中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1863-1878 DOI: 10.7536/PC211008 Previous Articles   

• Review •

The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy

Haidi Feng, Lu Zhao, Yunfeng Bai(), Feng Feng   

  1. College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical and Biological Sensing, Shanxi Datong University,Datong 037009, China
  • Received: Revised: Online: Published:
  • Contact: Yunfeng Bai, Feng Feng
  • Supported by:
    National Natural Science Foundation of China(21975146); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L368); Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(2020KJ023); Shanxi Scholarship Council of China(2020-133)
Richhtml ( 30 ) PDF ( 413 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) are a kind of porous coordination polymers formed by the assembly of metal ions and organic ligands, exhibit excellent advantages as a nanocarrier, such as easy modification, high drug loading as well as controllable drug release. The diversities of metal ions and organic ligands lead to the diversities of MOFs, which make them wide application in many fields such as storage and separation, catalysis, sensing, biomedical application and others. With high porosity, versatile MOFs allow for the facile encapsulation of various therapeutic agents with exceptionally high payloads. Especially when the particle size of MOFs is controlled down to the nanometer level, named nanoscale metal-organic frameworks (NMOFs), they exhibit a series of structural advantages. Based on the above advantages, NMOFs exhibit excellent application prospects for drug delivery and cancer therapy. NMOFs can be used as therapeutic agents, as well as nanocarriers of drug, photothermal agents, photosensitizers and Fenton reaction catalysis to using passive targeting, active targeting, physicochemical targeting, or combination of the three. The review focuses on the application of chemotherapy (CT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT) and various combination therapies. Finally, we will elaborate the current challenges and future development prospects of NMOFs in cancer application.

Contents:

