中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2361-2372 DOI: 10.7536/PC220311 Previous Articles   Next Articles

• Review •

Study on Photoelectrocatalysis of Organic Carbon Materials

Xiangjuan Chen, Huan Wang(), Weijia An, Li Liu, Wenquan Cui()   

  1. Hebei Provincial Key Laboratory of Environmental Photocatalytic Materials,College of Chemical Engineering, North China University of Science and Technology,Tangshan 063210, China
  • Received: Revised: Online: Published:
  • Contact: Huan Wang, Wenquan Cui
  • Supported by:
    Youth Program of Natural Science of Hebei Province(B2020209065); Science and Technology Project of Hebei Education Department(BJK2022013); Key Program of Natural Science of Hebei Province(B2020209017)
Richhtml ( 39 ) PDF ( 517 ) Cited
Export

EndNote

Ris

BibTeX

Organic carbon materials are widely used in the field of photoelectrocatalysis because of their high charge conduction efficiency, adjustable structure and no pollution. The catalyst containing organic carbon as electrode material has become one of the research hotspots in the field of photoelectrocatalysis. The structure and characteristics of several common organic carbon materials are introduced in this paper. These preparation methods and research direction of photoelectrocatalysis are also elaborated. And the electrodes containing organic carbon were divided into three categories. Five functions of organic carbon materials in photoelectric catalytic system are summarized and discussed: (1) act as catalyst; (2) act as photosensitizer; (3) act as electronic medium; (4) act as carrier; (5) act as photoelectrode stabilizer. In the end the research status and difficulties of organic carbon materials in photoelectrocatalytic system are also described in this paper.

