中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2405-2416 DOI: 10.7536/PC220434 Previous Articles   Next Articles

• Review •

Synthesis and Application of Bismuth-Based Metal-Organic Framework

Wenjing Wang1,2, Di Zeng2, Juxue Wang2, Yu Zhang2, Ling Zhang2(), Wenzhong Wang2,3()   

  1. 1 College of Chemistry and Materials Science, Shanghai Normal University,Shanghai 200234, China
    2 Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050, China
    3 School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
  • Received: Revised: Online: Published:
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    National Natural Science Foundation of China(51972327); National Natural Science Foundation of China(51972325); National Natural Science Foundation of China(52172256)
Richhtml ( 89 ) PDF ( 1437 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs), featuring the ordered porous structure and abundant topology, have been widely concerned and thoroughly reviewed according to its application prospects in recent years. Although the metal center is critical to the structure and performance of MOFs, summaries of the MOFs with a specific central metal are still few at present. As the only heavy metal element with considerable abundance and low toxicity, bismuth-based metal-organic frameworks (Bi-MOFs) stand out among MOFs for its innocuousness and biocompatibility. It would be a significant direction to design legitimately, synthesize successfully, and exploit steadily the Bi-MOFs with rich structures in the current MOFs research. However, this specific type of MOFs is still in its infancy, which is limited by the flexible coordination environment and low solubility of Bi (Ⅲ) cation. The synthesis of Bi-MOFs in the aqueous solution has always been an enormous challenge resulting from the hydrolysis of the bismuth salt. Herein, this article reviews the common ligands and general synthesis methods of Bi-MOFs in recent years, focusing on its application in photocatalysis, electrocatalysis, drug carriers, gas adsorbents and electrode materials. By profusely discussing the mechanism and reaction rules in catalytic reactions, this review aims to provide rewarding references for similar catalytic reactions to improve reaction efficiency and save costs. In addition, to highlight the unique advantages of Bi-MOFs, we make detailed comparisons with traditional materials. Some expanded applications of energy storage (mainly cationic battery energy storage), adsorption separation (selective adsorption of anions and enrichment of energy gas), drug delivery (the encapsulation and release of specific drugs) are also supplemented. For consideration of existing research, our work puts forward a prospect for future pioneering research to stimulate the research progress of Bi-MOFs.

Contents

1 Introduction

2 Components and synthesis methods of Bi-MOFs

2.1 The properties of the center metal

2.2 Types of organic ligands

3 Application of Bi-MOFs

3.1 Application in catalysis

3.2 Application in chemical adsorption

3.3 Bi-MOFs as sustained-release drug carriers

3.4 Application of Bi-MOFs as sensors

3.5 Application of Bi-MOFs as battery electrode materials

4 Conclusion and outlook

Fig.1 Structure of 1,3,5-tris(4-carboxyphenyl) benzene (H3BTB), triazine-2,4,6-triacyltribenzoic acid (H3TATB) and 1,3,5-trimellitic acid (H3BTC)
Fig. 2 Crystal structure of CAU-7-TATB (view along [001]). Reproduced from ref 26 with permission. Copy right 2017,The Royal Society of Chemistry
Fig. 3 Coordination environment of (a) Bi3+and (b) BTC3-anions in compound Bi-BTC; (c) polyhedral view of the centrosymmetric dimeric {Bi2O14} unit and the linked 1~6 BTC3-ligands; (d) view of the 3D structure of Bi-BTC. Bi: green, O: red, C: light grey, N: blue. Reproduced from ref 27 with permission. Copyright 2017,The Royal Society of Chemistry
Fig.4 Structure of 4,4',4″,4?-(1,9-dihydropyrene- 1,3,6,8-tetrayl) tetrabenzoic acid
Fig.5 a) Calculated electron localization function (ELF) plots for Bi-mna. b) Fukui function F-(r)and F+(r) for Bi-mna. The isosurface value is 0.0015 e ?-3. Bi purple, C brown, O red, N gray, H pink[8]. Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.6 Schematic illustration of Bi-BTC catalyzed Diels-Alder reaction of DMF and AA to PX. Reproduced from ref 48 with permission. Copy right 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.7 a) SEM of CAU-17 before adsorption of SeO 3 2 -. b) Probable mechanism model for phosphate adsorption of La-CAU-17. c) Isotherm of SeO x 2 - uptaken by CAU-17 over 48 hours. d) SeO x 2 -adsorption kinetic behavior of CAU-17[57]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.8 Structure of biphenyl-3,3',5,5'-tetracarboxylic acid
[1]
Wu H, Reali R S, Smith D A, Trachtenberg M C, Li J. Chemistry - A European Journal, 2010, 16(47): 13951.
[2]
Li F, Gu G H, Choi C, Kolla P, Hong S, Wu T, Soo Y, Masa J, Mukerjee S, Jung Y, Qiu J, Sun Z. Applied Catalysis B: Environmental, 2020, 277: 119241.

