中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2619-2637 DOI: 10.7536/PC220524 Previous Articles   Next Articles

• CONTENTS •

Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks

Wei Li1(), Tiangui Liang1, Yuanchuang Lin1, Weixiong Wu1, Song Li2   

  1. 1 Energy and Electricity Research Center, Jinan University,Zhuhai 519070, China
    2 School of Energy and Power Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
  • Received: Revised: Online: Published:
  • Contact: Wei Li
  • Supported by:
    Fundamental Research Funds for the Central Universities(21621039); GuangZhou Basic and Applied Basic Research Foundation(202201010433); China Postdoctoral Science Foundation(2021M701413)
Richhtml ( 46 ) PDF ( 776 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) with ultrahigh surface area, large pore volume and tunable pore environment are regarded as promising adsorbents in gas adsorption and separation. With the exploding number of possible MOFs, it is an imperative challenge to discover high-performing MOFs for a specific application. High-throughput computational screening (HTCS) has been frequently adopted to identify the suitable adsorbents with remarkably reduced computational time and cost in the past decades. Recently, machine learning (ML) is used to accelerate the HTCS process and explore the structure-property relationship. In this review, we summarize the ML algorithms for gas storage, separation and catalysis by MOFs. Four categories of descriptors widely used in ML are reviewed, including geometrical descriptor (i.e., pore size, surface area), topological descriptor (i.e., pore connectivity, cavity size), chemical descriptor (i.e., atom type, degree of unsaturation), and energy-based descriptor (i.e., cohesive energies, Voronoi energies). Unsupervised learning and supervised learning, such as linear regression (LR), artificial neural network (ANN), support vector machine (SVM), and random forest (RF) are introduced and a complete overview of how these ML algorithms are effectively utilized to assist MOF discovery is provided. Recent research progress on ML algorithms in various applications, such as H2, CH4 storage, carbon capture, noble gas, Cx/Cy separation and catalysis are presented in this work. It is anticipated that ML will play a more vital role in identifying top candidates with increasing number of MOFs. Thus, this review aims to outline fundamental knowledge of ML algorithms for MOF discovery in the fields of gas storage, separation and catalysis.

Contents

1 Introduction

2 Methodology

2.1 High-throughput computational screening

2.2 Machine learning

3 Machine learning accelerated MOFs screening

3.1 Gas storage

3.2 Gas separation

3.3 MOFs physicochemical property

4 Conclusion and outlook

Fig. 1 Schematic diagram of (A)growth trends of the number of MOFs in CSD database from 1972 to 2022.(B)high-throughput computational screening methodology
Fig. 2 The general procedure of ML-assisted high-throughput computational screening of MOFs for application
Fig. 3 The classification of descriptors
Fig. 4 Diagram of Machine learning algorithm
Table 1 The H2 storage performance of MOFs predicted by ML
Table 2 The CH4 storage performance of MOFs predicted by ML
Fig. 5 Schematics of the MOF-NET architecture. The word “Dense” refers to fully connected layers. (a) Topology embedding and the generated weights from topology embedding. Wself,NBB is the self-interaction weight for NBBs, Wself,EBB is the self-interaction weight for EBBs and Winter is the interaction weight. (b) Main architecture of MOF-NET. The MOF-NET consists of simple fully connected layers, but the weights of some layers are generated from the topology embedding[83]
Fig. 6 (a) Computed volumetric methane uptake vs predicted volumetric methane uptake for each of 533 430 measurements in the curated hMOFs data set;(b~f) NGM and GM predicted isotherms (light-blue and dark-blue curves, respectively) vs GCMC data (white squares) for five randomly selected MOFs[19]
Table 3 The separation performance predicted by ML algorithms
Table 4 The CO2 capture performance predicted by ML
Fig. 7 Schematic diagrams for training DNN: (a) normal process; (b) transfer learning process[93]
Fig. 8 Schematic of decision tree model for design of UiO-66-Ds[97]
Fig. 9 COPC predicted by varying machine learning models (a)MLR,(b)DT, (c)GBM, and(d)RF, colored by the number density of cascaded AHPs, weights of descriptors at low (e) and high (f) temperatures[106]
Fig. 10 Workflows for curating datasets for solvent removal and thermal stability[113]
Fig. 11 Distributions of several illustrative ML descriptors used to represent the local environment of MOF and COF atoms[118]
Fig. 12 (a) Predicted areas and (b) schematic of deviation of the ML model compared to the BET method using N2 isotherms for true monolayer prediction[120]
[1]
Heidarinejad Z, Dehghani M H, Heidari M, Javedan G, Ali I, Sillanpää M. Environ Chem Lett, 2020, 18 (2): 393.
[2]
Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell R G, Catlow C R A. Chem. Soc. Rev., 2015, 44 (20): 7044.