Contents

1 Introduction

2 Common carbon-based compounds

2.1 C-Dots

2.2 G-C3N4

2.3 Graphene

2.4 Metal-organic skeleton

2.5 Other organic carbon materials

3 Carbon-based compound electrode material

3.1 Thin film type photoelectrode

3.2 Array type photoelectrode

3.3 Gel type photoelectrode

4 The role of organic carbon materials in photocatalysis

4.1 Act as catalyst

4.2 Act as photosensitizer

4.3 Act as electronic medium

4.4 Act as carrier

4.5 Act as stabilizer

5 Conclusion and outlook

Fig. 1 (a) Classification of CDs and the structures of carbon core of CPDs[8], Copyright 2019, Wiley; (b) Photocurrent responses of TiO2/Ti and CDs-TiO2/Ti[9], Copyright 2019, Elsevier; (c) The molecular structure diagram of g-C3N4; (d) The molecular structure diagram of GO; (e) The molecular structure diagram of UiO Metal-Organic Frameworks; (f) The molecular structure diagram of common COF
Fig. 2 Schematic diagram of photocatalytic degradation of organic compounds[48], Copyright 2021, Elsevier
Fig. 3 Charge separation and transfer mechanism in the C-Co-Pi/Fe2O3 photoanode[72]. Copyright 2018, Elsevier
Table 1 Recent studies on the use of carbon materials as electron mediators in carbon-based compounds
Organic carbon
composite photoelectrode
The electrode type Application Organic carbon material effect
CDs/TiO2/g-C3N4[78] Thin film Degradation g-C3N4 constructed z-type heterojunction with TiO2, and CDs extended carrier life and enhanced charge separation efficiency.
N-CDs/TiO2[77] Thin film Oxygen production Broaden the range of light absorption and improve the efficiency of charge separation.
CDs/SiNWs@Co3O4[79] Array Oxygen production As electron acceptor, extend carrier life and improve semiconductor stability.
MOF/BiVO4[58] Thin film Oxygen production Conduction hole, effectively avoid photogenerated electrons and hole compound efficiency
CDs/Au/TiO2[71] Array Oxygen production Increase the amount and rate of electron separation.
CDs/BiVO4/g-C3N4[22] Thin film Hydrogen production As an electron donor, the density of semiconductor electron cloud is increased and enhance the reduction ability is enhanced.
CDs/Cu-In-Zn-S/MoS2[11] Thin film Hydrogen production Act as electron acceptor, temporarily store electrons, extend carrier life.
CNT /TiO2[80] Thin film Degradation Carbon nanotubes significantly reduce the charge transfer resistance and increase the anodic photocurrent response of the film.
FeNi-MOF/TiO2[81] Array Oxygen production Improve the separation rate of photogenerated electrons and holes.
CNT/Ag3PO4[82] Thin film Degradation MWCNTs were used as electron traps to effectively separate photocarriers.
CDs/(Co-Pi)/Fe2O3[72] Thin film Oxygen production The charge separation and charge transfer in Co-Pi/Fe2O3 photoanode were promoted by using CQDs as charge bridge to conduct interfacial electrons.
GO /Bi2WO6[30] Thin film Degradation The conjugation of graphene structure and the hybridization between Bi2WO6 and rGO can promote the migration of interfacial charge carriers and effectively improve the photogenerated charge separation and photocatalytic quantum efficiency.
GO/CdS[83] Thin film Degradation The synergistic effect of enhanced light absorption and high electron conductivity of graphene sheets contributes to charge separation and extends the lifetime of photogenerated electron-hole pairs by reducing the recombination rate.
GO/TiO2/Cu2O[84] Thin film Degradation Charge transfer channel.
GO/CeO2/TiO2[85] Array Degradation It can improve the utilization efficiency of visible part of sunlight and effectively reduce the recombination rate of photogenerated electrons and holes.
CNT/TiO2[86] Thin film Degradation As the channel of electron transmission, the separation efficiency of electron and hole is enhanced.
CNT/CdS[87] Thin film Hydrogen production As a channel of electronic transmission between CdS and stainless steel substrate, fast transmission to the cathode to produce hydrogen.
GO/α-Fe2O3[88] Thin film Oxygen production Graphene can extract photoenergetic electrons from α -Fe2O3 and inhibit the charge recombination of electron-hole pairs, thus enhancing the photocurrent response.
γ-GO/TiO2[74] Array Degradation Heterojunction is constructed to improve charge separation efficiency.
P3HT/TiO2[89] Array Degradation Heterojunction was constructed to effectively improve the separation efficiency of photogenerated electrons and holes
CNT/MoS2-MoO3[90] Thin film Hydrogen production The introduction of multi-walled carbon nanotubes (MWCNTs) and the formation of heterostructures can improve the charge transfer rate and the ability of electron and hole separation.
g-C3N4/TiO2[73] Array Degradation Heterojunction is constructed to improve charge separation efficiency.
Fig. 4 (a) Graphene hydrogel supported on stainless steel mesh; (b) electron microscopic view of graphene aerogel
Fig. 5 Mechanism diagram of carbon aerogel as carbon sequestration matrix for CO2 reduction[98]. Copyright 2016, The Royal Society of Chemistry
[1]
Li D P, Qu J H. J. Environ. Sci., 2009, 21(6): 713.

doi: 10.1016/S1001-0742(08)62329-3
[2]
Bunz U H F, Rubin Y, Tobe Y. Chem. Soc. Rev., 1999, 28(2): 107.

doi: 10.1039/a708900g
[3]
Li Z, Liu Z, Sun H Y, Gao C. Chem. Rev., 2015, 115(15): 7046.

doi: 10.1021/acs.chemrev.5b00102
[4]
Lu X L, Han Y Y, Lu T B. Journal of Physical Chemistry, 2018, 34(09): 1014.
(卢秀利, 韩莹莹, 鲁统部. 物理化学学报, 2018, 34(09): 1014.).
[5]
Yu H J, Shi R, Zhao Y F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2016, 28(43): 9454.

doi: 10.1002/adma.201602581
[6]
Wang R, Lu K Q, Tang Z R, Xu Y J. J. Mater. Chem. A, 2017, 5(8): 3717.

doi: 10.1039/C6TA08660H
[7]
Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8(2): 355.

doi: 10.1007/s12274-014-0644-3
[8]
Xia C L, Zhu S J, Feng T L, Yang M X, Yang B. Adv. Sci., 2019, 6(23): 1901316.

doi: 10.1002/advs.201901316
[9]
He C, Xu P, Zhang X H, Long W J. Carbon, 2022, 186: 91.

doi: 10.1016/j.carbon.2021.10.002
[10]
Aliyeva H, Gurel A, Nowak S, Lau S, Decorse P, Chaguetmi S, Schaming D, Ammar S. Mater. Lett., 2019, 250: 119.