doi: 10.1016/j.apcatb.2020.119241
[3]
Yuan W, Wu J, Zhang X, Hou S, Xu M, Gu Z. J. Mater. Chem. A, 2020, 8(46): 24486.

doi: 10.1039/D0TA08092F
[4]
Zhao Y, Wang S, Zhai X, Shao L, Bai X, Liu Y, Wang T, Li Y, Zhang L, Fan F, Meng F, Zhang X, Fu Y. Acs Appl. Mater. Interfaces, 2021, 13(7): 9206.

doi: 10.1021/acsami.0c21583
[5]
Deibert B J, Velasco E, Liu W, Teat S J, Lustig W P, Li J. Cryst. Growth Des., 2016, 16(8): 4178.

doi: 10.1021/acs.cgd.6b00622
[6]
Hao J, Yan B. J. Mater. Chem. A, 2015, 3(9): 4788.

doi: 10.1039/C4TA06462C
[7]
Zhang X, Zhang Y, Li Q, Zhou X, Li Q, Yi J, Liu Y, Zhang J. J. Mater. Chem. A, 2020, 8(19): 9776.

doi: 10.1039/D0TA00384K
[8]
Wang G, Sun Q, Liu Y, Huang B, Dai Y, Zhang X, Qin X. Chemistry-A European Journal, 2015, 21(6): 2364.

doi: 10.1002/chem.201405047
[9]
An Y, Liu Y, An P, Dong J, Xu B, Dai Y, Qin X, Zhang X, Whangbo M, Huang B. Angewandte Chemie International Edition, 2017, 56(11): 3036.

doi: 10.1002/anie.201612423
[10]
Chee T, Tian Z, Zhang X, Lei L, Xiao C. J. Nucl. Mater., 2020, 542: 152526.

doi: 10.1016/j.jnucmat.2020.152526
[11]
Savage M, Yang S, Suyetin M, Bichoutskaia E, Lewis W, Blake A J, Barnett S A, Schröder M. Chemistry-A European Journal, 2014, 20(26): 8024.

doi: 10.1002/chem.201304799
[12]
Li J, Chen J. Chemical Industry and Engineering Progress, 2020, 39(6): 2235.
[13]
Orellana-Tavra C, Köppen M, Li A, Stock N, Fairen-Jimenez D. Acs Appl. Mater. Interfaces, 2020, 12(5): 5633.

doi: 10.1021/acsami.9b21692
[14]
Feng A, Wang Y, Ding J, Xu R, Li X. Curr. Drug Deliv., 2021, 18(3): 297.

doi: 10.2174/1567201817666200917120201
[15]
Yaghi O M, Li G, Li H. Nature, 1995, 378(6558): 703.

doi: 10.1038/378703a0
[16]
Crickmore T S, Sana H B, Mitchell H, Clark M, Bradshaw D. Chem. Commun., 2021, 57(81): 10592.

doi: 10.1039/D1CC04032D
[17]
Shi Y, Liang B, Alsalme A, Lin R, Chen B. J. Solid State Chem., 2020, 287: 121321.

doi: 10.1016/j.jssc.2020.121321
[18]
Sumida K, Hill M R, Horike S, Dailly A, Long J R. J. Am. Chem. Soc., 2009, 131(42): 15120.

