中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1661-1677 DOI: 10.7536/PC210934 Previous Articles   Next Articles

• Review •

Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation

Bowen Xia1,2, Bin Zhu1, Jing Liu1,3, Chunlin Chen1,2(), Jian Zhang1,2()   

  1. 1 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Nano Science and Technology Institute, University of Science and Technology of China,Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Contact: Chunlin Chen, Jian Zhang
  • About author:
    †These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22072170); Zhejiang Provincial Natural Science Foundation of China(LY19B030003); Ningbo Science and Technology Bureau(2018B10056); Ningbo Science and Technology Bureau(2019B10096); Chinese Academy of Sciences(QYZDB-SSW-JSC037)
Richhtml ( 103 ) PDF ( 1430 ) Cited
Export

EndNote

Ris

BibTeX

At the 75th session of the United Nations General Assembly, China made a solemn commitment to strive to achieve carbon peaking by 2030 and carbon neutrality by 2060. Biomass, mainly produced by photosynthesis, will play an important role in the dual carbon targets. The efficient conversion of biomass can yield a range of high-value chemicals to replace fossil-derived products. Among these biomasses, 2,5-furandicarboxylic acid (FDCA) can be used to replace petroleum-based terephthalic acid (TPA) in the synthesis of bio-based furan polyesters with better thermal stability and gas barrier properties due to its similar conjugated carbon ring and diacid structure to TPA, significantly reducing the heavy reliance on fossil resources in polyester industry. In addition, FDCA is widely applied to pharmaceuticals, fragrances and metal coordination chemistry, making it one of the twelve most promising bio-based platform compounds. FDCA is typically synthesized by catalytic oxidation of 5-hydroxymethyl furfural (HMF). Compared to conventional thermocatalytic methods that require precious metal catalysts, high temperature and pressure conditions, and chemical potential as the driving force, electrocatalytic oxidation uses electrode potential as the main driving force and is a novel synthesis method that is greener and more efficient. This review summarises and analyzes the noble metal, transition metal and non-metal catalysts used in the preparation of FDCA reactions by electrocatalytic oxidation, outlines the research on catalyst design and reaction mechanisms, and points out the challenges and opportunities for the development of this field.

Contents

1 Introduction

2 Noble metal catalysts

3 Transition metal catalysts

3.1 Mono metal catalysts

3.2 Binary metal catalysts

3.3 Multiple metal catalysts

4 Non-metal catalysts

5 Mechanism

6 Conclusion and outlook

Fig. 1 Application of FDCA
Fig. 2 Publications on the synthesis of 2,5-furandicarboxylic acid by electrocatalytic oxidation in the last 10 years
Fig. 3 (a) Reaction pathways for HMF oxidation into to FDCA. (b) Time-course of FDCA yield over different electrodes. (c) Yields of HMFCA and FDCA over different electrodes after 120 min reaction[24]. Copyright 2020, American Chemical Society
Table 1 Noble metal catalysts
Fig. 4 Structural and morphological features of CoNW/NF[50]. Copyright 2019, The Royal Society of Chemistry
Fig. 5 Continuous flow elestrolysis. (a) Thermal and chemical stability of BHMF and HMF. (b) Schematic illustration of flow reactor and photograph of continuous flow reaction system[55].Copyright 2021, Elsevier
Fig. 6 (a) Integration of ECO and ECH of HMF[61]. (b) Paired electrolysis of HMF and p-NP[64]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 2 Mono-transition metal catalysts
Fig. 7 (a) Geometric sites of the tetrahedron (Zn2+) or octahedron (Al3+). (b) The EXAFS spectrum of the Co R-space. (c) The electrochemical performance for CuCo2O4 in comparison to Co3O4. (d) The concentration of HMF and its oxidation products during the electrochemical oxidation of HMF on CuCo2O4[81]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 3 Binary transition metal catalysts
Table 4 Multiple transition metal catalysts
Table 5 Non-metal catalysts
Fig. 8 Reaction pathways for the electrochemical oxidation of HMF to FDCA
Fig. 9 In-situ SFG spectra recorded (a) at various voltages for 90 min electrolysis and (b) at different times at a constant 1.45 VRHE in 1 mol/L KOH with 20 mmol/L HMF[38]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 10 (a) Construction of catalysts with SERS response. In situ SERS spectra of (b) catalyst and (c) surface furans. (d) Reaction mechanism of HMF oxidation in 1 mol/L KOH[109,111]. Copyrights 2020, The Royal Society of Chemistry
Fig. 11 Research trends in active electrocatalysts (TEMPO is classified as a carbon based catalyst)
Fig. 12 Global research intensity in the synthesis of FDCA by electrocatalytic oxidation
[1]
Liang T, Chen C L, Li X, Zhang J. Langmuir, 2016, 32(32): 8042.