doi: 10.1016/j.matlet.2019.02.131
[11]
Chen Q T, Liu Y H, Gu X Q, Li D, Zhang D X, Zhang D Q, Huang H, Mao B D, Kang Z H, Shi W D. Appl. Catal. B Environ., 2022, 301: 120755.

doi: 10.1016/j.apcatb.2021.120755
[12]
Truong H B, Bae S, Cho J, Hur J. Chemosphere, 2022, 286: 131737.

doi: 10.1016/j.chemosphere.2021.131737
[13]
Li H, Zhang Z E, Liu Y L, Cen W L, Luo X B. Nanomaterials, 2018, 8(8): 589.

doi: 10.3390/nano8080589
[14]
Liang F F, Zhu Y F. Appl. Catal. B Environ., 2016, 180: 324.

doi: 10.1016/j.apcatb.2015.05.009
[15]
Duan S F, Tao C L, Geng Y Y, Yao X Q, Kang X W, Su J Z, Rodríguez-GutiÉrrez I, Kan M, Romero M, Sun Y, Zhao Y X, Qin D D, Yan Y. ChemCatChem, 2019, 11(2): 729.

doi: 10.1002/cctc.201801581
[16]
Zhang Q, Zhang X. Solid State Sci., 2019, 89: 150.

doi: 10.1016/j.solidstatesciences.2019.01.004
[17]
Qin D D, Quan J J, Duan S F, San Martin J, Lin Y X, Zhu X L, Yao X Q, Su J Z, Rodríguez-GutiÉrrez I, Tao C L, Yan Y. ChemSusChem, 2019, 12(4): 898.

doi: 10.1002/cssc.201802382
[18]
Ko?í K, van H D, Edelmannová M, Reli M, Wu J C S. Appl. Surf. Sci., 2020, 503: 144426.

doi: 10.1016/j.apsusc.2019.144426
[19]
Wang N, Wu L P, Li J, Mo J M, Peng Q M, Li X J. Sol. Energy Mater. Sol. Cells, 2020, 215: 110624.

doi: 10.1016/j.solmat.2020.110624
[20]
Wang F F, Ou R P, Yu H B, Lu Y, Qu J, Zhu S Y, Zhang L L, Huo M X. Appl. Surf. Sci., 2021, 565: 150597.

doi: 10.1016/j.apsusc.2021.150597
[21]
Amornpitoksuk P, Suwanboon S, Sirimahachai U, Randorn C, Yaemsunthorn K. Bull. Mater. Sci., 2016, 39(6): 1507.

doi: 10.1007/s12034-016-1294-8
[22]
Samsudin M F R, Ullah H, Tahir A A, Li X H, Ng Y H, Sufian S. J. Colloid Interface Sci., 2021, 586: 785.

doi: 10.1016/j.jcis.2020.11.003
[23]
Feng J, Cheng L, Zhang J D, Okoth O K, Chen F. Ceram. Int., 2018, 44(4): 3672.

doi: 10.1016/j.ceramint.2017.11.124
[24]
García A, Fernandez-Blanco C, Herance J R, Albero J, García H. J. Mater. Chem. A, 2017, 5(32): 16522.

doi: 10.1039/C7TA04045H
[25]
Valenzuela L, Faraldos M, Bahamonde A, Rosal R. Electrochimica Acta, 2021, 395: 139203.

doi: 10.1016/j.electacta.2021.139203
[26]
Saeidi S, Rezaei B, Ensafi A A. Mater. Today Chem., 2022, 23: 100742.
[27]
Wang H, Lu J R, Liu L, Cui W Q, Liang Y H. Appl. Surf. Sci., 2020, 506: 144966.

doi: 10.1016/j.apsusc.2019.144966
[28]
Zhai C Y, Zhu M S, Ren F F, Yao Z Q, Du Y K, Yang P. J. Hazard. Mater., 2013, 263: 291.

doi: 10.1016/j.jhazmat.2013.09.013
[29]
Wang Q, Zhu N X, Liu E Q, Zhang C L, Crittenden J C, Zhang Y, Cong Y Q. Appl. Catal. B Environ., 2017, 205: 347.