1 Introduction

2 NMOFs-based monotherapy

2.1 Chemotherapy (CT) of cancer

2.2 Photothermal therapy (PTT) of cancer

2.3 Photodynamic therapy (PDT) of cancer

2.4 Chemodynamic therapy (CDT) of cancer

3 NMOFs-based combined therapy

3.1 Dual-modal combined therapy

3.2 Three-modal combined therapy

4 Conclusion and outlook

Fig. 1 The MOFs nanosystems was constructed for CT. (A) Schematic diagram of DOX@ZIF-8@eM-cRGD preparation and application in tumor therapy[33]; Copyright 2020, American Chemical Society. (B) Schematic diagram of FZIF-8/DOX-MIPs preparation and degradation[34]; Copyright 2020, American Chemical Society. (C) Schematic diagram of A-RAMP preparation[35]; Copyright 2020, American Chemical Society
Fig. 2 Application of NMOFs in tumor PTT. (A) Schematic diagram of Mn-IR825@PDA-PEG preparation[39]; Copyright 2016, American Chemical Society. (B) Schematic diagram of MIL-100(Fe)@HA@ICG preparation[44]; Copyright 2017, American Chemical Society. (C) Schematic diagram of Au@ZIF-8 preparation and Au nanosphere release and self-assembly[45]. Copyright 2020. American Chemical Society
Fig. 3 Application of NMOFs in tumor PDT. (A)Schematic diagram of PCN-224 preparation and singlet oxygen generation[52]; Copyright 2016, American Chemical Society. (B) Schematic diagram of mCGP preparation[55]; Copyright 2017, American Chemical Society. (C)Schematic diagram of PCN-224-Pt preparation and enhanced PDT[56]. Copyright 2018, American Chemical Society
Fig. 4 Application of NMOFs in tumor PDT. (A) Schematic diagram of ZIF-8/Au/CuS/FA preparation[66]; Copyright 2020, American Chemical Society. (B) Schematic diagram of PZIF67-AT preparation[70]. Copyright 2020, American Chemical Society
Fig. 5 Application of NMOFs in tumor CT-PTT. (A) Schematic diagram of PPy@MIL-100-DOX composite nanomaterials[72]; Copyright 2016, American Chemical Society. (B) Schematic diagram of FA-BSA/CuS@ZIF-8-QT preparation and in vivo therapy[75]. Copyright 2018, American Chemical Society
Fig. 6 Application of NMOFs in tumor CT-PDT. Schematic diagram of PCN@MnO2@DOX@HA preparation and MR-guided CT-PDT[80]; Copyright 2020, Wiley
Fig. 7 Schematic diagram of O2-Cu/ZIF-8@Ce6/ZIF-8@F127 preparation and in vivo PDT-CDT[91]; Copyright 2019, American Chemical Society
Fig. 8 Schematic diagram of Zr-FC MOFs in PTT-CDT[92]. Copyright 2020, American Chemical Society
Fig. 9 Application of NMOFs in PTT-PDT-CT of tumor. Schematic diagram of DOX&ICG@H-PMOF preparation and in vivo PTT-PDT-CT[94]. Copyright 2021, American Chemical Society
Table 1 Summary of the application of tumor therapy based on NMOFs material
Drug delivery based on NMOFs NMOFs components Shape Size (nm) Cargos Loading capacity Modification Targeting mechanism Response types Wavelengths (nm) Cell line Functionality ref
DOX/Fe(bbi)@SiO2-FA Fe2+, bbi 3D 200 DOX 98% SiO2 FA pH - HeLa CT 23
PEG-FA/PEGCG@ZIF-8 Zn2+, 2-mim 3D 220 PEGCG 19.9% PEG FA pH - HEK 293/HeLa CT 31
PEG-FA/(DOX+VER)@ZIF-8 Zn2+, 2-mim 3D 180 DOX+VER 40.9% PEG FA pH - B16F10/MCF-7A CT 7
CAD@ZIF-8-FA Zn2+, 2-mim 3D 150 DOX 34.75% - FA pH - MDA-MB-231/MCF-10A CT 32
DOX@ZIF-8@eM-cRGD Zn2+, 2-mim 3D 110 DOX 49% PEG cRGD pH - HeLa/MDA-MB-231/ RAW264.7 CT 33
GEM⊂RGD@nZIF-8 Zn2+, 2-mim 3D 98 GEM 7.8% - RGD pH - A549 CT 96
FZIF-8/DOX-MIP Zn2+, 2-mim 3D 172 DOX - - MIP GSH/pH - 293T/LoVo/MCF-7 CT 34
DSF@HA/Cu-MOF Cu2+, 2-MI 3D 313 DSF 54.17% - HA pH - 4T1/ L02 CT 97
DOX@ZIF-8@P(MPC-co-C7A) Zn2+, 2-mim 3D 285 DOX 7% P(MPC-co-C7A) P(MPC-co-C7A) pH - A549 CT 98
DOX-HAp@Lys/ZIF-8 Zn2+, 2-mim 3D 600 DOX 56.5% Lys HAp pH - HeLa CT 99
CD20-RBCm@Ag-MOFs/
PFK15
Ag+, 2-mim 3D 109 PFK15 68.6% RBCm CD20 Apt pH - Raji/K562/RAW264.7/OCI-LY8/ OCI-LY10 CT 35
Fe3O4@MOF-DOX-CDs-Apt Zr4+, NH2-BDC 3D 26 DOX - - AS1411 pH - HUVEC/MDA-MB-231 CT 36
Mn-IR825@PDA-PEG Mn2+, IR825 3D 40 IR825 - PDA-PEG - - 808 293T /HeLa/A549 PTT 39
Zr-PDI Zr4+, PDI 3D - PDI - - - - 808 - PTT 40
Fe-CPND Fe3+,gallic acid 3D 5.3 - - PVP - - 808 SW620 PTT 41
Fe-EA Fe3+, EA 3D 240 - - - - - 808 4T1 PTT 43
MIL-100(Fe)@HA@ICG Fe3+, H3BTC 3D 100 ICG 42% - HA - 808 MCF-7 PTT 44
Au@ZIF-8 Zn2+, 2-mim 3D 115 AuNPs - - - GSH/pH 808 4T1/HUVEC PTT 45
Hf-DBP Hf4+, H2DBP 3D 100 H2DBP - - - - 640 SQ20B PDT 51
PCN-224 Zr4+, TCPP 3D 90 TCPP - - FA - 660 HeLa/A549 PDT 52
PS@MOF - 3D 40 TMPyP 32.8% PEG FA - 660 HeLa PDT 53
PS@MOF-199 Cu2+, H3BTC 3D 120 Ce6 49% F-127 - GSH 400~700 HepG2/NIH-3T3 PDT 54
PMOF-199 Cu2+, H3BTC 3D 80 TPATrzPy3+ 51.3% F-127 - GSH 400~700 HeLa/3T3 PDT 100
PS@ZIF-8-PMMA-S-S-mPEG. Zn2+, 2-mim 3D 50 D-A PS - PEG - GSH 400~700 4T1 PDT 101
ZnP@Hf-QC Hf4+, H2QC 3D 167 ZnP 36.1% - - - 700 CT26 PDT 57
Ce6/Cytc@ZIF-8/HA Zn2+, 2-mim 3D 128 Ce6 7.15% - HA pH 670 L929/HeLa PDT 58