doi: 10.1021/acs.langmuir.6b01953 pmid: 27455183
[2]
Chen C L, Li X T, Wang L C, Liang T, Wang L, Zhang Y J, Zhang J. ACS Sustainable Chem. Eng., 2017, 5: 11300.
[3]
Du J, Yu Y F, Lv H J, Chen C L, Zhang J, Chen A B. J. Nanoparticle Res., 2018, 20(1): 12.

doi: 10.1007/s11051-017-4116-z
[4]
Du J, Yu Y F, Zhang Y, Liu L, Chen C L, Chen A B. Phys. Status Solidi A, 2019, 216(6): 1800798.
[5]
Vuyyuru K R, Strasser P. Catal. Today, 2012, 195(1): 144.

doi: 10.1016/j.cattod.2012.05.008
[6]
Davis S E, Zope B N, Davis R J. Green Chem., 2012, 14(1): 143.

doi: 10.1039/C1GC16074E
[7]
Shen H Y, Shan H Z, Liu L. ChemSusChem, 2020, 13(3): 513.

doi: 10.1002/cssc.201902799
[8]
Sun Q H, Wang S, Liu H C. ACS Catal., 2019, 9(12): 11413.
[9]
Guan W, Zhang Y L, Chen Y, Wu J C, Cao Y, Wei Y N, Huo P W. J. Catal., 2021, 396: 40.

doi: 10.1016/j.jcat.2021.02.012
[10]
An J H, Sun G H, Xia H A. ACS Sustainable Chem. Eng., 2019, 7(7): 6696.

doi: 10.1021/acssuschemeng.8b05916
[11]
Xia H A, An J H, Hong M, Xu S Q, Zhang L, Zuo S L. Catal. Today, 2019, 319: 113.

doi: 10.1016/j.cattod.2018.05.050
[12]
Chen C L, Wang L C, Zhu B, Zhou Z Q, El-Hout S I, Yang J, Zhang J. J. Energy Chem., 2021, 54: 528.

doi: 10.1016/j.jechem.2020.05.068
[13]
Du L, Shao Y Y, Sun J M, Yin G P, Du C Y, Wang Y. Catal. Sci. Technol., 2018, 8(13): 3216.

doi: 10.1039/C8CY00533H
[14]
Liu W J, Dang L N, Xu Z R, Yu H Q, Jin S, Huber G W. ACS Catal., 2018, 8(6): 5533.

doi: 10.1021/acscatal.8b01017
[15]
Francke R, Little R D. Chem. Soc. Rev., 2014, 43(8): 2492.

doi: 10.1039/c3cs60464k pmid: 24500279
[16]
Awad H S, Galwa N A. Chemosphere, 2005, 61(9): 1327.

pmid: 15878189
[17]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44(8): 2060.

doi: 10.1039/c4cs00470a pmid: 25672249
[18]
Kawana O, Nakamura Y, Yoshihiro Y. NIPPON KAGAKU KAISHI, 1983(12): 1747.
[19]
Grabowski G, Lewkowski J, Skowroński R. Electrochimica Acta, 1991, 36(13): 1995.