doi: 10.1016/j.apcatb.2016.11.046
[30]
He Z T, Liu S, Zhong Y, Chen D M, Ding H, Wang J, Du G X, Yang G, Hao Q. Chin. J. Catal., 2020, 41(2): 302.

doi: 10.1016/S1872-2067(19)63520-5
[31]
Wang H, Liang Y H, Liu L, Hu J S, Cui W Q. Appl. Surf. Sci., 2017, 392: 51.

doi: 10.1016/j.apsusc.2016.08.068
[32]
Prado T M, Silva F L, Carrico A, de Vasconcelos Lanza M R, Fatibello-Filho O, Moraes F C. Mater. Res. Bull., 2022, 145: 111539.

doi: 10.1016/j.materresbull.2021.111539
[33]
Gupta S, Subramanian V R. ACS Appl. Mater. Interfaces, 2014, 6(21): 18597.

doi: 10.1021/am503396r
[34]
Ali M, Pervaiz E, Noor T, Rabi O, Zahra R, Yang M H. Int. J. Energy Res., 2021, 45(2): 1190.

doi: 10.1002/er.5807
[35]
Candia-Onfray C, Rojas S, Zanoni M V B, Salazar R. Curr. Opin. Electrochem., 2021, 26: 100669.
[36]
Zhou Y T, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh R R, Rani E, Singh H, Kirillov A M. Coord. Chem. Rev., 2022, 451: 214264.

doi: 10.1016/j.ccr.2021.214264
[37]
Valenzuela L, Amariei G, Ezugwu C I, Faraldos M, Bahamonde A, Mosquera M E G, Rosal R. Sep. Purif. Technol., 2022, 285: 120351.

doi: 10.1016/j.seppur.2021.120351
[38]
García-Sánchez A, Gomez-Mendoza M, Barawi M, Villar-Garcia I J, Liras M, Gándara F, de la Peña O’Shea V A. J. Am. Chem. Soc., 2020, 142(1): 318.

doi: 10.1021/jacs.9b10261 pmid: 31809033
[39]
Gao Z Y, Liang L, Zhang X, Xu P, Sun J M. ACS Appl. Mater. Interfaces, 2021, 13(51): 61334.

doi: 10.1021/acsami.1c20878
[40]
Cardoso J C, Stulp S, de Brito J F, Flor J B S, Frem R C G, Zanoni M V B. Appl. Catal. B Environ., 2018, 225: 563.

doi: 10.1016/j.apcatb.2017.12.013
[41]
Zhu H L, Liu D X, Zou D T, Zhang J Y. J. Mater. Chem. A, 2018, 6(15): 6130.

doi: 10.1039/C8TA00494C
[42]
Zhang G Y, Guan Q Q, Miao R R, Ning P, He L. Mater. Rep., 2021, 35(13): 13215.
(张关印, 关清卿, 庙荣荣, 宁平, 何亮. 材料导报, 2021, 35(13): 13215.).
[43]
Xu N F. Doctoral Dissertation of China University of Geosciences, 2021.
(徐楠峰. 中国地质大学博士学位论文, 2021.).
[44]
Wu S Q, Hu Y H. Chem. Eng. J., 2021, 409: 127739.

doi: 10.1016/j.cej.2020.127739
[45]
Wuttke S, Medina D D, Rotter J M, Begum S, Stassin T, Ameloot R, Oschatz M, Tsotsalas M. Adv. Funct. Mater., 2018, 28(44): 1801545.

doi: 10.1002/adfm.201801545
[46]
Yuan J L, Wang P C, Hao C J, Yu G C. Electrochimica Acta, 2016, 193: 1.

doi: 10.1016/j.electacta.2016.02.037
[47]
Wang G, Chen Q H, Liu Y P, Ma D, Xin Y J, Ma X H, Zhang X W. Chem. Eng. J., 2018, 337: 322.

doi: 10.1016/j.cej.2017.12.058
[48]
Ye S S, Chen Y X, Yao X L, Zhang J D. Chemosphere, 2021, 273: 128503.

doi: 10.1016/j.chemosphere.2020.128503
[49]
Zhao H Y, Chen Y, Peng Q S, Wang Q N, Zhao G H. Appl. Catal. B Environ., 2017, 203: 127.

