中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 630-642 DOI: 10.7536/PC210318 Previous Articles   Next Articles

• Review •

Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications

Xin Pang1, Shixiang Xue1, Tong Zhou1, Hudie Yuan1, Chong Liu2, Wanying Lei1()   

  1. 1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology,Xi'an 710055, China
    2 Xi'an Thermal Power Research Institute Co., Ltd, Xi'an 710054, China
  • Received: Revised: Online: Published:
  • Contact: Wanying Lei
  • Supported by:
    National Natural Science Foundation of China(51902243)
Richhtml ( 27 ) PDF ( 454 ) Cited
Export

EndNote

Ris

BibTeX

As a new two-dimensional (2D) monoelement material in post-graphene era, black phosphorus (BP) has gained broad prospects in photocatalysis due to its extraordinary physicochemical characteristics including unique anisotropic structures, high carrier mobility and thickness-controlled bandgap. Nevertheless, the extremely narrow bandgap of BP (≤ 1.5 eV) is detrimental for the efficient separation of photogenerated electron-hole pairs that limits the photoreactivity. And the isolated BP suffers from the severe degradation upon long-term exposure due to PxOy species formed by the reaction between the lone pair electrons onto the BP surfaces and oxygen in ambient environment, then BP will gradually corrode in water through the formation of phosphoric acid. Therefore, the lower photoreactivity and instability of BP material restrict its industrial implementation. To overcome these obstacles, various effective strategies like creating a wide range of plasmonic hybrid nanostructures and mixed-dimensional heterojunctions have been developed. Herein, the recent progress on BP-based nanostructures through hybridization with dissimilar components like metals, semiconductors, carbon materials, etc. has been summarized and its applications in photocatalytic reactions such as water splitting for hydrogen evolution, organic pollutant removal, CO2 photoreduction and N2 fixation have also been reviewed, together with the insights into the photocatalytic mechanism for the boosted photoreactivity and good recyclability. Lastly, the challenges and potential directions of BP-based nanostructures toward high-efficiency photocatalytic reactions are analyzed and provided.

Contents

1 Introduction

2 BP-based nanostructures for hydrogen evolution

2.1 Metal/BP hybrid

2.2 Semiconductor/BP hybrid

2.3 Carbon/BP hybrid

3 BP-based nanostructures for organic pollutant removal

3.1 Metal/BP hybrid

3.2 Semiconductor/BP hybrid

3.3 Carbon/BP hybrid

4 BP-based nanostructures for CO2 photoreduction and N2 fixation

5 Conclusions and perspectives

Fig.1 (a) Schematic structure of BP crystal[15]. Copyright 2017 The Royal Society of Chemistry Publisher. (b) The band positions for BP with different layers[17]. Copyright 2014 Springer Nature Publisher
Fig.2 The proposed mechanism for photocatalytic hydrogen production on BP/Au/La2Ti2O7 under visible light and near-infrared light illumination[41]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.3 (a) The proposed mechanism for photocatalytic hydrogen production on BP/TMC under visible light and near-infrared light illumination[51]. Copyright 2019 American Chemical Society. (b) The proposed mechanism for photocatalytic hydrogen production on BP/Bi2WO6 under visible light illumination[60].Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.4 (a) The proposed mechanism for photocatalytic hydrogen production of BP/g-C3N4 that fabricated by P-N bond[63]. Copyright 2017 American Chemical Society. (b) Charge difference and (c) the proposed mechanism for photocatalytic hydrogen production of BP/g-C3N4 bonded through vdW interactions[64]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.5 (a) Simulated spatial distribution of electric field enhancement for Ag/BP nanohybrids under 500 nm photon excitation: Ag monomer with a size of 40 nm supported on BP nanosheets[40]. Copyright 2016 American Chemical Society. (b) The proposed mechanism for RhB photodegradation of RP/BP under visible light[72]. Copyright 2015 Royal Society of Chemistry. (c) TEM image of BP/TiO2[73]. Copyright 2019 Royal Society of Chemistry. (d) The proposed mechanism for RhB photodegradation of BP/TiO2/MXene under visible light[74]. Copyright 2020 Royal Society of Chemistry. (e) Schematic illustration of the synthesis procedure of ZIF-8/BP[75].Copyright 2016 Royal Society of Chemistry
Fig.6 (a) TEM image of BP/RGO[78]. Photocatalytic stability of (b) BP and (c) BP/RGO[78]. Copyright 2020 American Chemical Society. (d) Schematic illustration of synthesis process of BP-C60; (e) RhB photodegradation mechanism in the presence of BP-C60 under visible light illumination[79].Copyright 2018 Springer Nature
Fig.7 (a) The proposed mechanism for photocatalytic CO2 reduction on BP/g-C3N4 hybrid[83]. Copyright 2020 Acta Phys. -Chim. Sin. (b) TEM image and the corresponding element mapping of P for eBP[87]. Copyright 2020 American Chemical Society. (c) The possible mechanism for photocatalytic nitrogen fixation over eBP[87]. (d) The possible mechanism for photocatalytic nitrogen fixation over BP/CdS[89].Copyright 2020 American Chemical Society
[1]
Wang Z, Li C, Domen K. Chem. Soc. Rev., 2019, 48(7): 2109.