PCN-58-Ps-HA Zr4+,TPDC-
2CH2N3
3D 160 Ps 83.3% - HA - 910 HEK 293T/ HeLa PDT 102
mem@Catalase@GOx@PCN-224 Zr4+, TCPP 3D 227 Gox/CAT 13.5% mem mem - 66 4T1/COS7/RAW264.7 PDT 55
Drug delivery based on NMOFs NMOFs components Shape Size (nm) Cargos Loading capacity Modification Targeting mechanism Response types Wavelengths (nm) Cell line Functionality ref
mem@MnO2@MOF Zr4+, TCPP 3D 105 TCPP - mem mem - 409 HeLa/ HepG2/3T3 PDT 103
PCN-224-Pt Zr4+, TCPP 3D 92 TCPP - PEG - - 660 HeLa/RAW264.7/4T1 PDT 56
MnFe2O4/C@Ce6 Mn2+, Fe3+,
fumaric acid
3D 160 Ce6 11.3% - - - 660 U-87 MG PDT 60
MON-p53 Fe3+, tannic acid 3D 60 Fe2+ - - - - - HT1080/SCC-7/4T1/COS-7/ MCF7 CDT 65
ZIF-8/Au/CuS/FA Zn2+, 2-mim 3D 279 CuS - - FA pH - HCMEC/D3/HepG-2 CDT 66
GOx@Pd@ZIF-8 Zn2+, 2-mim 3D 130 Pd nano-enzyme 3.59% - - pH - A549 CDT 68
Fe@ZIF-8@GOx Zn2+, 2-mim 3D 635 Fe nano-enzyme - - - pH - HeLa CDT 69
PZIF67-AT Co2+, 2-mim 3D 180 3-AT 28.5% PEG - pH - HeLa/A549/4T1 CDT 70
DOX@Fe-CNPs Fe3+, HCA 3D 138 DOX 14.5% - - pH/NIR 808 4T1 CT-PTT 42
PPy@MIL-100(Fe)/DOX Fe3+, H3BTC 3D 107 PPy/DOX 12.8% - - pH/NIR 808 Hela CT-PTT 72
MCH Fe3+, H3BTC 3D 200 curcumin /PDA 94.3% PDA HA pH 808 HeLa/A549/CHO/MRC-5 CT-PTT 24
Au@Cu3(BTC)2@Apt-DOX Cu2+, H3BTC 3D - DOX/AuNPs 57% - Apt pH 808 A549/beas-2b/MCF-7/HeLa CT-PTT 73
AuNR@ZIF-8-DOX Zn2+, 2-mim 3D 150 DOX/ AuNPs 35.8% - - pH/NIR 808 4T1 CT-PTT 104
DOX/Pd@Au@ZIF-8 Zn2+, 2-mim 3D 254 DOX/ AuNPs 3.93% - - pH/NIR 780 SMMC-7721 CT-PTT 105
CSD-MOFs@DOX Zn2+, 2-mim 3D 120 DOX/PB 85.23% - - pH/NIR 808 HeLa CT-PTT 74
Gd/Tm-PB@ZIF-8/PDA-DOX Zn2+, 2-mim 3D 200~300 DOX/ Gd/Tm-PB 8.1% PDA - pH/GSH 808 4T1 CT-PTT 106
HmPGTL Fe3+,K4[Fe
(CN)6]
3D 80 TLND 23.5% mem mem pH 808 L929/ HepG2 CT-PTT 107
FA-BSA/CuS@ZIF-8-QT Zn2+, 2-mim 3D 45 QT/ CuS 24% - FA pH 808 B16F10 CT-PTT 75
BYL719&Cisplatin@Au@MOF@MS-ICG Zn2+, 2-mim 3D 124 BYL719/Cisplatin/ICG 32% PAA dYNH pH 808 A549/HOB/HBMSC CT-PTT 108
GNRs-MSNs-MA Fe3+, H3BTC 3D 160 DOX/GNR 23.5% - HA pH/NIR 808 4T1/MCF-7/HUVEC/RAW264.7 CT-PTT 109
DOX/Pd@ZIF-8@PDA Zn2+, 2-mim 3D 110 DOX/ PDA 12% PDA - pH/NIR 808 4T1 CT-PTT 110
g-C3N4@ZIF-8-DOX Zn2+, 2-mim 3D 60 DOX 35% - - pH 390~780 A549 CT-PDT 77
UC@mSiO2-RB@ZIF-O2-DOX/PEG-FA Zn2+, 2-ICA 3D 140 RB/DOX 11.6% - PEG-FA pH 808 4T1/HeLa CT-PDT 78
DOX@MnCPs/PEG Mn3+, HMME 3D 100 DOX/HMME - PEG - GSH 630 4T1 CT-PDT 111
UCNP@MOF-DOX Al3+, CTAB 3D 47~62 DOX 7.5% - - pH 980 HeLa CT-PDT 112
HA-DOX-PCN Zr4+, TCPP 3D 250 DOX/TCPP 108% - HA pH 640 Hek 293T/MDA-MB-
231/SCC-7
CT-PDT 79
PCN@MnO2@DOX@HA Zr4+, TCPP 3D 100 DOX/TCPP 10.3% MnO2 HA pH/GSH 638 CT26/COS7 CT-PDT 80
Drug delivery based on NMOFs NMOFs components Shape Size (nm) Cargos Loading capacity Modification Targeting mechanism Response types Wavelengths (nm) Cell line Functionality ref
PTFCG@MH Fe3+, TA 3D 160 Ce6/GOx 13.3% MnO2 HA pH/GSH 635 MDA-MB-231/ CT-PDT 113
DOX@Gal-PCN-224 Zr4+, TCPP 3D 121 DOX/TCPP 14.5% HOOC-PEG-COOH Gal pH 660 HepG2/Huh7/HEK293/L02 CT-PDT 81
Mn/DVDMS Mn2+, DVDMS 3D 197 DVDMS - - - pH/GSH 630 MCF-7 PTT-PDT 114
Cu-TCPP Cu2+, TCPP 3D 200 Cu2+/TCPP - - - - 808/660 Saos-2 PTT-PDT 85
Cu10MOF Zr4+, TCPP 3D 100 Cu2+/TCPP 10% - - - 660 NIH 3T3 PTT-PDT 86
Zn-TCPP Zn2+, TCPP 3D - Zn2+/TCPP - - - - 650 Hela PTT-PDT 87
AuNR@MOFs Zr4+, TCPP 3D 103×187 AuNR/TCPP - - - - 640/808 4T1 PTT-PDT 88
Fe-DSCP-PEG-cRGD Fe3+, DSCP 3D 51 Fe2+/cisplatin - PEG cRGD GSH - C6 CT-CDT 25
DSF/DOX@ZIF-8@Cu-TA Zn2+, 2-MIm 3D 99 DOX/CuL2/Cu+ 10.56% - - pH - MDA-MB-231/L02/L929 CT-CDT 115
PCN-224(Cu)-GOD@MnO2 Zr4+, TCPP 3D 178 GOx/TCPP 42.5% MnO2 - - - HeLa CT-CDT 116
MGDFT Fe3+, H2BDC 3D 200 DOX/Fe2+ - - NH2-PEG-FA/TPP Phosphate - 4T1/A549/293T CT-CDT 89
hMIL-88B(Fe)@ZIF-8-MnOx-DOX-FA Fe3+, NH2-BDC 3D 102×
196
DOX/Fe2+ 43.2% - FA pH - MCF-7/HepG-2/hCMEC-D3 CT-CDT 90
O2-Cu/ZIF-8@Ce6/ZIF-8@F127 Zn2+, 2-mim 3D 95 Ce6/Cu+ 3.3% F127 - pH 650 4T1 PDT-CDT 91
Zr-Fc Zr4+, Fc(COOH)2 3D - Fc(COOH)2 - - - - 808 7702/4T1/Huh7 PTT-CDT 92
FeS2-PEG Fe3+ 3D 180 Fe2+/Fe2O3 - PEG - H2O2 808 4T1 PTT-CDT 117
HG-MIL@PDA Fe3+, NH2-H2BDC 3D 233 PDA/Fe2+ - - HA pH/NIR 808 MDA-MB-231/L02 PTT-CDT 118
AuNR@MOFs@CPT Zr4+, TCPP 3D 25×53 AuNR/CPT/TCPP 25% - - NIR 808/660 4T1 CT-PTT-PDT 93
MIL-88-ICG@ZIF-8-DOX Zr4+, TCPPFe3+,
NH2-BDC
3D 450 DOX/ICG 25.3% - - pH 808 4T1 CT-PTT-PDT 119
DOX&ICG@H-PMOFs@mem Zr4+, TCPP 3D 235 DOX/ICG/TCPP 635% mem mem pH/NIR 808/660 4T1/U87MG/A549 CT-PTT-PDT 94
DOX-Pt-tip-ped Au@ZIF-8 Zn2+, 2-mim 3D 150 DOX 24.9% - PEG-FA pH 1064 4T1/HeLa CT-PTT-PDT 120
ICG@Mn/Cu/Zn-MOF@MnO2 Cu+, Zn2+, 2-ICA 3D 220 ICG/Cu+/Mn2+ 56.8% MnO2 - GSH 808 U87/NIH-3T3 CDT-PTT-PDT 95
[1]
Siegel R L, Miller K D, Fuchs H E, Jemal A. CA A Cancer J. Clin., 2021, 71(1): 7.