doi: 10.1039/c5cs00029g pmid: 25976164
[3]
Wang H J, Wang M D, Liang X, Yuan J Q, Yang H, Wang S Y, Ren Y X, Wu H, Pan F S, Jiang Z Y. Chem. Soc. Rev., 2021, 50 (9): 5468.
[4]
Liu Z L, Li W liu H, Zuang X D, Li S. Acta Chim Sinica, 2019, 77 (4): 323.
(刘治鲁, 李炜, 刘昊, 庄旭东, 李松. 化学学报. 2019, 77(4): 323.)

doi: 10.6023/A18120497
[5]
Altintas C, Altundal O F, Keskin S, Yildirim R. J Chem Inf Model, 2021, 61 (5): 2131.
[6]
Ahmed A, Seth S, Purewal J, Wong-Foy A G, Veenstra M, Matzger A J, Siegel D J. Nat. Commun., 2019, 10 (1): 1.
[7]
Herm Z R, Bloch E D, Long J R. Chem. Mater., 2014, 26 (1): 323.
[8]
Tan K, Zuluaga S, Gong Q H, Gao Y Z, Nijem N, Li J, Thonhauser T, Chabal Y J. Chem. Mater., 2015, 27 (6): 2203.
[9]
Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Adv. Mater., 2018, 30 (37): 1705189.
[10]
Janiak C. J Eur. J. Inorg. Chem, 2012, 2625: 2634.
[11]
Li W, Xia X X, Li S. ACS Appl. Mater. Interfaces, 2019, 12 (2): 3265.
[12]
Chen L Y, Xu Q. Matter, 2019, 1 (1): 57.
[13]
Jiao L, Wang Y, Jiang H L, Xu Q. Adv. Mater., 2018, 30 (37): 1703663.
[14]
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38 (5): 1450.
[15]
Chu F L, Hu J L, Wu C L, Yao Z G, Tian J, Li Z, Li C L. ACS Appl. Mater. Interfaces, 2018, 11 (4): 3869.
[16]
Moghadam P Z, Li A, Wiggin S B, Tao A, Maloney A G, Wood P A, Ward S C, Fairen-Jimenez D. Chem. Mater., 2017, 29 (7): 2618.
[17]
Wilmer C E, Leaf M, Lee C Y, Farha O K, Hauser B G, Hupp J T, Snurr R Q. Nat. Chem., 2012, 4 (2): 83.
[18]
Colón Y J, Gomez-Gualdron D A, Snurr R Q. Cryst. Growth Des., 2017, 17 (11): 5801.
[19]
Gurnani R, Yu Z Z, Kim C, Sholl D S, Ramprasad R. Chem. Mater., 2021, 33 (10): 3543.
[20]
Suyetin M. Faraday Discuss., 2021, 231: 224.
[21]
Burner J, Schwiedrzik L, Krykunov M, Luo J, Boyd P G, Woo T K. J. Phys. Chem. C, 2020, 124 (51): 27996.
[22]
Deng X M, Yang W Y, Li S H, Liang H, Shi Z N, Qiao Z W. Appl. Sci., 2020, 10 (2): 569.
[23]
Islamoglu T, Idrees K B, Son F A, Chen Z, Lee S-J, Li P, Farha O K. J. Mater. Chem. A, 2022, 10 (1): 157.
[24]
Jain A K, Mao J, Mohiuddin K M. Comput., 1996, 29 (3): 31.
[25]
Friedman J H. Ann Appl Stat, 2001, 29 (5): 1189.
[26]
Pang B, Nijkamp E, Wu Y N. J Educ Behav Stat, 2019, 45 (2): 227.
[27]
Chen K M, Cofer E M, Zhou J, Troyanskaya O G. Nat. Methods, 2019, 16 (4): 315.
[28]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. J Mach Learn Res, 2011, 12: 2825.
[29]
Chung Y G, Camp J, Haranczyk M, Sikora B J, Bury W, Krungleviciute V, Yildirim T, Farha O K, Sholl D S, Snurr R Q. Chem. Mater., 2014, 26 (21): 6185.
[30]
Li S, Chung Y G, Simon C M, Snurr R Q. J. Phys. Chem. Lett, 2017, 8 (24): 6135.
[31]
Sarkisov L, Bueno-Perez R, Sutharson M, Fairen-Jimenez D. Chem. Mater., 2020, 32 (23): 9849.
[32]
Dubbeldam D, Calero S, Ellis D E, Snurr R Q. Mol Simul, 2016, 42 (2): 81.
[33]
Kadioglu O, Keskin S. Sep. Purif. Technol., 2018, 191: 192.
[34]
Shi Z N, Liang H, Yang W Y, Liu J, Liu Z L, Qiao Z W. Chem. Eng. Sci., 2020, 214: 115430.
[35]
Adatoz E, Avci A K, Keskin S. Sep. Purif. Technol., 2015, 152: 207.
[36]
Altundal O F, Haslak Z P, Keskin S. Ind. Eng. Chem. Res., 2021, 60 (35): 12999.