doi: 10.1039/C8CS00542G
[2]
Huang W, Luo W, Li Y G. Mater. Today, 2020, 40: 160.

doi: 10.1016/j.mattod.2020.07.003
[3]
Liu Y N, Chen C S, Valdez J, Motta Meira D, He W T, Wang Y, Harnagea C, Lu Q Q, Guner T, Wang H, Liu C H, Zhang Q Z, Huang S Y, Yurtsever A, Chaker M, Ma D L. Nat. Commun., 2021, 12(1): 1231.

doi: 10.1038/s41467-021-21401-2
[4]
Shiraishi Y, Ueda Y, Soramoto A, Hinokuma S, Hirai T. Nat. Commun., 2020, 11(1): 3386.

doi: 10.1038/s41467-020-17216-2 pmid: 32636382
[5]
Wang S L, Zhu Y, Luo X, Huang Y, Chai J W, Wong T I, Xu G Q. Adv. Funct. Mater., 2018, 28(11): 1705357.

doi: 10.1002/adfm.201705357
[6]
Shang L, Tong B, Yu H J, Waterhouse G I N, Zhou C, Zhao Y F, Tahir M, Wu L Z, Tung C H, Zhang T R. Adv. Energy Mater., 2016, 6(3):1501241.

doi: 10.1002/aenm.201501241
[7]
Ryder C R, Wood J D, Wells S A, Hersam M C. ACS Nano, 2016, 10(4): 3900.

doi: 10.1021/acsnano.6b01091
[8]
Liao G F, Gong Y, Zhang L, Gao H Y, Yang G J, Fang B Z. Energy Environ. Sci., 2019, 12(7): 2080.

doi: 10.1039/C9EE00717B
[9]
Al-Mamun M R, Kader S, Islam M S, Khan M Z H. J. Environ. Chem. Eng., 2019, 7(5): 103248.

doi: 10.1016/j.jece.2019.103248
[10]
Yue S Y, Li L Y, McGuire S C, Hurley N, Wong S S. Energy Environ. Sci., 2019, 12(5): 1454.

doi: 10.1039/C8EE02143K
[11]
Su T M, Hood Z D, Naguib M, Bai L, Luo S, Rouleau C M, Ivanov I N, Ji H B, Qin Z Z, Wu Z L. Nanoscale, 2019, 11(17): 8138.

doi: 10.1039/C9NR00168A
[12]
Zhang L, Wang B, Zhou Y H, Wang C, Chen X L, Zhang H. Adv. Opt. Mater., 2020, 8(15): 2000045.

doi: 10.1002/adom.202000045
[13]
Xia F N, Wang H, Jia Y C. Nat. Commun., 2014, 5(1): 1.
[14]
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Nat. Nanotechnol., 2014, 9(5): 372.

doi: 10.1038/nnano.2014.35
[15]
Lei W Y, Liu G, Zhang J, Liu M H. Chem. Soc. Rev., 2017, 46(12): 3492.

doi: 10.1039/C7CS00021A
[16]
Tian Y, Wang H D, Li H N, Guo Z N, Tian B N, Cui Y X, Li Z F, Li G H, Zhang H, Wu Y C. J. Mater. Chem. A, 2020, 8(9): 4647.

doi: 10.1039/C9TA13487E
[17]
Cai Y Q, Zhang G, Zhang Y W. Sci. Rep., 2015, 4: 6677.