doi: 10.3322/caac.21654
[2]
Della Rocca J, Liu D M, Lin W B. Acc. Chem. Res., 2011, 44(10): 957.

doi: 10.1021/ar200028a
[3]
Björnmalm M, Thurecht K J, Michael M, Scott A M, Caruso F. ACS Nano, 2017, 11(10): 9594.

doi: 10.1021/acsnano.7b04855 pmid: 28926225
[4]
Zhang Y, Khan A R, Yang X Y, Fu M F, Wang R J, Chi L Q, Zhai G X. J. Drug Deliv. Sci. Technol., 2021, 61: 102266.
[5]
Wu M X, Yang Y W. Adv. Mater., 2017, 29(23): 1606134.
[6]
Wang J P, Zhang B L, Sun J Y, Hu W, Wang H J. Nano Today, 2021, 38: 101146.
[7]
Zhang H Y, Jiang W, Liu R L, Zhang J, Zhang D, Li Z H, Luan Y X. ACS Appl. Mater. Interfaces, 2017, 9(23): 19687.
[8]
Yu C X, Hu F L, Song J G, Zhang J L, Liu S S, Wang B X, Meng H, Liu L L, Ma L F. Sens. Actuat. B Chem., 2020, 310: 127819.
[9]
Tan G Z, Zhong Y T, Yang L L, Jiang Y D, Liu J Q, Ren F. Chem. Eng. J., 2020, 390: 124446.
[10]
Hoop M, Walde C F, Riccò R, Mushtaq F, Terzopoulou A, Chen X Z, deMello A J, Doonan C J, Falcaro P, Nelson B J, Puigmartí-Luis J, PanÉ S. Appl. Mater. Today, 2018, 11: 13.
[11]
Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, FÉrey G, Morris R E, Serre C. Chem. Rev., 2012, 112(2): 1232.

doi: 10.1021/cr200256v pmid: 22168547
[12]
Abánades Lázaro I, Forgan R S. Coord. Chem. Rev., 2019, 380: 230.

doi: 10.1016/j.ccr.2018.09.009
[13]
Liu J T, Huang J, Zhang L, Lei J P. Chem. Soc. Rev., 2021, 50(2): 1188.

doi: 10.1039/D0CS00178C
[14]
Yaghi O M, Li H L. J. Am. Chem. Soc., 1995, 117(41): 10401.
[15]
Yaghi O M, Li G M, Li H L. Nature, 1995, 378(6558): 703.

doi: 10.1038/378703a0
[16]
Yang J, Yang Y W. Small, 2020, 16(10): 1906846.
[17]
Pandey A, Dhas N, Deshmukh P, Caro C, Patil P, Luisa García-Martín M, Padya B, Nikam A, Mehta T, Mutalik S. Coord. Chem. Rev., 2020, 409: 213212.
[18]
Motakef-Kazemi N, Shojaosadati S A, Morsali A. Microporous Mesoporous Mater., 2014, 186: 73.