doi: 10.1021/acs.iecr.1c01742 pmid: 34526735
[37]
McDaniel J G, Li S, Tylianakis E, Snurr R Q, Schmidt J. J. Phys. Chem. C, 2015, 119 (6): 3143.
[38]
Zhong C L, Liu D H, Yang Q Y. Structure-Property Relationship and Design of Metal-Organic Frameworks. Beijing: Science Press, 2013. 35.
仲崇立, 刘大欢, 阳庆元. 金属-有机骨架材料的构效关系及设计. 北京: 科学出版社, 2013. 35.).
[39]
Keskin S, Liu J C, Rankin R B, Johnson J K, Sholl D S. Ind. Eng. Chem. Res., 2009, 48 (5): 2355.
[40]
Jiang J W, Babarao R, Hu Z Q. Chem. Soc. Rev., 2011, 40 (7): 3599.
[41]
Smit B, Maesen T L. Chem. Rev., 2008, 108 (10): 4125.
[42]
Düren T, Bae Y-S, Snurr R Q. Chem. Soc. Rev., 2009, 38 (5): 1237.

doi: 10.1039/b803498m pmid: 19384435
[43]
Wang M, Wang T, Cai P Q, Chen X D. Small Methods, 2019, 3 (5): 1900025.
[44]
Oliynyk A O, Mar A. Acc. Chem. Res., 2018, 51 (1): 59.
[45]
Krishnapriyan A S, Haranczyk M, Morozov D. J. Phys. Chem. C, 2020, 124 (17): 9360.
[46]
Rosen A S, Iyer S M, Ray D, Yao Z, Aspuru-Guzik A, Gagliardi L, Notestein J M, Snurr R Q. Matter, 2021, 4 (5): 1578.
[47]
Ward L, Liu R Q, Krishna A, Hegde V I, Agrawal A, Choudhary A, Wolverton C. Phys. Rev. B, 2017, 96 (2): 024104.
[48]
Chong S, Lee S, Kim B, Kim J. Coord Chem Rev, 2020, 423: 213487.
[49]
Moreno-Torres J G, Sáez J A, Herrera F. IEEE Trans Neural Netw Learn Syst, 2012, 23 (8): 1304.
[50]
Chung M K, Worsley K J, Nacewicz B M, Dalton K M, Davidson R J. NeuroImage, 2010, 53 (2): 491.

doi: 10.1016/j.neuroimage.2010.06.032 pmid: 20620211
[51]
Zhang M-L, Zhou Z-H. Pattern Recognit, 2007, 40 (7): 2038.
[52]
Raccuglia P, Elbert K C, Adler P D, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J. Nature, 2016, 533 (7601): 73.
[53]
Gligorov V V, Williams M. J. Instrum., 2013, 8 (02): P02013.
[54]
Belgiu M Dr?gu瘙塅 L. ISPRS J. Photogramm, 2016, 114: 24.
[55]
Cherkassky V, Ma Y. Neural Netw, 2004, 17 (1): 113.
[56]
Suykens J A, Vandewalle J. Neural Process Lett, 1999, 9 (3): 293.
[57]
Montavon G, Samek W, Müller K-R. Digit Signal Process, 2018, 73: 1.
[58]
Medsker L R, Jain L. Comput Aided Des Appl, 2001, 5: 64.
[59]
Erb R J. Pharm. Res., 1993, 10 (2): 165.
[60]
Angeline P J, Saunders G M, Pollack J B. IEEE Trans Neural Netw Learn Syst, 1994, 5 (1): 54.
[61]
Whitley D. Stat Comput, 1994, 4 (2): 65.
[62]
Sillar K, Hofmann A, Sauer J. J. Am. Chem. Soc., 2009, 131 (11): 4143.