doi: 10.1016/0013-4686(91)85084-K
[20]
Skowroński R, Cottier L, Descotes G, Lewkowski J. Synthesis, 1996, 1996(11): 1291.

doi: 10.1055/s-1996-4397
[21]
Cha H G, Choi K S. Nat. Chem., 2015, 7(4): 328.

doi: 10.1038/nchem.2194
[22]
Zhou C M, Shi W R, Wan X Y, Meng Y, Yao Y, Guo Z, Dai Y H, Wang C, Yang Y H. Catal. Today, 2019, 330: 92.

doi: 10.1016/j.cattod.2018.05.037
[23]
Chadderdon D J, Xin L, Qi J, Qiu Y, Krishna P, More K L, Li W Z. Green Chem., 2014, 16(8): 3778.

doi: 10.1039/C4GC00401A
[24]
Park M, Gu M S, Kim B S. ACS Nano, 2020, 14(6): 6812.

doi: 10.1021/acsnano.0c00581
[25]
Xu G R, Batmunkh M, Donne S, Jin H N, Jiang J X, Chen Y, Ma T Y. J. Mater. Chem. A, 2019, 7(44): 25433.
[26]
Lu Y X, Liu T Y, Dong C L, Huang Y C, Li Y F, Chen J, Zou Y Q, Wang S Y. Adv. Mater., 2021, 33(8): 2007056.
[27]
Zhou B, Li Y Y, Zou Y Q, Chen W, Zhou W, Song M L, Wu Y J, Lu Y X, Liu J L, Wang Y Y, Wang S Y. Angew. Chem. Int. Ed., 2021, 60(42): 22908.
[28]
Wang J L, Zhang X, Wang G Z, Zhang Y X, Zhang H M. Chem. Commun., 2020, 56(88): 13611.
[29]
Cao T, Wu M J, Ordomsky V V, Xin X, Wang H, MÉtivier P, Pera-Titus M. ChemSusChem, 2017, 10(24): 4851.

doi: 10.1002/cssc.201702119
[30]
Wang T C, Song Y, Zhao W N, Zhou C M, Jin Y G, Wan X Y, Dai Y H, Yang Y H. New J. Chem., 2021, 45(45): 21285.
[31]
Jiang N, You B, Boonstra R, Terrero Rodriguez I M, Sun Y J. ACS Energy Lett., 2016, 1(2): 386.

doi: 10.1021/acsenergylett.6b00214
[32]
You B, Jiang N, Liu X, Sun Y J. Angew. Chem. Int. Ed., 2016, 55(34): 9913.

doi: 10.1002/anie.201603798 pmid: 27417546
[33]
You B, Liu X, Jiang N, Sun Y J. J. Am. Chem. Soc., 2016, 138(41): 13639.
[34]
Choi S, Balamurugan M, Lee K G, Cho K H, Park S, Seo H, Nam K T. J. Phys. Chem. Lett., 2020, 11(8): 2941.

doi: 10.1021/acs.jpclett.0c00425
[35]
Wang J M, Zhao Z, Shen C, Liu H P, Pang X Y, Gao M Q, Mu J, Cao F, Li G Q. Catal. Sci. Technol., 2021, 11(7): 2480.

doi: 10.1039/D0CY02333G
[36]
Zhang J F, Gong W B, Yin H J, Wang D D, Zhang Y X, Zhang H M, Wang G Z, Zhao H J. ChemSusChem, 2021, 14(14): 2935.

doi: 10.1002/cssc.202100811
[37]
Barwe S, Weidner J, Cychy S, Morales D M, Dieckhöfer S, Hiltrop D, Masa J, Muhler M, Schuhmann W. Angew. Chem. Int. Ed., 2018, 57(35): 11460.
[38]
Zhang N N, Zou Y Q, Tao L, Chen W, Zhou L, Liu Z J, Zhou B, Huang G, Lin H Z, Wang S Y. Angew. Chem. Int. Ed., 2019, 58(44): 15895.
[39]
Zhou B, Dong C L, Huang Y C, Zhang N N, Wu Y D, Lu Y X, Yue X, Xiao Z H, Zou Y Q, Wang S Y. J. Energy Chem., 2021, 61: 179.