doi: 10.1016/j.micromeso.2013.11.036
[19]
Zhang W T, Peng Y Y, Cai T. Guangdong Chem. Ind., 2020, 47(11): 89.
张文婷, 彭亚运, 蔡挺. 广东化工, 2020, 47(11): 89.).
[20]
Suárez-García S, SolÓrzano R, AlibÉs R, BusquÉ F, Novio F, Ruiz-Molina D. Coord. Chem. Rev., 2021, 441: 213977.
[21]
Karimzadeh S, Javanbakht S, Baradaran B, Shahbazi M A, Hashemzaei M, Mokhtarzadeh A, Santos H A. Chem. Eng. J., 2021, 408: 127233.
[22]
Liu B, Jiang M, Zhu D Z, Zhang J M, Wei G. Chem. Eng. J., 2022, 428: 131118.
[23]
Gao P F, Zheng L L, Liang L J, Yang X X, Li Y F, Huang C Z. J. Mater. Chem. B, 2013, 1(25): 3202.

doi: 10.1039/c3tb00026e
[24]
Zhang Y, Wang L, Liu L, Lin L, Liu F, Xie Z G, Tian H Y, Chen X S. ACS Appl. Mater. Interfaces, 2018, 10(48): 41035.
[25]
Liu J J, Wu M, Pan Y T, Duan Y K, Dong Z L, Chao Y, Liu Z, Liu B. Adv. Funct. Mater., 2020, 30(13): 1908865.
[26]
Xie S T, Ai L L, Cui C, Fu T, Cheng X D, Qu F L, Tan W H. ACS Appl. Mater. Interfaces, 2021, 13(8): 9542.

doi: 10.1021/acsami.0c19562
[27]
Vázquez-González M, Willner I. ACS Appl. Mater. Interfaces, 2021, 13(8): 9520.

doi: 10.1021/acsami.0c17121
[28]
Li L, Xu S J, Yan H, Li X W, Yazd H S, Li X, Huang T, Cui C, Jiang J H, Tan W H. Angew. Chem. Int. Ed., 2021, 60(5): 2221.

doi: 10.1002/anie.202003563
[29]
Zhou J H, Rossi J. Nat. Rev. Drug Discov., 2017, 16(3): 181.

doi: 10.1038/nrd.2016.199
[30]
Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, FÉrey G. Angew. Chem. Int. Ed., 2006, 45(36): 5974.

doi: 10.1002/anie.200601878
[31]
Chen X R, Shi Z Q, Tong R L, Ding S P, Wang X, Wu J, Lei Q F, Fang W J. ACS Biomater. Sci. Eng., 2018, 4(12): 4183.

doi: 10.1021/acsbiomaterials.8b00840
[32]
Yan J Q, Liu C, Wu Q W, Zhou J N, Xu X Y, Zhang L R, Wang D Q, Yang F, Zhang H B. Anal. Chem., 2020, 92(16): 11453.
[33]
Lin Y X, Zhong Y P, Chen Y D, Li L, Chen G P, Zhang J X, Li P, Zhou C H, Sun Y W, Ma Y, Xie Z Y, Liao Q F. Mol. Pharmaceutics, 2020, 17(9): 3328.

doi: 10.1021/acs.molpharmaceut.0c00421
[34]
Qin Y T, Feng Y S, Ma Y J, He X W, Li W Y, Zhang Y K. ACS Appl. Mater. Interfaces, 2020, 12(22): 24585.
[35]
Zhao Q Q, Li J, Wu B, Shang Y H, Huang X Y, Dong H, Liu H T, Chen W S, Gui R, Nie X M. ACS Appl. Mater. Interfaces, 2020, 12(20): 22687.
[36]
Alijani H, Noori A, Faridi N, Bathaie S Z, Mousavi M F. J. Solid State Chem., 2020, 292: 121680.
[37]
Zhou M J, Liu X, Chen F M, Yang L L, Yuan M J, Fu D Y, Wang W Q, Yu H J. Biomed. Mater., 2021, 16(4): 042008.
[38]
Huang X, Sun X, Wang W L, Shen Q, Shen Q, Tang X N, Shao J J. J. Mater. Chem. B, 2021, 9(18): 3756.

doi: 10.1039/D1TB00349F
[39]
Yang Y, Liu J J, Liang C, Feng L Z, Fu T T, Dong Z L, Chao Y, Li Y G, Lu G, Chen M W, Liu Z. ACS Nano, 2016, 10(2): 2774.

doi: 10.1021/acsnano.5b07882 pmid: 26799993
[40]
Lü B, Chen Y F, Li P Y, Wang B, Müllen K, Yin M Z. Nat. Commun., 2019, 10: 767.

doi: 10.1038/s41467-019-08434-4
[41]
Liu F Y, He X X, Chen H D, Zhang J P, Zhang H M, Wang Z X. Nat. Commun., 2015, 6: 8003.

doi: 10.1038/ncomms9003
[42]
Li J, Zhang C T, Gong S M, Li X C, Yu M Y, Qian C G, Qiao H Z, Sun M J. Acta Biomater., 2019, 94: 435.

doi: 10.1016/j.actbio.2019.06.014
[43]
Zhao G Z, Wu H H, Feng R L, Wang D D, Xu P P, Jiang P, Yang K, Wang H B, Guo Z, Chen Q W. ACS Appl. Mater. Interfaces, 2018, 10(4): 3295.

doi: 10.1021/acsami.7b16222
[44]
Cai W, Gao H Y, Chu C C, Wang X Y, Wang J Q, Zhang P F, Lin G, Li W G, Liu G, Chen X Y. ACS Appl. Mater. Interfaces, 2017, 9(3): 2040.

doi: 10.1021/acsami.6b11579
[45]
An L, Cao M, Zhang X, Lin J M, Tian Q W, Yang S P. ACS Appl. Mater. Interfaces, 2020, 12(7): 8050.