doi: 10.1021/ja9072707 pmid: 19799422
[19]
You B, Jiang N, Sheng M, Drisdell W S, Yano J, Sun Y. Acs Catal., 2015, 5(12): 7068.

doi: 10.1021/acscatal.5b02325
[20]
Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Adv. Mater., 2018, 30(37): 1707365.

doi: 10.1002/adma.201707365
[21]
Lamagni P, Miola M, Catalano J, Hvid M S, Mamakhel M A H, Christensen M, Madsen M R, Jeppesen H S, Hu X M, Daasbjerg K, Skrydstrup T, Lock N. Adv. Funct. Mater., 2020, 30(16): 1910408.

doi: 10.1002/adfm.201910408
[22]
Feyand M, Mugnaioli E, Vermoortele F, Bueken B, Dieterich J M, Reimer T, Kolb U, de Vos D, Stock N. Angewandte Chemie International Edition, 2012, 51(41): 10373.

doi: 10.1002/anie.201204963
[23]
Köppen M, Beyer O, Wuttke S, Lüning U, Stock N. Dalton Trans., 2017, 46(26): 8658.

doi: 10.1039/c7dt01744h pmid: 28650040
[24]
Nguyen V H, Pham A L H, Nguyen V, Lee T, Nguyen T D. Chemical Engineering Research and Design, 2022, 177: 321.

doi: 10.1016/j.cherd.2021.10.043
[25]
Zhang R, Liu Y, An Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Huang B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 315.

doi: 10.1016/j.colsurfa.2018.10.011
[26]
Zhang R, Liu Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Whangbo M, Huang B. Applied Catalysis B: Environmental, 2019, 254: 463.

doi: 10.1016/j.apcatb.2019.05.024
[27]
Wang G, Liu Y, Huang B, Qin X, Zhang X, Dai Y. Dalton Trans., 2015, 44(37): 16238.

doi: 10.1039/C5DT03111G
[28]
Köppen M, Meyer V, ångström J, Inge A K, Stock N. Cryst. Growth Des., 2018, 18(7): 4060.

doi: 10.1021/acs.cgd.8b00439
[29]
Grape E S, Flores J G, Hidalgo T, Martínez-Ahumada E, GutiÉrrez-Alejandre A, Hautier A, Williams D R, O Keeffe M, öhrström L, Willhammar T, Horcajada P, Ibarra I A, Inge A K. J. Am. Chem. Soc., 2020, 142(39): 16795.

doi: 10.1021/jacs.0c07525
[30]
Rubio-Martinez M, Avci-Camur C, Thornton A W, Imaz I, Maspoch D, Hill M R. Chem. Soc. Rev., 2017, 46(11): 3453.

doi: 10.1039/c7cs00109f pmid: 28530737
[31]
Pilloni M, Padella F, Ennas G, Lai S, Bellusci M, Rombi E, Sini F, Pentimalli M, Delitala C, Scano A, Cabras V, Ferino I. Microporous Mesoporous Mat., 2015, 213: 14.

doi: 10.1016/j.micromeso.2015.04.005
[32]
Sun Y, Huang H, Vardhan H, Aguila B, Zhong C, Perman J A, Al-Enizi A M, Nafady A, Ma S. Acs Appl. Mater. Interfaces, 2018, 10(32): 27124.

doi: 10.1021/acsami.8b08914
[33]
Wu X, Gagliardi L, Truhlar D G. J. Am. Chem. Soc., 2018, 140(25): 7904.

doi: 10.1021/jacs.8b03613
[34]
Sun M, Yan S, Sun Y, Yang X, Guo Z, Du J, Chen D, Chen P, Xing H. Dalton Trans., 2018, 47(3): 909.

doi: 10.1039/C7DT04062H
[35]
Kent C A, Liu D, Ma L, Papanikolas J M, Meyer T J, Lin W. J. Am. Chem. Soc., 2011, 133(33): 12940.

doi: 10.1021/ja204214t
[36]
Rodríguez N A, Parra R, Grela M A. Rsc Adv., 2015, 5(89): 73112.