doi: 10.1016/j.jechem.2021.02.026
[40]
Kong F H, Wang M. ACS Appl. Energy Mater., 2021, 4(2): 1182.

doi: 10.1021/acsaem.0c02418
[41]
Wang W, Wang M. Catal. Sci. Technol., 2021, 11(22): 7326.

doi: 10.1039/D1CY00786F
[42]
Wang W, Kong F H, Zhang Z, Yang L, Wang M. Dalton Trans., 2021, 50(31): 10922.
[43]
Gao L F, Liu Z B, Ma J L, Zhong L J, Song Z Q, Xu J N, Gan S Y, Han D X, Niu L. Appl. Catal. B Environ., 2020, 261: 118235.
[44]
Lu X Y, Wu K H, Zhang B S, Chen J N, Li F, Su B J, Yan P Q, Chen J M, Qi W. Angew. Chem. Int. Ed., 2021, 60(26): 14528.
[45]
Song X J, Liu X H, Wang H F, Guo Y, Wang Y Q. Ind. Eng. Chem. Res., 2020, 59(39): 17348.
[46]
Poerwoprajitno A R, Gloag L, Watt J, Cychy S, Cheong S, Kumar P V, Benedetti T M, Deng C, Wu K H, Marjo C E, Huber D L, Muhler M, Gooding J J, Schuhmann W, Wang D W, Tilley R D. Angew. Chem. Int. Ed., 2020, 59(36): 15487.
[47]
Holzhäuser F J, Janke T, Öztas F, Broicher C, Palkovits R. Adv. Sustainable Syst., 2020, 4(10): 1900151.
[48]
Cai M, Ding S, Gibbons B, Yang X Z, Kessinger M C, Morris A J. Chem. Commun., 2020, 56(92): 14361.
[49]
Heidary N, Chartrand D, Guiet A, Kornienko N. Chem. Sci., 2021, 12: 7324.

doi: 10.1039/d1sc00573a pmid: 34163822
[50]
Zhou Z Q, Chen C L, Gao M R, Xia B W, Zhang J. Green Chem., 2019, 21(24): 6699.

doi: 10.1039/C9GC02880C
[51]
Wang C L, Bongard H J, Yu M Q, Schüth F. ChemSusChem, 2021, 14(23): 5199.

doi: 10.1002/cssc.202002762
[52]
Huang X, Song J L, Hua M L, Xie Z B, Liu S S, Wu T B, Yang G Y, Han B X. Green Chem., 2020, 22(3): 843.

doi: 10.1039/C9GC03698A
[53]
Weidner J, Barwe S, Sliozberg K, Piontek S, Masa J, Apfel U P, Schuhmann W. Beilstein J. Org. Chem., 2018, 14: 1436.

doi: 10.3762/bjoc.14.121 pmid: 29977407
[54]
Kang M J, Yu H J, Kim H S, Cha H G. New J. Chem., 2020, 44(33): 14239.
[55]
Zhu B, Chen C L, Huai L Y, Zhou Z Q, Wang L, Zhang J. Appl. Catal. B Environ., 2021, 297: 120396.
[56]
Zhang R Y, Jiang S H, Rao Y, Chen S, Yue Q, Kang Y J. Green Chem., 2021, 23(6): 2525.

doi: 10.1039/D0GC04157B
[57]
Taitt B J, Nam D H, Choi K S. ACS Catal., 2019, 9(1): 660.

doi: 10.1021/acscatal.8b04003
[58]
Nam D H, Taitt B J, Choi K S. ACS Catal., 2018, 8(2): 1197.

doi: 10.1021/acscatal.7b03152
[59]
Pham H M, Kang M J, Kim K A, Im C G, Hwang S Y, Cha H G. Korean J. Chem. Eng., 2020, 37(3): 556.

