Zhang X B, Li Z M, Pei W, Li G, Liu W, Du P F, Wang Z, Qin Z X, Qi H F, Liu X Y, Zhou S, Zhao J J, Yang B, Shen W J. ACS Catal., 2022, 12(6): 3634.

doi: 10.1021/acscatal.1c05695
[75]
Hou C C, Wang H F, Li C X, Xu Q. Energy Environ. Sci., 2020, 13(6): 1658.

doi: 10.1039/C9EE04040D
[76]
Kottwitz M, Li Y Y, Wang H D, Frenkel A I, Nuzzo R G. Chem. Methods, 2021, 1(6): 278.

doi: 10.1002/cmtd.v1.6
[77]
Li T B, Chen F, Lang R, Wang H, Su Y, Qiao B T, Wang A Q, Zhang T. Angew. Chem. Int. Ed., 2020, 59(19): 7430.

doi: 10.1002/anie.v59.19
[78]
Gao P, Liang G F, Ru T, Liu X Y, Qi H F, Wang A Q, Chen F E. Nat. Commun., 2021, 12: 4698.

doi: 10.1038/s41467-021-25061-0
[79]
Yuan Q, Song X G, Feng S Q, Jiang M, Yan L, Li J W, Ding Y J. Chem. Commun., 2021, 57(4): 472.

doi: 10.1039/D0CC06863B
[80]
Chen Z P, Vorobyeva E, Mitchell S, Fako E, Ortuño M A, LÓpez N, Collins S M, Midgley P A, Richard S, VilÉ G, PÉrez-Ramírez J. Nat. Nanotechnol., 2018, 13(8): 702.

doi: 10.1038/s41565-018-0167-2
[81]
Cui X J, Junge K, Dai X C, Kreyenschulte C, Pohl M M, Wohlrab S, Shi F, Brückner A, Beller M. ACS Cent. Sci., 2017, 3(6): 580.

doi: 10.1021/acscentsci.7b00105
[82]
Wang X L, Xiao H, Li A, Li Z, Liu S J, Zhang Q H, Gong Y, Zheng L R, Zhu Y Q, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. J. Am. Chem. Soc., 2018, 140(45): 15336.

doi: 10.1021/jacs.8b08744
[83]
Cao L N, Liu W, Luo Q Q, Yin R T, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z H, Ma C, Zhang W H, Chen S, Wang H W, Guan Q Q, Yao T, Wei S Q, Yang J L, Lu J L. Nature, 2019, 565(7741): 631.

doi: 10.1038/s41586-018-0869-5
[84]
Liang S X, Hao C, Shi Y T. ChemCatChem, 2015, 7(17): 2559.

doi: 10.1002/cctc.201500363
[85]
Gates B C, Flytzani-Stephanopoulos M, Dixon D A, Katz A. Catal. Sci. Technol., 2017, 7(19): 4259.

doi: 10.1039/C7CY00881C
[86]
Zhang H B, Liu G G, Shi L, Ye J H. Adv. Energy Mater., 2018, 8(1): 1701343.

doi: 10.1002/aenm.v8.1
[87]
Parkinson G S. Chin. J. Catal., 2017, 38(9): 1454.

doi: 10.1016/S1872-2067(17)62878-X
[88]
Qu W Y, Liu X N, Chen J X, Dong Y Y, Tang X F, Chen Y X. Nat. Commun., 2020, 11: 1532.

doi: 10.1038/s41467-020-15261-5
[89]
Hoang S, Guo Y B, Binder A J, Tang W X, Wang S B, Liu J Y, Tran H, Lu X X, Wang Y, Ding Y, Kyriakidou E A, Yang J, Toops T J, Pauly T R, Ramprasad R, Gao P X. Nat. Commun., 2020, 11: 1062.

doi: 10.1038/s41467-020-14816-w pmid: 32102998
[90]
Tian H, Cui X Z, Zeng L M, Su L, Song Y L, Shi J L. J. Mater. Chem. A, 2019, 7(11): 6285.