doi: 10.1038/srep06677
[18]
Reddy D A, Kim E H, Gopannagari M, Kim Y, Kumar D P, Kim T K. Appl. Catal. B: Environ., 2019, 241: 491.

doi: 10.1016/j.apcatb.2018.09.055
[19]
Wen M, Wang J H, Tong R F, Liu D N, Huang H, Yu Y, Zhou Z K, Chu P K, Yu X F. Adv. Sci., 2019, 6(1): 1801321.

doi: 10.1002/advs.201801321
[20]
Xue Y, Min S X, Wang F. Int. J. Hydrog. Energy, 2019, 44(39): 21873.

doi: 10.1016/j.ijhydene.2019.06.087
[21]
Hu H G, Shi Z, Karim K, Cao R, Liang W Y, Tareen A K, Luo X L, Zhang H, Zhang Y, Huang W C, Guo Z N. J. Mater. Chem. A, 2020, 8: 5421.

doi: 10.1039/D0TA00416B
[22]
Zhang T M, Wan Y Y, Xie H Y, Mu Y, Du P W, Wang D, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2018, 140(24): 7561.

doi: 10.1021/jacs.8b02156
[23]
Li B S, Lai C, Zeng G M, Huang D L, Qin L, Zhang M M, Cheng M, Liu X G, Yi H, Zhou C Y, Huang F L, Liu S Y, Fu Y K. Small, 2019, 15(8): 1804565.

doi: 10.1002/smll.201804565
[24]
Sakthivel T, Huang X Y, Wu Y C, Rtimi S. Chem. Eng. J., 2020, 379: 122297.

doi: 10.1016/j.cej.2019.122297
[25]
Gao R R, Cheng B, Fan J J, Yu J G, Ho W. Chin. J. Catal., 2021, 42(1): 15.

doi: 10.1016/S1872-2067(20)63614-2
[26]
Ding Y S, Wang H Y, Ding Y. Dalton Trans., 2020, 49(11): 3457.

doi: 10.1039/C9DT04233D
[27]
Bi W T, Li X G, Zhang L, Jin T, Zhang L D, Zhang Q, Luo Y, Wu C Z, Xie Y. Nat. Commun., 2015, 6(1): 1.
[28]
Wen F Y, Yang J H, Zong X, Ma Y, Xu Q, Ma B J, Li C. Prog. Chem., 2009, 21(11): 2285.
(温福宇, 杨金辉, 宗旭, 马艺, 徐倩, 马保军, 李灿. 化学进展, 2009, 21(11): 2285.).
[29]
Cao S, Piao L Y. Angew. Chem. Int. Ed., 2020, 59(42): 18312.

doi: 10.1002/anie.202009633
[30]
Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Adv. Funct. Mater., 2015, 25(47): 7337.

doi: 10.1002/adfm.201503666
[31]
Feng R J, Wan K W, Sui X Y, Zhao N, Li H X, Lei W Y, Yu J G, Liu X F, Shi X H, Zhai M L, Liu G, Wang H, Zheng L R, Liu M H. Nano Today, 2021, 37: 101080.

doi: 10.1016/j.nantod.2021.101080
[32]
Zhu M S, Osakada Y, Kim S, Fujitsuka M, Majima T. Appl. Catal. B: Environ., 2017, 217: 285.

doi: 10.1016/j.apcatb.2017.06.002
[33]
Muduli S K, Varrla E, Xu Y, Kulkarni S A, Katre A, Chakraborty S, Chen S, Sum T C, Xu R, Mathews N. J. Mater. Chem. A, 2017, 5(47): 24874.

doi: 10.1039/C7TA04889K
[34]
Yan J Q, Verma P, Kuwahara Y, Mori K, Yamashita H. Small Methods, 2018, 2(12): 1800212.

doi: 10.1002/smtd.201800212
[35]
Zhu X J, Zhang T M, Sun Z J, Chen H L, Guan J, Chen X, Ji H X, Du P W, Yang S F. Adv. Mater., 2017, 29(17): 1605776.

doi: 10.1002/adma.201605776
[36]
Lu B C, Zheng X Y, Li Z S. Nanoscale, 2020, 12(12): 6617.