doi: 10.1007/s11814-020-0474-9
[60]
Hu K, Zhang M, Liu B Y, Yang Z Y, Li R Q, Yan K. Mol. Catal., 2021, 504: 111459.
[61]
Li S Q, Sun X, Yao Z H, Zhong X, Cao Y Y, Liang Y L, Wei Z Z, Deng S W, Zhuang G L, Li X N, Wang J G. Adv. Funct. Mater., 2019, 29(42): 1904780.
[62]
Kubota S R, Choi K S. ChemSusChem, 2018, 11(13): 2138.

doi: 10.1002/cssc.201800532
[63]
Latsuzbaia R, Bisselink R, Anastasopol A, Meer H, Heck R, Yagüe M S, Zijlstra M, Roelands M, Crockatt M, Goetheer E, Giling E. J. Appl. Electrochem., 2018, 48(6): 611.

doi: 10.1007/s10800-018-1157-7
[64]
Zhang P L, Sheng X, Chen X Y, Fang Z Y, Jiang J, Wang M, Li F S, Fan L Z, Ren Y S, Zhang B B, Timmer B J J, Ahlquist M S G, Sun L C. Angew. Chem. Int. Ed., 2019, 58(27): 9155.

doi: 10.1002/anie.201903936
[65]
You B, Liu X, Liu X, Sun Y J. ACS Catal., 2017, 7(7): 4564.

doi: 10.1021/acscatal.7b00876
[66]
Li W, Jiang N, Hu B, Liu X, Song F Z, Han G Q, Jordan T J, Hanson T B, Liu T L, Sun Y J. Chem, 2018, 4(3): 637.

doi: 10.1016/j.chempr.2017.12.019
[67]
Liu X, Leong D C Y, Sun Y J. Green Chem., 2020, 22(19): 6531.

doi: 10.1039/D0GC02315A
[68]
Trotochaud L, Young S L, Ranney J K, Boettcher S W. J. Am. Chem. Soc., 2014, 136(18): 6744.

doi: 10.1021/ja502379c pmid: 24779732
[69]
Chakraborty B, Beltrán-Suito R, Hausmann J N, Garai S, Driess M, Menezes P W. Adv. Energy Mater., 2020, 10(30): 2001377.
[70]
Hausmann J N, Beltrán-Suito R, Mebs S, Hlukhyy V, Fässler T F, Dau H, Driess M, Menezes P W. Adv. Mater., 2021, 33(27): 2008823.
[71]
Gao L F, Bao Y, Gan S Y, Sun Z H, Song Z Q, Han D X, Li F H, Niu L. ChemSusChem, 2018, 11(15): 2547.

doi: 10.1002/cssc.201800695
[72]
Kang M J, Park H, Jegal J, Hwang S Y, Kang Y S, Cha H G. Appl. Catal. B Environ., 2019, 242: 85.

doi: 10.1016/j.apcatb.2018.09.087
[73]
Deng X H, Li M, Fan Y, Wang L, Fu X Z, Luo J L. Appl. Catal. B Environ., 2020, 278: 119339.
[74]
Cai M K, Zhang Y W, Zhao Y Y, Liu Q L, Li Y L, Li G Q. J. Mater. Chem. A, 2020, 8(39): 20386.
[75]
Chen H, Wang J T, Yao Y, Zhang Z H, Yang Z Z, Li J, Chen K Q, Lu X Y, Ouyang P K, Fu J. ChemElectroChem, 2019, 6(23): 5797.

doi: 10.1002/celc.201901366
[76]
Zhang J W, Yu P L, Zeng G M, Bao F X, Yuan Y L, Huang H W. J. Mater. Chem. A, 2021, 9(15): 9685.