doi: 10.1016/j.apcatb.2016.09.074
[50]
Peng Q S, Zhao H Y, Qian L, Wang Y B, Zhao G H. Appl. Catal. B Environ., 2015, 174/175: 157.

doi: 10.1016/j.apcatb.2015.02.031
[51]
Liu X E, Dai L M. Nat. Rev. Mater., 2016, 1(11): 16064.

doi: 10.1038/natrevmats.2016.64
[52]
Zheng Y M, Liu Y Y, Guo X L, Zhang W J, Wang Y X, Zhang M, Li R, Peng Z B, Xie H, Huang Y. ACS Appl. Nano Mater., 2020, 3(8): 7982.

doi: 10.1021/acsanm.0c01444
[53]
Zhang Z S, Lin S L, Li X G, Li H, Cui W Q. RSC Adv., 2017, 7(89): 56335.

doi: 10.1039/C7RA11205J
[54]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Nat. Commun., 2013, 4: 2819.

doi: 10.1038/ncomms3819
[55]
Li W L, Bandosz T J. ChemSusChem, 2018, 11(17): 2987.

doi: 10.1002/cssc.201801073
[56]
Kao E, Liang Q H, Bertholet G R K, Zang X N, Park H S, Bae J, Lu J N, Lin L W. Sens. Actuat. A Phys., 2018, 277: 18.

doi: 10.1016/j.sna.2018.04.037
[57]
Sangiorgi N, Tuci G, Sanson A, Peruzzini M, Giambastiani G. Rendiconti Lincei Scienze Fisiche E Nat., 2019, 30(3): 497.
[58]
Wang B, Yang F L, Dong Y P, Cao Y Z, Wang J Y, Yang B J, Wei Y, Wan W R, Chen J Z, Jing H W. Chem. Eng. J., 2020, 396: 125255.

doi: 10.1016/j.cej.2020.125255
[59]
Zheng J G, Li X J, Qin Y H, Zhang S Q, Sun M S, Duan X G, Sun H Q, Li P Q, Wang S B. J. Catal., 2019, 371: 214.

doi: 10.1016/j.jcat.2019.01.022
[60]
Zhao X L, Pan D L, Chen X F, Li R P, Jiang T G, Wang W C, Li G S, Leung D Y C. Appl. Surf. Sci., 2019, 467/468: 658.

doi: 10.1016/j.apsusc.2018.10.090
[61]
Deshmukh S, Deore A, Mondal S. ACS Appl. Nano Mater., 2021, 4(8): 7587.

doi: 10.1021/acsanm.1c01880
[62]
Sui L Z, Jin W W, Li S Y, Liu D L, Jiang Y F, Chen A M, Liu H, Shi Y, Ding D J, Jin M X. Phys. Chem. Chem. Phys., 2016, 18(5): 3838.

doi: 10.1039/C5CP07558K
[63]
Liu B B, Liu X J, Li L, Li J W, Li C, Gong Y Y, Niu L Y, Zhao X S, Sun C Q. Chin. J. Catal., 2018, 39(12): 1901.

doi: 10.1016/S1872-2067(18)63137-7
[64]
Zhang W J, Zhang X Z, Zhang Z X, Wang W H, Xie A J, Xiao C H, Zhang H, Shen Y H. J. Electrochem. Soc., 2015, 162(9): H638.

doi: 10.1149/2.0651509jes
[65]
Yang H C, Peng Y, Jiang L X, Liu F Y, Jia M. Chem. Phys. Lett., 2020, 739: 137025.

doi: 10.1016/j.cplett.2019.137025
[66]
Zheng H J, Niu P, Zhao Z F. RSC Adv., 2017, 7(43): 26943.

doi: 10.1039/C7RA01867C
[67]
Xie X, Yang Y H, Xiao Y H, Huang X M, Shi Q S, Zhang W D. Int. J. Hydrog. Energy, 2018, 43(14): 6954.

doi: 10.1016/j.ijhydene.2018.02.099
[68]
Yi S S, Yan J M, Jiang Q. J. Mater. Chem. A, 2018, 6(21): 9839.

doi: 10.1039/C8TA01908H
[69]
Han H, Karlicky F, Pitchaimuthu S, Shin S H R, Chen A P. Small, 2019, 15(40): 1902771.