doi: 10.1039/C9NR09942E
[37]
Vishnoi P, Gupta U, Pandey R, Rao C N R. J. Mater. Chem. A, 2019, 7(12): 6631.

doi: 10.1039/c8ta08497a
[38]
Tian B, Tian B N, Smith B, Scott M C, Hua R N, Lei Q, Tian Y. Nat. Commun., 2018, 9(1): 1397.

doi: 10.1038/s41467-018-03737-4 pmid: 29643347
[39]
Yuan Y J, Shen Z K, Song S X, Guan J, Bao L, Pei L, Su Y B, Wu S T, Bai W F, Yu Z T, Ji Z G, Zou Z G. ACS Catal., 2019, 9(9): 7801.

doi: 10.1021/acscatal.9b02274
[40]
Lei W Y, Zhang T T, Liu P, Rodriguez J A, Liu G, Liu M H. ACS Catal., 2016, 6(12): 8009.

doi: 10.1021/acscatal.6b02520
[41]
Zhu M S, Cai X Y, Fujitsuka M, Zhang J Y, Majima T. Angew. Chem., 2017, 129(8): 2096.

doi: 10.1002/ange.201612315
[42]
Tian B, Tian B N, Smith B, Scott M C, Lei Q, Hua R N, Tian Y, Liu Y. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(17): 4345.

doi: 10.1073/pnas.1800069115 pmid: 29563225
[43]
Xu S, Gong S Q, Jiang H, Shi P H, Fan J C, Xu Q J, Min Y L. Appl. Catal. B: Environ., 2020, 267: 118661.

doi: 10.1016/j.apcatb.2020.118661
[44]
Dutta S K, Mehetor S K, Pradhan N. J. Phys. Chem. Lett., 2015, 6(6): 936.

doi: 10.1021/acs.jpclett.5b00113
[45]
Shen Z K, Yuan Y J, Pei L, Yu Z T, Zou Z G. Chem. Eng. J., 2020, 386: 123997.

doi: 10.1016/j.cej.2019.123997
[46]
Liu F L, Huang C, Liu C X, Shi R, Chen Y. Chem. Eur. J., 2020, 26(20): 4449.

doi: 10.1002/chem.201904594
[47]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010
[48]
Zhang L, Su Y, Wang W Z. Progress in Chemistry, 2016, 28 (4): 415.

doi: 10.7536/PC150927
(张玲, 苏扬, 王文中. 化学进展, 2016, 28 (4): 415.).

doi: 10.7536/PC150927
[49]
Zhang Y Z, Xie L L, Zhou Y J, Yin L F. Progress in Chemistry, 2016, 28 (10): 1528.
(张圆正, 谢利利, 周怡静, 殷立峰. 化学进展, 2016, 28 (10): 1528.).

doi: 10.7536/PC160617
[50]
Zhang L F, Hu Z P, Liu X Y, Yuan Z Y. Prog. Chem., 2016, 28(10): 1474.
(张凌峰, 胡忠攀, 刘歆颖, 袁忠勇. 化学进展, 2016, 28(10): 1474.).

doi: 10.7536/PC160614
[51]
Elbanna O, Zhu M S, Fujitsuka M, Majima T. ACS Catal., 2019, 9(4): 3618.

doi: 10.1021/acscatal.8b05081
[52]
Ran J R, Zhu B C, Qiao S Z. Angew. Chem. Int. Ed., 2017, 56(35): 10373.

doi: 10.1002/anie.201703827
[53]
Ran J R, Wang X L, Zhu B C, Qiao S Z. Chem. Commun., 2017, 53(71): 9882.

doi: 10.1039/C7CC05466A
[54]
Zhang Q, Zhang J H, Zhang L, Cao M T, Yang F L, Dai W L. Appl. Surf. Sci., 2020, 504: 144366.

doi: 10.1016/j.apsusc.2019.144366
[55]
Yuan Y J, Wang P, Li Z J, Wu Y Z, Bai W F, Su Y B, Guan J, Wu S T, Zhong J S, Yu Z T, Zou Z G. Appl. Catal. B: Environ., 2019, 242: 1.
[56]
Zhu M S, Zhai C Y, Fujitsuka M, Majima T. Appl. Catal. B: Environ., 2018, 221: 645.