doi: 10.1039/D0TA11678E
[77]
Wang L, Cao J H, Lei C J, Dai Q Z, Yang B, Li Z J, Zhang X W, Yuan C, Lei L C, Hou Y. ACS Appl. Mater. Interfaces, 2019, 11(31): 27743.
[78]
Liang S Q, Pan L H, Thomas T, Zhu B, Chen C L, Zhang J, Shen H J, Liu J, Yang M H. Chem. Eng. J., 2021, 415: 128864.
[79]
Li M Y, Chen L F, Ye S T, Fan G L, Yang L, Zhang X, Li F. J. Mater. Chem. A, 2019, 7(22): 13695.
[80]
Yang G C, Jiao Y Q, Yan H J, Xie Y, Wu A P, Dong X, Guo D Z, Tian C G, Fu H G. Adv. Mater., 2020, 32(17): 2000455.
[81]
Lu Y X, Dong C L, Huang Y C, Zou Y Q, Liu Z J, Liu Y B, Li Y Y, He N H, Shi J Q, Wang S Y. Angew. Chem. Int. Ed., 2020, 59(43): 19215.
[82]
Lu Y X, Dong C L, Huang Y C, Zou Y Q, Liu Y B, Li Y Y, Zhang N N, Chen W, Zhou L, Lin H Z, Wang S Y. Sci. China Chem., 2020, 63(7): 980.

doi: 10.1007/s11426-020-9749-8
[83]
Lemoine K, Inaguma Y, Heidary N, Kornienko N. Chem. Commun., 2020, 56(65): 9276.

doi: 10.1039/D0CC02815K
[84]
Song Y J, Li Z H, Fan K, Ren Z, Xie W F, Yang Y S, Shao M F, Wei M. Appl. Catal. B Environ., 2021, 299: 120669.
[85]
Zhong Y, Ren R Q, Qin L, Wang J B, Peng Y Y, Li Q, Fan Y M. New J. Chem., 2021, 45(25): 11213.
[86]
Gao L F, Gan S Y, Ma J L, Sun Z H, Liu Z B, Zhong L J, Zhou K, Han F J, Wang W, Han D X, Niu L. ChemElectroChem, 2020, 7(20): 4251.

doi: 10.1002/celc.202001117
[87]
Zhu B, Qin Y, Du J W, Zhang F Z, Lei X D. ACS Sustainable Chem. Eng., 2021, 9(35): 11790.
[88]
Mondal B, Karjule N, Singh C, Shimoni R, Volokh M, Hod I, Shalom M. Adv. Energy Mater., 2021, 11(37): 2101858.
[89]
Zhang M, Liu Y Q, Liu B Y, Chen Z, Xu H, Yan K. ACS Catal., 2020, 10(9): 5179.

doi: 10.1021/acscatal.0c00007
[90]
Liu B Y, Xu S J, Zhang M, Li X, Decarolis D, Liu Y Q, Wang Y C, Gibson E K, Catlow C R A, Yan K. Green Chem., 2021, 23(11): 4034.

doi: 10.1039/D1GC00901J
[91]
Bai X J, He W X, Lu X Y, Fu Y, Qi W. J. Mater. Chem. A, 2021, 9(25): 14270.
[92]
Xie Y N, Zhou Z Y, Yang N J, Zhao G H. Adv. Funct. Mater., 2021, 31(34): 2102886.
[93]
Xie C, Yan D F, Li H, Du S Q, Chen W, Wang Y Y, Zou Y Q, Chen R, Wang S Y. ACS Catal., 2020, 10(19): 11082.
[94]
Gu K Z, Wang D D, Xie C, Wang T H, Huang G, Liu Y B, Zou Y Q, Tao L, Wang S Y. Angew. Chem. Int. Ed., 2021, 60(37): 20253.
[95]
Deng X H, Kang X M, Li M, Xiang K, Wang C, Guo Z P, Zhang J J, Fu X Z, Luo J L. J. Mater. Chem. A, 2020, 8(3): 1138.

doi: 10.1039/C9TA06917H
[96]
Qin Q, Heil T, Schmidt J, Schmallegger M, Gescheidt G, Antonietti M, Oschatz M. ACS Appl. Energy Mater., 2019, 2(11): 8359.

doi: 10.1021/acsaem.9b01852
[97]
Chadderdon X H, Chadderdon D J, Pfennig T, Shanks B H, Li W Z. Green Chem., 2019, 21(22): 6210.