doi: 10.1002/smll.201902771
[70]
Miao S H, Liang K, Zhu J J, Yang B, Zhao D Y, Kong B. Nano Today, 2020, 33: 100879.

doi: 10.1016/j.nantod.2020.100879
[71]
Liao F, Shi Y D, Dang Q, Yang H W, Huang H, Kang Z H, Shao M W. J. Colloid Interface Sci., 2022, 606: 1274.

doi: 10.1016/j.jcis.2021.08.131
[72]
Jiang X, Zhang Z M, Mei J F, Han D Y, Xie M Z, Wang F C, Xie E Q, Han W H. Electrochimica Acta, 2018, 273: 208.

doi: 10.1016/j.electacta.2018.04.052
[73]
Zhang Y, Wang Q, Lu J N, Wang Q, Cong Y Q. Chemosphere, 2016, 162: 55.

doi: 10.1016/j.chemosphere.2016.07.064 pmid: 27479456
[74]
Gao B W, Sun M X, Ding W, Ding Z P, Liu W Z. Appl. Catal. B Environ., 2021, 281: 119492.

doi: 10.1016/j.apcatb.2020.119492
[75]
Wang H, Han B X, Lu J R, Wu P F, Cui W Q. Mater. Lett., 2020, 260: 126906.

doi: 10.1016/j.matlet.2019.126906
[76]
Atchudan R, Edison T N J I, Mani S, Perumal S, Vinodh R, Thirunavukkarasu S, Lee Y R. Dalton Trans., 2020, 49(48): 17725.

doi: 10.1039/d0dt02756a pmid: 33237044
[77]
Luo H, Dimitrov S, Daboczi M, Kim J S, Guo Q, Fang Y X, Stoeckel M A, Samorì P, Fenwick O, Jorge Sobrido A B, Wang X C, Titirici M M. ACS Appl. Nano Mater., 2020, 3(4): 3371.

doi: 10.1021/acsanm.9b02412
[78]
Su Y H, Liu G L, Zeng C P, Lu Y B, Luo H P, Zhang R D. Chemosphere, 2020, 251: 126381.

doi: 10.1016/j.chemosphere.2020.126381
[79]
Lin F F, Gu Y Y, Li H J, Wang S J, Zhang X X, Dong P, Li S, Wang Y Q, Fu R B, Zhang J Q, Zhao C C, Sun H Q. Sci. Total. Environ., 2021, 796: 148931.

doi: 10.1016/j.scitotenv.2021.148931
[80]
Jiang G D, Lin Z F, Zhu L H, Ding Y B, Tang H Q. Carbon, 2010, 48(12): 3369.

doi: 10.1016/j.carbon.2010.05.029
[81]
You S M, El Rouby W M A, Thamilselvan A, Tsai C K, Darmanto W, Doong R A, Millet P. Nanomaterials, 2020, 10(9): 1688.

doi: 10.3390/nano10091688
[82]
Zhao D, Li A C, Wu M M, Du M F. React. Kinetics Mech. Catal., 2018, 124(1): 347.
[83]
Khan M E, Khan M M, Cho M H. J. Colloid Interface Sci., 2016, 482: 221.

doi: 10.1016/j.jcis.2016.07.070
[84]
Yang L X, Li Z Y, Jiang H M, Jiang W J, Su R K, Luo S L, Luo Y. Appl. Catal. B Environ., 2016, 183: 75.

doi: 10.1016/j.apcatb.2015.10.023
[85]
Zhou Q X, Xing A, Li J, Zhao D C, Zhao K F, Lei M. Electrochimica Acta, 2016, 209: 379.

doi: 10.1016/j.electacta.2016.05.094
[86]
Li Z Y, Gao B, Chen G Z, Mokaya R, Sotiropoulos S, Li Puma G. Appl. Catal. B Environ., 2011, 110: 50.

doi: 10.1016/j.apcatb.2011.08.023
[87]
Li H, Xiao S N, Zhou J C, Zhao J J, Liu F F, Li G S, Zhang D Q. Chem. Commun., 2019, 55(19): 2741.

doi: 10.1039/C9CC00050J
[88]
Liu S X, Zheng L X, Yu P P, Han S C, Fang X S. Adv. Funct. Mater., 2016, 26(19): 3331.