doi: 10.1016/j.apcatb.2017.09.063
[57]
Pan J B, Wang B H, Wang J B, Ding H Z, Zhou W, Liu X, Zhang J R, Shen S, Guo J K, Chen L, Au C T, Jiang L L, Yin S F. Angew. Chem. Int. Ed., 2021, 60(3): 1433.

doi: 10.1002/anie.202012550
[58]
Sun S M, Wang W Z, Li D Z, Zhang L, Jiang D. ACS Catal., 2014, 4(10): 3498.

doi: 10.1021/cs501076a
[59]
Li R G, Zhang F X, Wang D, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Nat. Commun., 2013, 4(1): 1.
[60]
Hu J D, Chen D Y, Mo Z, Li N J, Xu Q F, Li H, He J H, Xu H, Lu J M. Angew. Chem. Int. Ed., 2019, 58(7): 2073.

doi: 10.1002/anie.201813417
[61]
Zhu M S, Sun Z C, Fujitsuka M, Majima T. Angew. Chem. Int. Ed., 2018, 57(8): 2008.

doi: 10.1002/anie.201800579
[62]
Liu F L, Shi R, Wang Z, Weng Y X, Che C M, Chen Y. Angew. Chem. Int. Ed., 2019, 58(34): 11791.

doi: 10.1002/anie.201906416
[63]
Zhu M S, Kim S, Mao L, Fujitsuka M, Zhang J Y, Wang X C, Majima T. J. Am. Chem. Soc., 2017, 139(37): 13234.

doi: 10.1021/jacs.7b08416
[64]
Ran J R, Guo W W, Wang H L, Zhu B C, Yu J G, Qiao S Z. Adv. Mater., 2018, 30(25): 1800128.

doi: 10.1002/adma.201800128
[65]
Zhang Q Z, Huang S Y, Deng J J, Gangadharan D T, Yang F, Xu Z H, Giorgi G, Palummo M, Chaker M, Ma D L. Adv. Funct. Mater., 2019, 29(28): 1902486.

doi: 10.1002/adfm.201902486
[66]
Boppella R, Yang W, Tan J, Kwon H C, Park J, Moon J. Appl. Catal. B: Environ., 2019, 242: 422.

doi: 10.1016/j.apcatb.2018.10.018
[67]
Zhu M S, Fujitsuka M, Zeng L X, Liu M H, Majima T. Appl. Catal. B: Environ., 2019, 256: 117864.

doi: 10.1016/j.apcatb.2019.117864
[68]
Hu J D, Ji Y J, Mo Z, Li N J, Xu Q F, Li Y Y, Xu H, Chen D Y, Lu J M. J. Mater. Chem. A, 2019, 7(9): 4408.

doi: 10.1039/C8TA12309H
[69]
Wang H, Jiang S L, Shao W, Zhang X D, Chen S C, Sun X S, Zhang Q, Luo Y, Xie Y. J. Am. Chem. Soc., 2018, 140(9): 3474.

doi: 10.1021/jacs.8b00719 pmid: 29451386
[70]
Wang X, Xiang Y R, Zhou B Q, Zhang Y M, Wu J T, Hu R, Liu L W, Song J, Qu J L. J. Colloid Interface Sci., 2019, 534: 1.

doi: 10.1016/j.jcis.2018.09.013
[71]
Wang X, Zhou B Q, Zhang Y M, Liu L W, Song J, Hu R, Qu J L. J. Alloy. Compd., 2018, 769: 316.

doi: 10.1016/j.jallcom.2018.08.008
[72]
Shen Z R, Sun S T, Wang W J, Liu J W, Liu Z F, Yu J C. J. Mater. Chem. A, 2015, 3(7): 3285.

doi: 10.1039/C4TA06871H
[73]
Liu Y L, Zhou M, Zhang W C, Chen K Q, Mei A H, Zhang Y Y, Chen W. Nanoscale, 2019, 11(12): 5674.

doi: 10.1039/C8NR10476J
[74]
Shao B B, Wang J J, Liu Z F, Zeng G M, Tang L, Liang Q H, He Q Y, Wu T, Liu Y, Yuan X Z. J. Mater. Chem. A, 2020, 8(10): 5171.

doi: 10.1039/C9TA13610J
[75]
Wang L, Xu Q C, Xu J, Weng J. RSC Adv., 2016, 6(73): 69033.