doi: 10.1039/C5RA11182J
[37]
Xiao Y, Guo X, Liu J, Liu L, Zhang F, Li C. Chinese Journal of Catalysis, 2019, 40(9): 1339.

doi: 10.1016/S1872-2067(19)63329-2
[38]
Chen W, Fang J, Zhang Y, Chen G, Zhao S, Zhang C, Xu R, Bao J, Zhou Y, Xiang X. Nanoscale, 2018, 10(9): 4463.

doi: 10.1039/C7NR08943K
[39]
Xu D, Chen L, Zhang X, Li L, Ding Q, Zhu G. Surf. Interfaces, 2021, 27: 101514.
[40]
Nguyen V H, Van Tan L, Lee T, Nguyen T D. Sustain. Chem. Pharm., 2021, 20: 100385.
[41]
Lei L, Han L, Wang J, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Chemsuschem, 2021, 14(3): 892.

doi: 10.1002/cssc.202002242
[42]
Chen Z, Liu J, Cui H, Zhang L, Su C. Acta Chim. Sin., 2019, 77(3): 242.
[43]
Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum R R, Lin W. J. Am. Chem. Soc., 2016, 138(38): 12502.

doi: 10.1021/jacs.6b06663
[44]
Zhao Y, Kuang Y, Liu M, Wang J, Pei R. Chem. Mat., 2018, 30(21): 7511.

doi: 10.1021/acs.chemmater.8b02467
[45]
Ronaghi N, Shade D, Moon H J, Najmi S, Cleveland J W, Walton K S, France S, Jones C W. Acs Sustain. Chem. Eng., 2021, 9(34): 11581.

doi: 10.1021/acssuschemeng.1c04463
[46]
Wang F, Chen Z, Chen H, Goetjen T A, Li P, Wang X, Alayoglu S, Ma K, Chen Y, Wang T, Islamoglu T, Fang Y, Snurr R Q, Farha O K. Acs Appl. Mater. Interfaces, 2019, 11(35): 32090.

doi: 10.1021/acsami.9b07769
[47]
Ravon U, Chaplais G, Chizallet C, Seyyedi B, Bonino F, Bordiga S, Bats N, Farrusseng D. Chemcatchem, 2010, 2(10): 1235.

doi: 10.1002/cctc.201000055
[48]
Yeh J, Chen S S, Li S, Chen C H, Shishido T, Tsang D C W, Yamauchi Y, Li Y, Wu K C W. Angewandte Chemie International Edition, 2021, 60(2): 514.

doi: 10.1002/anie.202015607
[49]
Ju Z, Yao X, Liu X, Ni L, Xin J, Xiao W. Ind. Eng. Chem. Res., 2019, 58(25): 11111.

doi: 10.1021/acs.iecr.9b01585
[50]
Ni L, Xin J, Dong H, Lu X, Liu X, Zhang S. Chemsuschem, 2017, 10(11): 2319.

doi: 10.1002/cssc.201700829
[51]
Odrobina J, Scholz J, Risch M, Dechert S, Jooss C, Meyer F. Acs Catal., 2017, 7(9): 6235.

doi: 10.1021/acscatal.7b01883
[52]
Suzuki S, Onodera T, Kawaji J, Mizukami T, Morishima M, Yamaga K. J. Power Sources, 2013, 223: 79.

doi: 10.1016/j.jpowsour.2012.09.042
[53]
Furukawa H, Gándara F, Zhang Y, Jiang J, Queen W L, Hudson M R, Yaghi O M. J. Am. Chem. Soc., 2014, 136(11): 4369.

doi: 10.1021/ja500330a
[54]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, Keeffe M, Kim J, Yaghi O M. Science, 2010, 329(5990): 424.

doi: 10.1126/science.1192160
[55]
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, LlabrÉs I Xamena F X, Gascon J. Nat. Mater., 2015, 14(1): 48.

doi: 10.1038/nmat4113 pmid: 25362353
[56]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Science, 2003, 300(5622): 1127.