doi: 10.1021/ja8099079 pmid: 19253977
[63]
Bobbitt N S, Snurr R Q. Mol Simul, 2019, 45: 1069.
[64]
Ren J, Musyoka N M, Langmi H W, Swartbooi A, North B C, Mathe M. Int. J. Hydrog. Energy, 2015, 40 (13): 4617.
[65]
Maryam P, Ehsan M, David W, Suib S L, Ranjan S. ACS Comb Sci, 2017, 19 (10): 640.
[66]
Fernandez M, Boyd P G, Daff T D, Aghaji M Z, Woo T K. J. Phys. Chem. Lett, 2014, 5 (17): 3056.

doi: 10.1021/jz501331m pmid: 26278259
[67]
Fernandez M, Barnard A S. ACS Comb Sci, 2016, 18 (5): 243.

doi: 10.1021/acscombsci.5b00188 pmid: 27022760
[68]
Lin X, Jia J H, Hubberstey P, Schrder M, Champness N R. CrystEngComm, 2007, 9 (6): 438.
[69]
Getman R B, Bae Y S, Wilmer C E, Snurr R Q. Chem. Rev., 2012, 112 (2): 703.
[70]
Gangu K K, Maddila S, Mukkamala S B, Jonnalagadda S B. J. Energy Chem., 2018, 30 (03): 140.
[71]
Cao Y, Dhahad H A, Zare S G, Farouk N, Anqi A E, Issakhov A, Raise A. Int. J. Hydrog. Energy, 2021, 46 (73): 36336.
[72]
Jiang Y C, Zhang G F, Wang J J, Vaferi B. Int. J. Hydrog. Energy, 2021, 46 (46): 23591.
[73]
Bucior B J, Bobbitt N S, Islamoglu T, Goswami S, Gopalan A, Yildirim T, Farha O K, Bagheri N, Snurr R Q. Mol. Syst. Des. Eng., 2019, 4 (1): 162.
[74]
Giappa R M, Tylianakis E, Di Gennaro M, Gkagkas K, Froudakis G E. Int. J. Hydrog. Energy, 2021, 46 (54): 27612.
[75]
Ahmed A, Siegel D J. Patterns, 2021, 2 (7): 100291.
[76]
Glasby L T, Moghadam P Z. Patterns, 2021, 2 (7): 100305.
[77]
Martin R L, Simon C M, Smit B, Haranczyk M. J. Am. Chem. Soc., 2014, 136 (13): 5006.
[78]
Beauregard N, Pardakhti M, Srivastava R, Modeling. J Chem Inf Model, 2021, 61 (7): 3232.

doi: 10.1021/acs.jcim.0c01479 pmid: 34264660
[79]
Pardakhti M, Nanda P, Srivastava R. J. Phys. Chem. C, 2020, 124 (8): 4534.
[80]
Wang R H, Zhong Y S, Bi L M, Yang M L, Xu D G. ACS Appl. Mater. Interfaces, 2020, 12 (47): 52797.
[81]
Fanourgakis G S, Gkagkas K, Tylianakis E, Froudakis G. J. Phys. Chem. C, 2020, 124 (13): 7117.
[82]
Kim S Y, Kim S I, Bae Y S. J. Phys. Chem. C, 2020, 124 (36): 19538.
[83]
Lee S, Kim B, Cho H, Lee H, Lee S Y, Cho E S, Kim J, Interfaces. ACS Appl. Mater. Interfaces, 2021, 13 (20): 23647.
[84]
Taw E, Neaton J B. Adv. Theory Simul., 2022, 5 (3): 2100515.
[85]
Zendehboudi S, Bahadori A, Lohi A, Elkamel A, Chatzis I. Energy Fuels, 2013, 27 (1): 401.
[86]
Dashti A, Bahrololoomi A, Amirkhani F, Mohammadi A H. J. CO2 Util., 2020, 41: 101256.
[87]
Zhang X Y, Zhang K X, Yoo H, Lee Y J. ACS Sustain. Chem. Eng., 2021, 9 (7): 2872.
[88]
Li S Y, Zhang Y J, Hu Y X, Wang B J, Sun S R, Yang X W, He H. J. Materiomics, 2021, 7: 1029.
[89]
Fernandez M, Trefiak N R, Woo T K. Journal of Physical Chemistry C, 2013, 117 (27): 14095.
[90]
Weininger D. J Chem Inf Model, 1988, 28 (1): 31.
[91]
Li J-R, Sculley J, Zhou H-C. Chem. Rev., 2012, 112 (2): 869.
[92]
Liang H, Jiang K, Yan T-A, Chen G H. ACS Omega, 2021, 6 (13): 9066.