doi: 10.1021/acsami.0c00302
[46]
Wang D D, Wu H H, Zhou J J, Xu P P, Wang C L, Shi R H, Wang H B, Wang H, Guo Z, Chen Q W. Adv. Sci., 2018, 5(6): 1800287.
[47]
Ghosh S K, Pal T. Chem. Rev., 2007, 107(11): 4797.

doi: 10.1021/cr0680282
[48]
Klinkova A, Choueiri R M, Kumacheva E. Chem. Soc. Rev., 2014, 43(11): 3976.

doi: 10.1039/c3cs60341e pmid: 24599020
[49]
Cheng L, Wang C, Feng L Z, Yang K, Liu Z. Chem. Rev., 2014, 114(21): 10869.
[50]
Zheng Q Y, Liu X M, Zheng Y F, Yeung K W K, Cui Z D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. Chem. Soc. Rev., 2021, 50(8): 5086.

doi: 10.1039/D1CS00056J
[51]
Lu K D, He C B, Lin W B. J. Am. Chem. Soc., 2014, 136(48): 16712.
[52]
Park J, Jiang Q, Feng D W, Mao L Q, Zhou H C. J. Am. Chem. Soc., 2016, 138(10): 3518.

doi: 10.1021/jacs.6b00007
[53]
Zhang L, Lei J P, Ma F J, Ling P H, Liu J T, Ju H X. Chem. Commun., 2015, 51(54): 10831.
[54]
Wang Y B, Wu W B, Liu J J, Manghnani P N, Hu F, Ma D, Teh C, Wang B, Liu B. ACS Nano, 2019, 13(6): 6879.

doi: 10.1021/acsnano.9b01665
[55]
Li S Y, Cheng H, Xie B R, Qiu W X, Zeng J Y, Li C X, Wan S S, Zhang L, Liu W L, Zhang X Z. ACS Nano, 2017, 11(7): 7006.

doi: 10.1021/acsnano.7b02533
[56]
Zhang Y, Wang F M, Liu C Q, Wang Z Z, Kang L H, Huang Y Y, Dong K, Ren J S, Qu X G. ACS Nano, 2018, 12(1): 651.

doi: 10.1021/acsnano.7b07746 pmid: 29290107
[57]
Luo T K, Nash G T, Xu Z W, Jiang X M, Liu J Q, Lin W B. J. Am. Chem. Soc., 2021, 143(34): 13519.
[58]
Ding L, Lin X, Lin Z G, Wu Y N, Liu X L, Liu J F, Wu M, Zhang X L, Zeng Y Y. ACS Appl. Mater. Interfaces, 2020, 12(33): 36906.
[59]
Huang Y Y, Ren J S, Qu X G. Chem. Rev., 2019, 119(6): 4357.

doi: 10.1021/acs.chemrev.8b00672
[60]
Han X, Li Y, Zhou Y, Song Z Y, Deng Y L, Qin J L, Jiang Z Q. Mater. Des., 2021, 204: 109646.
[61]
Zhang C, Bu W B, Ni D L, Zhang S J, Li Q, Yao Z W, Zhang J W, Yao H L, Wang Z, Shi J L. Angew. Chem. Int. Ed., 2016, 55(6): 2101.

doi: 10.1002/anie.201510031 pmid: 26836344
[62]
Hao Y N, Zhang W X, Gao Y R, Wei Y N, Shu Y, Wang J H. J. Mater. Chem. B, 2021, 9(2): 250.

doi: 10.1039/D0TB02360D
[63]
Hwang E, Jung H S. Chem. Commun., 2020, 56(60): 8332.

doi: 10.1039/D0CC03012K
[64]
Liu X, Jin Y L, Liu T T, Yang S J, Zhou M X, Wang W Q, Yu H J. ACS Biomater. Sci. Eng., 2020, 6(9): 4834.

doi: 10.1021/acsbiomaterials.0c01009
[65]
Zheng D W, Lei Q, Zhu J Y, Fan J X, Li C X, Li C, Xu Z S, Cheng S X, Zhang X Z. Nano Lett., 2017, 17(1): 284.

doi: 10.1021/acs.nanolett.6b04060
[66]
Gao L, Wu Z T, Ibrahim A R, Zhou S F, Zhan G W. ACS Biomater. Sci. Eng., 2020, 6(11): 6095.

doi: 10.1021/acsbiomaterials.0c01152 pmid: 33449663
[67]
Zhong Y Y, Li X S, Chen J H, Wang X X, Wei L T, Fang L Q, Kumar A, Zhuang S Z, Liu J Q. Dalton Trans., 2020, 49(32): 11045.
[68]
Jin S L, Weng L L, Li Z, Yang Z Z, Zhu L L, Shi J X, Tang W X, Ma W, Zong H, Jiang W. J. Mater. Chem. B, 2020, 8(21): 4620.

doi: 10.1039/D0TB00357C
[69]
Li J, Li T, Gorin D, Kotelevtsev Y, Mao Z, Tong W. Colloids Surf., A, 2020, 601(20): 124990.
[70]
Sang Y J, Cao F F, Li W, Zhang L, You Y W, Deng Q Q, Dong K, Ren J S, Qu X G. J. Am. Chem. Soc., 2020, 142(11): 5177.