doi: 10.1002/adfm.201505554
[89]
Wang H, Qi F, Chen X J, Guo H X, Cui W Q. Mater. Lett., 2021, 302: 130432.

doi: 10.1016/j.matlet.2021.130432
[90]
Wang H G, Zhou H H, Hu L, Zhang Y. J. Alloys Compd., 2022, 891: 161875.

doi: 10.1016/j.jallcom.2021.161875
[91]
Chen D M, Yang J J, Zhu Y, Zhang Y M, Zhu Y F. Appl. Catal. B Environ., 2018, 233: 202.

doi: 10.1016/j.apcatb.2018.04.004
[92]
Zhang Y, Cui W Q, An W J, Liu L, Liang Y H, Zhu Y F. Appl. Catal. B Environ., 2018, 221: 36.

doi: 10.1016/j.apcatb.2017.08.076
[93]
Zhang M, Xuan X X, Wang W L, Ma C Y, Lin Z Q. Adv. Funct. Mater., 2020, 30(52): 2005983.

doi: 10.1002/adfm.202005983
[94]
Cheng Q F, Xu J, Wang T, Fan L, Ma R F, Yu X Z, Zhu J, Xu Z, Lu B G. Appl. Surf. Sci., 2017, 422: 528.

doi: 10.1016/j.apsusc.2017.05.225
[95]
Chen X J, Chen Q, Jiang W J, Wei Z, Zhu Y F. Appl. Catal. B Environ., 2017, 211: 106.

doi: 10.1016/j.apcatb.2017.03.061
[96]
Gan G Q, Li X Y, Fan S Y, Wang L, Qin M C, Yin Z F, Chen G H. Eur. J. Inorg. Chem., 2019, 2019(27): 3126.

doi: 10.1002/ejic.201801512
[97]
Fan Z Y, Shi H J, Zhao H Y, Cai J Z, Zhao G H. Carbon, 2018, 126: 279.

doi: 10.1016/j.carbon.2017.10.009
[98]
Huang X F, Shen Q, Liu J B, Yang N J, Zhao G H. Energy Environ. Sci., 2016, 9(10): 3161.

doi: 10.1039/C6EE00968A
[99]
Xue J Q, Cheng W, Shi L, Li Y Q, Sheng M J, Shi Y Z, Bi Q. Appl. Surf. Sci., 2022, 571: 151325.

doi: 10.1016/j.apsusc.2021.151325
[100]
Guo S J, Dong S J. Chem. Soc. Rev., 2011, 40(5): 2644.

doi: 10.1039/c0cs00079e
[101]
Lei F C, Liu W, Sun Y F, Xu J Q, Liu K T, Liang L, Yao T, Pan B C, Wei S Q, Xie Y. Nat. Commun., 2016, 7: 12697.

doi: 10.1038/ncomms12697
[102]
Zhu M S, Zhai C Y, Sun M J, Hu Y F, Yan B, Du Y K. Appl. Catal. B Environ., 2017, 203: 108.

doi: 10.1016/j.apcatb.2016.10.012
[103]
Nada A A, Orimolade B O, El-Maghrabi H H, Koiki B A, Rivallin M, Bekheet M F, Viter R, Damberga D, Lesage G, Iatsunskyi I, Coy E, Cretin M, Arotiba O A, Bechelany M. Appl. Mater. Today, 2021, 24: 101129.
[104]
Li S P, Liu C L, Chen P, Lv W Y, Liu G G. J. Catal., 2020, 382: 212.

doi: 10.1016/j.jcat.2019.12.030
[105]
Koo B, Byun S, Nam S W, Moon S Y, Kim S, Park J Y, Ahn B T, Shin B. Adv. Funct. Mater., 2018, 28(16): 1705136.

doi: 10.1002/adfm.201705136
[1] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[2] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[3] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[4] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[5] Zhou Wenli, Xie Qingji, Lian Shixun. Photoelectrode Materials for Solar Water Splitting [J]. Progress in Chemistry, 2013, 25(12): 1989-1998.
[6] Zhou Tianchen, He Chuan, Zhang Yanan, Zhao Guohua*. Photoelectrocatalytic Reduction of CO2 [J]. Progress in Chemistry, 2012, (10): 1897-1905.