doi: 10.1039/C6RA13646J
[76]
Li X B, Xiong J, Gao X M, Ma J, Chen Z, Kang B B, Liu J Y, Li H, Feng Z J, Huang J T. J. Hazard. Mater., 2020, 387: 121690.

doi: 10.1016/j.jhazmat.2019.121690
[77]
Wen M, Wang J H, Tong R F, Liu D N, Huang H, Yu Y, Zhou Z K, Chu P K, Yu X F. Adv Sci, 2019, 6(1): 1801321.

doi: 10.1002/advs.201801321
[78]
Ge K, Zhang Y, Wang D, Li Z X, He J H, Fu C C, Yang Y F, Pan M W, Zhu L. ACS Appl. Mater. Interfaces, 2020, 12(17): 20035.

doi: 10.1021/acsami.0c00602
[79]
Zhu X J, Zhang T M, Jiang D C, Duan H L, Sun Z J, Zhang M M, Jin H C, Guan R N, Liu Y J, Chen M Q, Ji H X, Du P W, Yan W S, Wei S Q, Lu Y L, Yang S F. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[80]
Zheng Y, Chen Y L, Wang L, Tan M Y, Xiao Y Y, Gao B F, Lin B Z. Sustain. Energy Fuels, 2020, 4(7): 3739.

doi: 10.1039/D0SE00394H
[81]
Zhu X W, Huang S Q, Yu Q, She Y B, Yang J M, Zhou G L, Li Q D, She X J, Deng J J, Li H M, Xu H. Appl. Catal. B: Environ., 2020, 269: 118760.

doi: 10.1016/j.apcatb.2020.118760
[82]
Talapaneni S N, Singh G, Kim I Y, AlBahily K, Al-Muhtaseb A H, Karakoti A S, Tavakkoli E, Vinu A. Adv. Mater., 2020, 32(18): 1904635.

doi: 10.1002/adma.201904635
[83]
Fei X G, Tan H Y, Cheng B, Zhu B C, Zhang L Y. Acta Phys. Chim. Sin., 2020: 2010027.
[84]
Wang X D, He J, Li J Y, Lu G, Dong F, Majima T, Zhu M S. Appl. Catal. B: Environ., 2020, 277: 119230.

doi: 10.1016/j.apcatb.2020.119230
[85]
Zhang Y Z, Chen X, Zhang S Y, Yin L F, Yang Y. Chem. Eng. J., 2020, 401: 126033.

doi: 10.1016/j.cej.2020.126033
[86]
Zhang L L, Ding L X, Chen G F, Yang X F, Wang H H. Angew. Chem. Int. Ed., 2019, 58(9): 2612.

doi: 10.1002/anie.201813174 pmid: 30560583
[87]
Bian S, Wen M, Wang J H, Yang N, Chu P K, Yu X F. J. Phys. Chem. Lett., 2020, 11(3): 1052.

doi: 10.1021/acs.jpclett.9b03507 pmid: 31952439
[88]
Qiu P X, Xu C M, Zhou N, Chen H, Jiang F. Appl. Catal. B: Environ., 2018, 221: 27.

doi: 10.1016/j.apcatb.2017.09.010
[89]
Shen Z K, Yuan Y J, Wang P, Bai W F, Pei L, Wu S T, Yu Z T, Zou Z G. ACS Appl. Mater. Interfaces, 2020, 12(15): 17343.

doi: 10.1021/acsami.9b21167
[90]
He D Y, Zhang Z C, Xing Y, Zhou Y J, Yang H, Liu H Y, Qu J, Yuan X, Guan J N, Zhang Y N. Chem. Eng. J., 2020, 384: 123258.

doi: 10.1016/j.cej.2019.123258
[91]
Zhang Z C, He D Y, Liu H Y, Ren M, Zhang Y N, Qu J, Lu N, Guan J N, Yuan X. Environ. Pollut., 2019, 245: 950.

doi: 10.1016/j.envpol.2018.11.090
[92]
Yuan Y H, Niu B Y, Yu Q H, Guo X, Guo Z H, Wen J, Liu T, Zhang H Q, Wang N. Angew. Chem. Int. Ed., 2020, 59(3): 1220.

doi: 10.1002/anie.201913644
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[5] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[6] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[7] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[8] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[9] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[10] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[11] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[14] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[15] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.