doi: 10.1039/c8ta12219a
[91]
Hejazi S, Mohajernia S, Osuagwu B, Zoppellaro G, Andryskova P, Tomanec O, Kment S, Zbořil R, Schmuki P. Adv. Mater., 2020, 32(16): 1908505.

doi: 10.1002/adma.v32.16
[92]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.

doi: 10.1002/adma.201705369
[93]
Hu Z, Yang C, Lv K L, Li X F, Li Q, Fan J J. Chem. Commun., 2020, 56(11): 1745.

doi: 10.1039/C9CC08578E
[94]
Matthey D, Wang J G, Wendt S, Matthiesen J, Schaub R, Lægsgaard E, Hammer B, Besenbacher F. Science, 2007, 315(5819): 1692.

pmid: 17379802
[95]
Wang F, Ma J Z, Xin S H, Wang Q, Xu J, Zhang C B, He H, Zeng X C. Nat. Commun., 2020, 11: 529.

doi: 10.1038/s41467-019-13937-1 pmid: 31988282
[96]
Qin R X, Zhou L Y, Liu P X, Gong Y, Liu K L, Xu C F, Zhao Y, Gu L, Fu G, Zheng N F. Nat. Catal., 2020, 3(9): 703.

doi: 10.1038/s41929-020-0481-6
[97]
Heemeier M, Frank M, Libuda J, Wolter K, Kuhlenbeck H, Bäumer M, Freund H J. Catal. Lett., 2000, 68(1/2): 19.

doi: 10.1023/A:1019058714724
[98]
Zhao S, Chen F, Duan S B, Shao B, Li T B, Tang H L, Lin Q Q, Zhang J Y, Li L, Huang J H, Bion N, Liu W, Sun H, Wang A Q, Haruta M, Qiao B T, Li J, Liu J Y, Zhang T. Nat. Commun., 2019, 10: 3824.

doi: 10.1038/s41467-019-11871-w pmid: 31444352
[99]
Yang K, Liu Y X, Deng J G, Zhao X T, Yang J, Han Z, Hou Z Q, Dai H X. Appl. Catal. B Environ., 2019, 244: 650.

doi: 10.1016/j.apcatb.2018.11.077
[100]
Yang M, Qi H F, Liu F, Ren Y J, Pan X L, Zhang L L, Liu X Y, Wang H, Pang J F, Zheng M Y, Wang A Q, Zhang T. Joule, 2019, 3(8): 1937.

doi: 10.1016/j.joule.2019.05.020
[101]
Kuai L, Chen Z, Liu S J, Kan E J, Yu N, Ren Y M, Fang C H, Li X Y, Li Y D, Geng B Y. Nat. Commun., 2020, 11: 48.

doi: 10.1038/s41467-019-13941-5
[102]
Azofra L M, MorlanÉs N, Poater A, Samantaray M K, Vidjayacoumar B, Albahily K, Cavallo L, Basset J M. Angew. Chem. Int. Ed., 2018, 57(48): 15812.

doi: 10.1002/anie.201810409
[103]
De S, Babak M V, Hülsey M J, Ang W H, Yan N. Chem. Asian J., 2018, 13(8): 1053.

doi: 10.1002/asia.v13.8
[104]
Moliner M, Gabay J E, Kliewer C E, Carr R T, Guzman J, Casty G L, Serna P, Corma A. J. Am. Chem. Soc., 2016, 138(48): 15743.

pmid: 27934002
[105]
Ye T N, Xiao Z W, Li J, Gong Y T, Abe H, Niwa Y, Sasase M, Kitano M, Hosono H. Nat. Commun., 2020, 11: 1020.

doi: 10.1038/s41467-019-14216-9
[106]
Zhang Z L, Zhu Y H, Asakura H, Zhang B, Zhang J G, Zhou M X, Han Y, Tanaka T, Wang A Q, Zhang T, Yan N. Nat. Commun., 2017, 8: 16100.