doi: 10.1021/jacs.9b12873
[71]
Fan W P, Yung B, Huang P, Chen X Y. Chem. Rev., 2017, 117(22): 13566.
[72]
Zhu Y D, Chen S P, Zhao H, Yang Y, Chen X Q, Sun J, Fan H S, Zhang X D. ACS Appl. Mater. Interfaces, 2016, 8(50): 34209.
[73]
He J C, Dong J W, Hu Y F, Li G K, Hu Y L. Nanoscale, 2019, 11(13): 6089.

doi: 10.1039/C9NR00041K
[74]
Wang D D, Zhou J J, Shi R H, Wu H H, Chen R H, Duan B C, Xia G L, Xu P P, Wang H, Zhou S, Wang C M, Wang H B, Guo Z, Chen Q W. Theranostics, 2017, 7(18): 4605.

doi: 10.7150/thno.20363
[75]
Jiang W, Zhang H Y, Wu J L, Zhai G X, Li Z H, Luan Y X, Garg S. ACS Appl. Mater. Interfaces, 2018, 10(40): 34513.
[76]
Luo D D, Carter K A, Molins E A G, Straubinger N L, Geng J M, Shao S, Jusko W J, Straubinger R M, Lovell J F. J. Control. Release, 2019, 297: 39.

doi: 10.1016/j.jconrel.2019.01.030
[77]
Chen R, Zhang J F, Wang Y, Chen X F, Zapien J A, Lee C S. Nanoscale, 2015, 7(41): 17299.
[78]
Xie Z X, Cai X C, Sun C Q, Liang S, Shao S, Huang S S, Cheng Z Y, Pang M L, Xing B G, Kheraif A A A, Lin J. Chem. Mater., 2019, 31(2): 483.

doi: 10.1021/acs.chemmater.8b04321
[79]
Kim K, Lee S, Jin E, Palanikumar L, Lee J H, Kim J C, Nam J S, Jana B, Kwon T H, Kwak S K, Choe W, Ryu J H. ACS Appl. Mater. Interfaces, 2019, 11(31): 27512.
[80]
Li S Y, Zhao L P, Zheng R R, Fan G L, Liu L S, Zhou X, Chen X T, Qiu X Z, Yu X Y, Cheng H. Part. Part. Syst. Charact., 2020, 37(3): 1900496.
[81]
Hu J, Wu W R, Qin Y F, Liu C, Wei P, Hu J, Seeberger P H, Yin J. Adv. Funct. Mater., 2020, 30(19): 1910084.
[82]
Song Y C, Wang L, Xie Z G. Biotechnol. J., 2021, 16(2): 1900382.
[83]
Ren Q L, Li B, Peng Z Y, He G J, Zhang W L, Guan G Q, Huang X J, Xiao Z Y, Liao L J, Pan Y S, Yang X J, Zou R J, Hu J Q. New J. Chem., 2016, 40(5): 4464.

doi: 10.1039/C5NJ03263F
[84]
Cheng L, Liu J J, Gu X, Gong H, Shi X Z, Liu T, Wang C, Wang X Y, Liu G, Xing H Y, Bu W B, Sun B Q, Liu Z. Adv. Mater., 2014, 26(12): 1886.

doi: 10.1002/adma.201304497
[85]
Li B, Wang X Y, Chen L, Zhou Y L, Dang W T, Chang J, Wu C T. Theranostics, 2018, 8(15): 4086.

doi: 10.7150/thno.25433
[86]
Han D L, Han Y J, Li J, Liu X M, Yeung K W K, Zheng Y F, Cui Z D, Yang X J, Liang Y Q, Li Z Y, Zhu S L, Yuan X B, Feng X B, Yang C, Wu S L. Appl. Catal. B Environ., 2020, 261: 118248.
[87]
Wang S Y, Chen W H, Jiang C H, Lu L H. ELECTROPHORESIS, 2019, 40(16/17): 2204.

doi: 10.1002/elps.201900005
[88]
Zhou Z H, Zhao J, Di Z H, Liu B, Li Z H, Wu X M, Li L L. Nanoscale, 2021, 13(1): 131.

doi: 10.1039/D0NR07681C
[89]
Peng H, Qin Y T, Feng Y S, He X W, Li W Y, Zhang Y K. ACS Appl. Mater. Interfaces, 2021, 13(31): 37713.
[90]
Zeng X L, Chen B, Song Y B, Lin X F, Zhou S F, Zhan G W. ACS Appl. Bio Mater., 2021, 4(8): 6417.

doi: 10.1021/acsabm.1c00603
[91]
Xie Z X, Liang S, Cai X C, Ding B B, Huang S S, Hou Z Y, Ma P G, Cheng Z Y, Lin J. ACS Appl. Mater. Interfaces, 2019, 11(35): 31671.
[92]
Deng Z, Fang C, Ma X, Li X, Zeng Y J, Peng X S. ACS Appl. Mater. Interfaces, 2020, 12(18): 20321.
[93]
Zeng J Y, Zhang M K, Peng M Y, Gong D, Zhang X Z. Adv. Funct. Mater., 2018, 28(8): 1705451.
[94]
Sun X, He G H, Xiong C X, Wang C Y, Lian X, Hu L F, Li Z K, Dalgarno S J, Yang Y W, Tian J. ACS Appl. Mater. Interfaces, 2021, 13(3): 3679.

doi: 10.1021/acsami.0c20617
[95]
Cheng Y, Wen C, Sun Y Q, Yu H, Yin X B. Adv. Funct. Mater., 2021, 31(37): 2104378.
[96]
Kamal N A M A, Abdulmalek E, Fakurazi S, Cordova K E, Abdul Rahman M B. Dalton Trans., 2021, 50(7): 2375.