doi: 10.1021/acsomega.1c00100 pmid: 33842776
[93]
Ma R, Colón Y J, Luo T. ACS Appl. Mater. Interfaces, 2020, 12 (30): 34041.
[94]
Anderson R, Biong A, Gomez-Gualdron D A. J. Chem. Theory Comput., 2020, 16 (2): 1271.

doi: 10.1021/acs.jctc.9b00940 pmid: 31922755
[95]
Liu Z W, Zhang K, Xia Q B, Wang X J, Huang B C, Xi H X. Chem. Eng. Sci., 2021, 243: 116772.
[96]
Halder P, Singh J K. Energy Fuels, 2020, 34 (11): 14591.
[97]
Wu Y, Duan H P, Xi H X. Chem. Mater., 2020, 32 (7): 2986.
[98]
Tang D, Gharagheizi F, Sholl D S. J. Phys. Chem. B, 2021, 125 (3): 926.
[99]
Qiao Z W, Yan Y L, Tang Y X, Liang H, Jiang J W. J. Phys. Chem. C, 2021, 125 (14): 7839.
[100]
Cho E H, Deng X P, Zou C L, Lin L-C. J. Phys. Chem. C, 2020, 124 (50): 27580.
[101]
Yan Y L, Shi Z N, Li H L, Li L F, Yang X, Li S H, Liang H, Qiao Z W. Chem. Eng. J., 2022, 427: 131604.
[102]
Zhou M S, Vassallo A, Wu J Z. J. Membr. Sci., 2020, 598: 117675.
[103]
Simon C M, Smit B, Haranczyk M. Comput Phys Commun, 2016, 200: 364.
[104]
Bao Z B, Chang G G, Xing H B, Krishna R, Ren Q L, Chen B L. Energy Environ. Sci., 2016, 9 (12): 3612.
[105]
De Lange M F, Verouden K J, Vlugt T J, Gascon J, Kapteijn F. Chem. Rev., 2015, 115 (22): 12205.
[106]
Li W, Xia X X, Cao M, Li S. J. Mater. Chem. A, 2019, 7 (13): 7470.
[107]
Li W, Xia X X, Li S. J. Mater. Chem. A, 2019, 7 (43): 25010.
[108]
Shi Z N, Yuan X Y, Yan Y L, Tang Y L, Li J J, Liang H, Tong L P, Qiao Z W. J. Mater. Chem. A, 2021, 9 (12): 7656.
[109]
McCarver G A, Rajeshkumar T, Vogiatzis K D. Coord Chem Rev, 2021, 436: 213777.
[110]
Erdem Günay M, Yıldırım R. Catal Rev Sci Eng, 2021, 63 (1): 120.
[111]
Chen P, Tang Z Y, Zeng Z M, Hu X F, Xiao L P, Liu Y, Qian X D, Deng C Y, Huang R Y, Zhang J Z, Bi Y L, Lin R K, Zhou Y, Liao H g, Zhou D, Wang C, Lin W B. Matter, 2020, 2 (6): 1651.
[112]
Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P. J Artif Intell Res, 2002, 16: 321.
[113]
Nandy A, Terrones G, Arunachalam N, Duan C, Kastner D W, Kulik H J. Sci. Data, 2022, 9 (1): 1.
[114]
Nandy A, Duan C, Kulik H J. J. Am. Chem. Soc., 2021, 143 (42): 17535.
[115]
Batra R, Chen C, Evans T G, Walton K S, Ramprasad R. Nat. Mach. Intell., 2020, 2 (11): 704.
[116]
Zanca F, Glasby L T, Chong S, Chen S, Kim J, Fairen-Jimenez D, Monserrat B, Moghadam P Z. J. Mater. Chem. C, 2021, 9: 13584.
[117]
Raza A, Sturluson A, Simon C M, Fern X. J. Phys. Chem. C, 2020, 124 (35): 19070.
[118]
Korolev V V, Mitrofanov A, Marchenko E I, Eremin N N, Tkachenko V, Kalmykov S N. Chem. Mater., 2020, 32 (18): 7822.
[119]
Kancharlapalli S, Gopalan A, Haranczyk M, Snurr R Q. J. Chem. Theory Comput., 2021, 17 (5): 3052.
[120]
Datar A, Chung Y G, Lin L-C. J. Phys. Chem. Lett, 2020, 11 (14): 5412.
[121]
Syah R, Al-Khowarizmi A, Elveny M, Khan A. Environ. Technol. Innov., 2021, 23: 101805.
[122]
Jablonka K M, Ongari D, Moosavi S M, Smit B. J. Am. Chem. Soc., 2020, 120 (16): 8066.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[3] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[10] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[11] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[15] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.