doi: 10.1038/ncomms16100
[107]
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Angew. Chem. Int. Ed., 2020, 59(29): 11824.

doi: 10.1002/anie.v59.29
[108]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J J. Nano Res., 2015, 8(9): 2913.

doi: 10.1007/s12274-015-0796-9
[109]
Lang R, Xi W, Liu J C, Cui Y T, Li T B, Lee A F, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu X Y, Wang A Q, Wang X D, Luo J, Qiao B T, Li J, Zhang T. Nat. Commun., 2019, 10: 234.

doi: 10.1038/s41467-018-08136-3 pmid: 30651560
[110]
Liang J X, Lin J, Liu J Y, Wang X D, Zhang T, Li J. Angew. Chem. Int. Ed., 2020, 59(31): 12868.

doi: 10.1002/anie.v59.31
[111]
Liu K P, Zhao X T, Ren G Q, Yang T, Ren Y J, Lee A F, Su Y, Pan X L, Zhang J C, Chen Z Q, Yang J Y, Liu X Y, Zhou T, Xi W, Luo J, Zeng C B, Matsumoto H, Liu W, Jiang Q K, Wilson K, Wang A Q, Qiao B T, Li W Z, Zhang T. Nat. Commun., 2020, 11: 1263.

doi: 10.1038/s41467-020-14984-9
[112]
Wang Q, Huang X, Zhao zhi liang, Wang M Y, Xiang B, Li J, Feng Z X, Xu H, Gu M. J. Am. Chem. Soc., 2020, 142(16): 7425.

doi: 10.1021/jacs.9b12642 pmid: 32174114
[113]
Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H, Tsang S C E. Nat. Chem., 2017, 9(8): 810.

doi: 10.1038/nchem.2740
[114]
Qi K, Cui X Q, Gu L, Yu S S, Fan X F, Luo M C, Xu S, Li N B, Zheng L R, Zhang Q H, Ma J Y, Gong Y, Lv F, Wang K, Huang H H, Zhang W, Guo S J, Zheng W T, Liu P. Nat. Commun., 2019, 10: 5231.

doi: 10.1038/s41467-019-12997-7
[115]
Yao Y G, Huang Z N, Xie P F, Wu L P, Ma L, Li T Y, Pang Z Q, Jiao M L, Liang Z Q, Gao J L, He Y, Kline D J, Zachariah M R, Wang C M, Lu J, Wu T P, Li T, Wang C, Shahbazian-Yassar R, Hu L B. Nat. Nanotechnol., 2019, 14(9): 851.

doi: 10.1038/s41565-019-0518-7
[116]
Cao Y J, Chen S, Luo Q Q, Yan H, Lin Y, Liu W, Cao L L, Lu J L, Yang J L, Yao T, Wei S Q. Angew. Chem. Int. Ed., 2017, 56(40): 12191.

doi: 10.1002/anie.201706467
[117]
Hasegawa S, Kunisada Y, Sakaguchi N. J. Phys. Chem. C, 2017, 121(33): 17787.

doi: 10.1021/acs.jpcc.7b01241
[118]
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Nat. Catal., 2018, 1(12): 985.

doi: 10.1038/s41929-018-0195-1
[119]
Bruix A, Rodriguez J A, Ramírez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. J. Am. Chem. Soc., 2012, 134(21): 8968.

doi: 10.1021/ja302070k
[120]
Wang Z L, Xu S M, Xu Y Q, Tan L, Wang X, Zhao Y F, Duan H H, Song Y F. Chem. Sci., 2019, 10(2): 378.

doi: 10.1039/C8SC04480E
[121]
Li P S, Wang M Y, Duan X X, Zheng L R, Cheng X P, Zhang Y F, Kuang Y, Li Y P, Ma Q, Feng Z X, Liu W, Sun X M. Nat. Commun., 2019, 10: 1711.