doi: 10.1039/D1DT00116G
[97]
Hou L, Liu Y L, Liu W, Balash M, Zhang H L, Zhang Y, Zhang H J, Zhang Z Z. Acta Pharm. Sin. B, 2021, 11(7): 2016.

doi: 10.1016/j.apsb.2021.01.013
[98]
Xie R H, Yang P, Peng S J, Cao Y B, Yao X X, Guo S D, Yang W L. J. Mater. Chem. B, 2020, 8(28): 6128.

doi: 10.1039/D0TB00193G
[99]
Shi L X, Wu J, Qiao X R, Ha Y, Li Y P, Peng C, Wu R B. ACS Biomater. Sci. Eng., 2020, 6(8): 4595.

doi: 10.1021/acsbiomaterials.0c00935
[100]
Wang Y B, Xu S D, Shi L L, Teh C, Qi G B, Liu B. Angew. Chem. Int. Ed., 2021, 60(27): 14945.
[101]
Wang Y B, Shi L L, Ma D, Xu S D, Wu W B, Xu L, Panahandeh-Fard M, Zhu X Y, Wang B, Liu B. ACS Nano, 2020, 14(10): 13056.
[102]
Li B, Cao H Z, Zheng J, Ni B, Lu X, Tian X H, Tian Y P, Li D D. ACS Appl. Mater. Interfaces, 2021, 13(8): 9739.

doi: 10.1021/acsami.1c00583
[103]
Zhang D, Ye Z J, Wei L, Luo H B, Xiao L H. ACS Appl. Mater. Interfaces, 2019, 11(43): 39594.
[104]
Li Y T, Jin J, Wang D W, Lv J W, Hou K, Liu Y L, Chen C Y, Tang Z Y. Nano Res., 2018, 11(6): 3294.

doi: 10.1007/s12274-017-1874-y
[105]
Yang X, Li L L, He D G, Hai L, Tang J L, Li H F, He X X, Wang K M. J. Mater. Chem. B, 2017, 5(24): 4648.

doi: 10.1039/c7tb00715a pmid: 32264307
[106]
Xu M Y, Chi B, Han Z Y, He Y T, Tian F, Xu Z S, Li L, Wang J. Dalton Trans., 2020, 49(35): 12327.
[107]
Wang P, Kankala R K, Chen B Q, Zhang Y, Zhu M Z, Li X M, Long R M, Yang D Y, Krastev R, Wang S B, Xiong X, Liu Y G. ACS Appl. Mater. Interfaces, 2021, 13(31): 37563.
[108]
Ma Y Q, Chen L, Li X L, Hu A N, Wang H R, Zhou H, Tian B, Dong J. Biomaterials, 2021, 275: 120917.
[109]
Guo H B, Yi S, Feng K, Xia Y Q, Qu X W, Wan F, Chen L, Zhang C L. Chem. Eng. J., 2021, 403: 126432.
[110]
Zhu W X, Chen M, Liu Y C, Tian Y Y, Song Z L, Song G S, Zhang X B. Nanoscale, 2019, 11(43): 20630.
[111]
Geng P, Yu N, Liu X H, Wen M, Ren Q, Qiu P, Macharia D K, Zhang H J, Li M Q, Chen Z G. ACS Appl. Mater. Interfaces, 2021, 13(27): 31440.
[112]
Lu J L, Zhu X H, Li M X, Fu C P, Li Y, Zhang J, Liu J L, Zhang Y. ACS Appl. Bio Mater., 2021, 4(8): 6316.

doi: 10.1021/acsabm.1c00573
[113]
Liu P, Zhou Y B, Shi X Y, Yuan Y, Peng Y, Hua S R, Luo Q G, Ding J S, Li Y, Zhou W H. J. Nanobiotechnology, 2021, 19: 149.

doi: 10.1186/s12951-021-00893-6
[114]
Chu C C, Lin H R, Liu H, Wang X Y, Wang J Q, Zhang P F, Gao H Y, Huang C, Zeng Y, Tan Y Z, Liu G, Chen X Y. Adv. Mater., 2017, 29(23): 1605928.
[115]
Meng X Y, Jia K Y, Sun K, Zhang L M, Wang Z F. Chem. Eng. J., 2021, 415: 128947.
[116]
Wang Z, Liu B, Sun Q Q, Dong S M, Kuang Y, Dong Y S, He F, Gai S L, Yang P P. ACS Appl. Mater. Interfaces, 2020, 12(15): 17254.
[117]
Tang Z M, Zhang H L, Liu Y Y, Ni D L, Zhang H, Zhang J W, Yao Z W, He M Y, Shi J L, Bu W B. Adv. Mater., 2017, 29(47): 1701683.
[118]
Wu H S, Gu D H, Xia S J, Chen F H, You C Q, Sun B W. Biomater. Sci., 2021, 9(3): 1020.

doi: 10.1039/D0BM01734E
[119]
Wu B Y, Fu J T, Zhou Y X, Luo S L, Zhao Y T, Quan G L, Pan X, Wu C B. Acta Pharm. Sin. B, 2020, 10(11): 2198.

doi: 10.1016/j.apsb.2020.07.025
[120]
Chen M M, Hao H L, Zhao W, Zhao X L, Chen H Y, Xu J J. Chem. Sci., 2021, 12(32): 10848.
[1] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[2] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[3] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[6] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[7] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[8] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[9] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[10] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[11] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[12] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[13] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.
[14] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[15] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.