doi: 10.1126/science.1083440
[57]
Ouyang H, Chen N, Chang G, Zhao X, Sun Y, Chen S, Zhang H, Yang D. Angewandte Chemie International Edition, 2018, 57(40): 13197.

doi: 10.1002/anie.201807891
[58]
Lu B, Wang S, Zhao L, Zhou D, Dong S, Wang G. Chem. Eng. J., 2021, 425: 131514.

doi: 10.1016/j.cej.2021.131514
[59]
Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C. Chem. Eng. J., 2009, 155(3): 553.

doi: 10.1016/j.cej.2009.09.010
[60]
Li L, Lin R, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Science, 2018, 362(6413): 443.

doi: 10.1126/science.aat0586
[61]
Qian Q, Asinger P A, Lee M J, Han G, Mizrahi Rodriguez K, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16): 8161.

doi: 10.1021/acs.chemrev.0c00119
[62]
Li L, Han S, Yang C, Liu L, Zhao S, Wang X, Liu B, Pan H, Liu Y. Nanotechnology, 2020, 31(32): 325602.

doi: 10.1088/1361-6528/ab8c03
[63]
Bieniek A, Terzyk A P,Wi,? niewski M, Roszek K, Kowalczyk P, Sarkisov L, Keskin S, Kaneko K. Prog. Mater. Sci., 2021, 117: 100743.

doi: 10.1016/j.pmatsci.2020.100743
[64]
Velásquez-Hernández M D J, Linares-Moreau M, Astria E, Carraro F, Alyami M Z, Khashab N M, Sumby C J, Doonan C J, Falcaro P. Coord. Chem. Rev., 2021, 429: 213651.

doi: 10.1016/j.ccr.2020.213651
[65]
Zhang Q, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Qin X, Zhang X, Dai Y, Huang B. J. Colloid Interface Sci., 2022, 617: 578.

doi: 10.1016/j.jcis.2022.01.188
[66]
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J, Hwang Y K, Marsaud V, Bories P, Cynober L, Gil S, FÉrey G, Couvreur P, Gref R. Nat. Mater., 2010, 9(2): 172.

doi: 10.1038/nmat2608 pmid: 20010827
[67]
Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, FÉrey G, Morris R E, Serre C. Chem. Rev., 2012, 112(2): 1232.

doi: 10.1021/cr200256v pmid: 22168547
[68]
Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, FÉrey G. J. Am. Chem. Soc., 2008, 130(21): 6774.

doi: 10.1021/ja710973k pmid: 18454528
[69]
Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, FÉrey G. Angewandte Chemie International Edition, 2006, 45(36): 5974.

doi: 10.1002/anie.200601878
[70]
Zhang Q, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Qin X, Zhang X, Dai Y, Huang B. J. Colloid Interface Sci., 2022, 617: 578.

doi: 10.1016/j.jcis.2022.01.188
[71]
Song L, Xiao J, Cui R, Wang X, Tian F, Liu Z. Sensors and Actuators B: Chemical, 2021, 336: 129753.

doi: 10.1016/j.snb.2021.129753
[72]
Xu L, Xu Y, Li X, Wang Z, Sun T, Zhang X. Dalton Trans., 2018, 47(46): 16696.

doi: 10.1039/C8DT03474E
[73]
Kim M, Kim M, Park J, Kim J, Ahn C, Jin A, Mun J, Sung Y. Nanoscale, 2020, 12(28): 15214.

doi: 10.1039/D0NR03219K
[74]
Song J, Xiao B, Lin Y, Xu K, Li X. Adv. Energy Mater., 2018, 8(17): 1703082.

doi: 10.1002/aenm.201703082
[75]
Zhang W, Yan W, Jiang H, Wang C, Zhou Y, Ke F, Cong H, Deng H. Acs Sustain. Chem. Eng., 2020, 8(1): 335.

doi: 10.1021/acssuschemeng.9b05474
[76]
Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Acs Appl. Mater. Interfaces, 2019, 11(25): 22474.

doi: 10.1021/acsami.9b06379
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[4] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[7] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[8] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[9] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[10] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[11] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[12] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[13] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[14] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.