doi: 10.1038/s41467-019-09666-0
[122]
Mori K, Taga T, Yamashita H. ACS Catal., 2017, 7(5): 3147.

doi: 10.1021/acscatal.7b00312
[123]
Liu P G, Huang Z X, Yang S K, Du J Y, Zhang Y D, Cao R, Chen C, Li L, Chen T, Wang G M, Rao D W, Zheng X S, Hong X. ACS Catal., 2022, 12(13): 8139.

doi: 10.1021/acscatal.2c01704
[124]
Du J Y, Huang Y, Huang Z X, Wu G, Wu B, Han X, Chen C, Zheng X S, Cui P X, Wu Y E, Jiang J, Hong X. JACS Au, 2022, 2(5): 1078.

doi: 10.1021/jacsau.2c00192
[125]
Guo Y, Mei S, Yuan K, Wang D J, Liu H C, Yan C H, Zhang Y W. ACS Catal., 2018, 8(7): 6203.

doi: 10.1021/acscatal.7b04469
[126]
Zhao H B, Yu R F, Ma S C, Xu K Z, Chen Y, Jiang K, Fang Y, Zhu C X, Liu X C, Tang Y, Wu L Z, Wu Y Q, Jiang Q K, He P, Liu Z P, Tan L. Nat. Catal., 2022, 5(9): 818.

doi: 10.1038/s41929-022-00840-0
[127]
Shen C Y, Sun K H, Zou R, Wu Q L, Mei D H, Liu C J. ACS Catal., 2022, 12(20): 12658.

doi: 10.1021/acscatal.2c03709
[128]
Guo Y L, Huang Y K, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q H, Su Y, Li L, Jiang Q K, Cui Y T, Li L, Li R G, Qiao B T, Zhang T. Nat. Commun., 2022, 13: 2648.

doi: 10.1038/s41467-022-30291-x
[129]
Han B, Li Q H, Jiang X Z, Guo Y L, Jiang Q K, Su Y, Li L, Qiao B T. Small, 2022, 18(45): 2204490.

doi: 10.1002/smll.v18.45
[130]
Liu P G, Huang Z X, Gao X P, Hong X, Zhu J F, Wang G M, Wu Y E, Zeng J, Zheng X S. Adv. Mater., 2022, 34(16): 2200057.

doi: 10.1002/adma.v34.16
[131]
Yang J, Li Q, Qiao B T. Chem. J. Chinese U., 2022, 43: 1.
[132]
Yin P Q, Yao T, Wu Y E, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Angew. Chem. Int. Ed., 2016, 55(36): 10800.

doi: 10.1002/anie.201604802
[133]
Li Z, Chen Y J, Ji S F, Tang Y, Chen W X, Li A, Zhao J, Xiong Y, Wu Y E, Gong Y, Yao T, Liu W, Zheng L R, Dong J C, Wang Y, Zhuang Z B, Xing W, He C T, Peng C, Cheong W C, Li Q H, Zhang M L, Chen Z, Fu N H, Gao X, Zhu W, Wan J W, Zhang J, Gu L, Wei S Q, Hu P J, Luo J, Li J, Chen C, Peng Q, Duan X F, Huang Y, Chen X M, Wang D S, Li Y D. Nat. Chem., 2020, 12(8): 764.

doi: 10.1038/s41557-020-0473-9
[134]
Liu S W, Li C Z, Zachman M J, Zeng Y C, Yu H R, Li B Y, Wang M Y, Braaten J, Liu J W, Meyer H M III, Lucero M, Kropf A J, Alp E E, Gong Q, Shi Q R, Feng Z X, Xu H, Wang G F, Myers D J, Xie J, Cullen D A, Litster S, Wu G. Nat. Energy, 2022, 7(7): 652.