doi: 10.1039/c9gc02264c
[98]
Cardiel A C, Taitt B J, Choi K S. ACS Sustainable Chem. Eng., 2019, 7(13): 11138.
[99]
Kashparova V P, Klushin V A, Leontyeva D V, Smirnova N V, Chernyshev V M, Ananikov V P. Chem. Asian J., 2016, 11(18): 2578.

doi: 10.1002/asia.201600801
[100]
Chadderdon D J, Wu L P, McGraw Z A, Panthani M, Li W Z. ChemElectroChem, 2019, 6(13): 3387.

doi: 10.1002/celc.201900482
[101]
Liu H Z, Lee T H, Chen Y F, Cochran E W, Li W Z. ChemElectroChem, 2021, 8(15): 2817.

doi: 10.1002/celc.202100662
[102]
Siankevich S, Savoglidis G, Fei Z F, Laurenczy G, Alexander D T L, Yan N, Dyson P J. J. Catal., 2014, 315: 67.

doi: 10.1016/j.jcat.2014.04.011
[103]
Ferreira A D D, de Mello M D, da Silva M A P. Ind. Eng. Chem. Res., 2019, 58: 128.

doi: 10.1021/acs.iecr.8b05602
[104]
Ait Rass H, Essayem N, Besson M. ChemSusChem, 2015, 8(7): 1206.

doi: 10.1002/cssc.201403390
[105]
Chen W, Xie C, Wang Y Y, Zou Y Q, Dong C L, Huang Y C, Xiao Z H, Wei Z X, Du S Q, Chen C, Zhou B, Ma J M, Wang S Y. Chem, 2020, 6(11): 2974.

doi: 10.1016/j.chempr.2020.07.022
[106]
Yang Y C, Mu T C. Green Chem., 2021, 23(12): 4228.

doi: 10.1039/D1GC00914A
[107]
Deng X H, Xu G Y, Zhang Y J, Wang L, Zhang J J, Li J F, Fu X Z, Luo J L. Angew. Chem. Int. Ed., 2021, 60(37): 20535.
[108]
Hou Q D, Qi X H, Zhen M N, Qian H L, Nie Y F, Bai C, Zhang S Q, Bai X Y, Ju M T. Green Chem., 2021, 23(1): 119.

doi: 10.1039/D0GC02770G
[109]
Heidary N, Kornienko N. Chem. Sci., 2020, 11(7): 1798.

doi: 10.1039/d0sc00136h pmid: 32180924
[110]
Heidary N, Kornienko N. Chem. Commun., 2019, 55(80): 11996.
[111]
Heidary N, Kornienko N. Chem. Commun., 2020, 56(62): 8726.

doi: 10.1039/D0CC03084H
[112]
Hu Y G, Zhan F, Wang Q, Sun Y J, Yu C, Zhao X, Wang H, Long R, Zhang G Z, Gao C, Zhang W K, Jiang J, Tao Y, Xiong Y J. J. Am. Chem. Soc., 2020, 142(12): 5618.

doi: 10.1021/jacs.9b12443
[113]
Wöllner S, Nowak T, Zhang G R, Rockstroh N, Ghanem H, Rosiwal S, Brückner A, Etzold B J M. ChemistryOpen, 2021, 10(5): 600.

doi: 10.1002/open.202100072
[114]
Zhang T T, Hu Y P, Huai L Y, Gao Z J, Zhang J. Green Chem., 2021, 23(9): 3241.

doi: 10.1039/D1GC00302J
[115]
Hu Y, Li M, Gao Z, Wang L, Zhang J. Mater. Today Chem., 2021, 20: 100423.
[116]
[2021-09-01]http://www.nimte.ac.cn/news/progress/201901/t20190107_5225680.html
[117]
[2021-09-01] http://www.nimte.ac.cn/news/progress/202105/t20210531_6050324.html
[1] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[4] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[5] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[8] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[9] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[10] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[11] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[12] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[13] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[14] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[15] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.