doi: 10.1038/s41560-022-01062-1
[135]
Jirkovský J S, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin D J. J. Am. Chem. Soc., 2011, 133(48): 19432.

doi: 10.1021/ja206477z pmid: 22023652
[136]
Ge J J, He D S, Chen W X, Ju H X, Zhang H, Chao T T, Wang X Q, You R, Lin Y, Wang Y, Zhu J F, Li H, Xiao B, Huang W X, Wu Y E, Hong X, Li Y D. J. Am. Chem. Soc., 2016, 138(42): 13850.

doi: 10.1021/jacs.6b09246
[137]
Chao T T, Luo X, Chen W X, Jiang B, Ge J J, Lin Y, Wu G, Wang X Q, Hu Y M, Zhuang Z B, Wu Y E, Hong X, Li Y D. Angew. Chem. Int. Ed., 2017, 56(50): 16047.

doi: 10.1002/anie.201709803
[138]
Zhang X, Cui G Q, Feng H S, Chen L F, Wang H, Wang B, Zhang X, Zheng L R, Hong S, Wei M. Nat. Commun., 2019, 10: 5812.

doi: 10.1038/s41467-019-13685-2 pmid: 31862887
[139]
Sun G D, Zhao Z J, Mu R T, Zha S J, Li L L, Chen S, Zang K T, Luo J, Li Z L, Purdy S C, Kropf A J, Miller J T, Zeng L, Gong J L. Nat. Commun., 2018, 9: 4454.

doi: 10.1038/s41467-018-06967-8
[140]
Kim J, Roh C W, Sahoo S K, Yang S, Bae J, Han J W, Lee H. Adv. Energy Mater., 2018, 8(1): 1701476.

doi: 10.1002/aenm.v8.1
[141]
Greiner M T, Jones T E, Beeg S, Zwiener L, Scherzer M, Girgsdies F, Piccinin S, Armbrüster M, Knop-Gericke A, Schlögl R. Nat. Chem., 2018, 10(10): 1008.

doi: 10.1038/s41557-018-0125-5 pmid: 30150725
[142]
Boyes E D, LaGrow A P, Ward M R, Mitchell R W, Gai P L. Acc. Chem. Res., 2020, 53(2): 390.

doi: 10.1021/acs.accounts.9b00500
[143]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2018, 2(2): 134.

doi: 10.1038/s41929-018-0203-5
[144]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.

doi: 10.1038/s41467-019-12886-z
[145]
Zhang L W, Long R, Zhang Y M, Duan D L, Xiong Y J, Zhang Y J, Bi Y P. Angew. Chem. Int. Ed., 2020, 59(15): 6224.

doi: 10.1002/anie.v59.15
[146]
Yang J, Qi H F, Li A Q, Liu X Y, Yang X F, Zhang S X, Zhao Q, Jiang Q K, Su Y, Zhang L L, Li J F, Tian Z Q, Liu W, Wang A Q, Zhang T. J. Am. Chem. Soc., 2022, 144(27): 12062.

doi: 10.1021/jacs.2c02262
[147]
Yang J, Liu W G, Xu M Q, Liu X Y, Qi H F, Zhang L L, Yang X F, Niu S S, Zhou D, Liu Y F, Su Y, Li J F, Tian Z Q, Zhou W, Wang A Q, Zhang T. J. Am. Chem. Soc., 2021, 143(36): 14530.

doi: 10.1021/jacs.1c03788
[148]
Bai X W, Zhao X H, Zhang Y H, Ling C Y, Zhou Y P, Wang J L, Liu Y Y. J. Am. Chem. Soc., 2022, 144(37): 17140.

doi: 10.1021/jacs.2c07178
[149]
Zhang S R, Nguyen L, Liang J X, Shan J J, Liu J Y, Frenkel A I, Patlolla A, Huang W X, Li J, Tao F. Nat. Commun., 2015, 6: 7938.

doi: 10.1038/ncomms8938
[150]
Kropp T, Lu Z L, Li Z, Chin Y H C, Mavrikakis M. ACS Catal., 2019, 9(2): 1595.

doi: 10.1021/acscatal.8b03298
[151]
Wu D F, Liu S X, Zhong M Q, Zhao J F, Du C C, Yang Y L, Sun Y F, Lin J D, Wan S L, Wang S, Huang J Y, Yao Y L, Li Z, Xiong H F. ACS Catal., 2022, 12(19): 12253.

doi: 10.1021/acscatal.2c02103
[152]
Han B, Li T B, Zhang J Y, Zeng C B, Matsumoto H, Su Y, Qiao B T, Zhang T. Chem. Commun., 2020, 56(36): 4870.

doi: 10.1039/D0CC00230E
[153]
Jiang L Z, Liu K L, Hung S F, Zhou L Y, Qin R X, Zhang Q H, Liu P X, Gu L, Chen H M, Fu G, Zheng N F. Nat. Nanotechnol., 2020, 15(10): 848.

doi: 10.1038/s41565-020-0746-x
[154]
Liu J C, Ma X L, Li Y, Wang Y G, Xiao H, Li J. Nat Commun, 2018, 9: 1610.

doi: 10.1038/s41467-018-03795-8
[155]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.

doi: 10.1021/jacs.7b10354
[156]
Dong C Y, Gao Z R, Li Y L, Peng M, Wang M, Xu Y, Li C Y, Xu M, Deng Y C, Qin X T, Huang F, Wei X Y, Wang Y G, Liu H Y, Zhou W, Ma D. Nat. Catal., 2022, 5(6): 485.

doi: 10.1038/s41929-022-00769-4
[157]
Guo Y, Wang M L, Zhu Q J, Xiao D Q, Ma D. Nat. Catal., 2022, 5(9): 766.

doi: 10.1038/s41929-022-00839-7
[158]
Wu W C, Yu L D, Jiang Q Z, Huo M F, Lin H, Wang L Y, Chen Y, Shi J L. J. Am. Chem. Soc., 2019, 141(29): 11531.

doi: 10.1021/jacs.9b03503
[159]
Xu B L, Wang H, Wang W W, Gao L Z, Li S S, Pan X T, Wang H Y, Yang H L, Meng X Q, Wu Q W, Zheng L R, Chen S M, Shi X H, Fan K L, Yan X Y, Liu H Y. Angew. Chem. Int. Ed., 2019, 58(15): 4911.

doi: 10.1002/anie.v58.15
[160]
Lei Y, Butler D, Lucking M C, Zhang F, Xia T N, Fujisawa K, Granzier-Nakajima T, Cruz-Silva R, Endo M, Terrones H, Terrones M, Ebrahimi A. Sci. Adv., 2020, 6(32): eabc4250.

doi: 10.1126/sciadv.abc4250
[1] Hui Tang, Hairong Li, Xiaochun Liu, Yahui Zhang, Zhouyu Wang, Xiaoqi Yu. NIR-Ⅱ Aggregation-Induced Emission for PDT-PTT Dual-Mode Synergistic Therapy [J]. Progress in Chemistry, 2023, 35(9): 1399-1414.
[2] Yuenan Zheng, Jiaqi Yang, Zhen-An Qiao. Condensed Matter Chemistry: The Defect Engineering of Porous Materials [J]. Progress in Chemistry, 2023, 35(6): 954-967.
[3] Nan Wang, Yingxu Wei, Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry [J]. Progress in Chemistry, 2023, 35(6): 839-860.
[4] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[5] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[6] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[7] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[8] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[9] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[10] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[11] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[12] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[13] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[14] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[15] Peng Zhang, Xinjie Guo, Qian Zhang, Caifeng Ding. Photochemical Sensing Based on the Aggregation of Organic Dyes [J]. Progress in Chemistry, 2020, 32(2/3): 286-297.