中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (1): 142-154 DOI: 10.7536/PC201231 Previous Articles   Next Articles

• Review •

Photocatalytic Reduction of Carbon Dioxide with Iron Complexes

Chenliu Tang1,2, Yunjie Zou1,2, Mingkai Xu, Lan Ling1,2()   

  1. 1 State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
    2 State Key Laboratory of Photocatalysis on Energy and Environment,Fuzhou University, Fuzhou 350116, China
  • Received: Revised: Online: Published:
  • Contact: Lan Ling
  • Supported by:
    National Natural Science Foundation of China(21822607); State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201701)
Richhtml ( 131 ) PDF ( 1146 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalytic CO2 reduction for fuel production has attracted much attention due to its potential for simultaneously solving energy and global warming problems. As a molecular catalyst, earth-abundant and eco-friendly iron complexes take the advantages of adjustable structure, rich valence, and easy synthesis, exhibiting good CO2 photocatalytic reduction performance, and hence have attracted much attention in the field of CO2 photocatalytic reduction. This review focuses on the recent progress in photocatalytic reduction of CO2 based on iron complexes. First, the homogeneous photocatalytic CO2 reduction systems using iron complex as catalyst, including iron porphyrin, iron polypyridine and iron pentadentate complex, are summarized. Visible-light-driven CO2 reduction system is generally composed of three basic components: photosensitizer for absorption of visible light, catalyst for catalytic reduction of CO2, and sacrificial electron donors for providing electrons in reduction reaction. Beyond catalytic efficiency, CO2 photoreduction is a multi-electron transfer process boosted by the catalysts and inevitable competition with hydrogen evolution is a general issue for molecular catalysis of the CO2-to-CO conversion, therefore the selectivity of the products is an important indicator. The selectivity and efficiency could be tuned by changing the ligand of iron complex, photosensitizer and sacrificial electron donors. Moreover, the mechanisms for the homogeneous photocatalytic CO2 reduction, including catalyst activation and reduction process, are deciphered in detail. Second, the recent works of heterogeneous catalytic systems, which combine semiconductor nanomaterials/quantum dots with metal iron complexes as catalysts, are introduced. Considering the superior stability and fairly strong light absorption capacity of inorganic materials to the organic counterparts, the solid nanomaterials can be used as the photosensitizers to incorporate with the molecular catalysts. At the end, the current issues and perspectives on photocatalytic reduction of CO2 based on iron complexes are discussed. For examples, porphyrin metal organic frameworks become a new research interest, and the design and construction of iron porphyrin metal organic frameworks is a promising way for getting new photocatalytic systems functioning in aqueous conditions. Besides, further efforts could be made on the mechanistic studies, especially the 8e-/8H+ reduction to methane.

Contents

1 Introduction

2 Homogeneous photocatalytic CO2 reduction systems using iron complex as catalyst

2.1 Iron porphyrin as photocatalyst

2.2 Iron polypyridine as photocatalyst

2.3 Iron pentadentate complex as photocatalyst

3 Heterogeneous photocatalytic CO2 reduction systems using iron complex as catalyst

3.1 Semiconductor nanomaterials as photosensitizers

3.2 Quantum dots as photosensitizers

4 Conclusion and outlook

Scheme 1 Main Fe porphyrin catalysts for the CO2 photostimulated conversion
Scheme 2 Main organic and inorganic sensitizers employed for the CO2 photostimulated conversion
Scheme 3 Typically used sacrificial electron donors
Table 1 The main reduction products, selectivity and catalytic efficiency in CO2 photocatalytic reduction system
catalyst product selectivity (%) TON photosensitizer sacrificial electron donor light source solvent ref
iron porphyrin complex
Fe-o-OH
(2 μM)
CO 93 140 Ir(ppy)3
(0.2 mM)
TEA
(0.36 M)
λ>420 nm CO2-saturated MeCN solution 63
CO 100 60 9CNA
(0.2 mM)
TEA
(0.05 M)
λ>400 nm CO2-saturated MeCN solution
FeTPP CO 8 17 - Triethylamine
(0.36 M)
λ>280 nm CO2-saturated ACN solution 66
Fe-o-OH H2 - 37 CO2-saturated ACN solution
(0.05 M trifluoroethanol (TFE))
Fe-o-OH-F CO 93 28
FeTPP H2 - 10
Fe-o-OH CO 76 23
Fe-o-OH-F H2 - 15
CO 8 7
H2 - 23
CO 93 30
H2 - 10
CO 76 23
H2 - 12
Fe-p-TMA
(2 μM)
CO 100 101 - TEA (0.05 M)/BIH (0.02 M) λ>420 nm CO2-saturated MeCN solution 67
Fe-p-TMA
(2 μM)
CO 95 60 purpurin
(0.02 mM)
TEA (0.05 M) λ>420 nm CO2-saturated MeCN/H2O (1∶9 v/v) solution 61
H2 5 3 TEOA (0.05 M)
CO 95 71 purpurin
(0.04 mM)
EDTA (0.05 M)
H2 5 4
CO 91 42 purpurin
(0.02 mM)
H2 9 4
CO 92 46 purpurin
(0.02 mM)
H2 8 4
Fe-p-TMA
(2 μM)
CO 78 367 Ir(ppy)3
(0.2 mM)
TEA
(0.05 M)
λ>420 nm CO2-saturated MeCN solution 69
CH4 17 79 λ>420 nm CO-saturated MeCN solution
Fe-p-TMA
(2 μM)
H2 5 26 Ir(ppy)3
(0.2 mM)
TEA
(0.05 M)
CO-saturated MeCN solution
( 0.1 M TFE)
CH4 87 140
H2 13 28
CH4 82 159
H2 18 34
FeTMA
(1 μM)
CO 99 450 CuInS2/ZnS quantum dot (QD) TEA λ=450 nm 5 mM KCl in CO2-
saturated water
79
catalyst product selectivity (%) TON photosensitizer sacrificial electron
donor
light source solvent ref
Fe-p-TMA
(10 μM)
CH4 15 29 Phen2
(1 mM)
TEA
(0.1 M)
λ>435 nm CO2-saturated DMF solution (0.1 M TFE) 70
CO - 140
H2 - 23 CO-saturated DMF solution (0.1 M TFE)
CH4 87 45
H2 - 7
Fe-p-TMA
(2 μM)
CH4 10 32 Ir(ppy)2
(bpy)
(0.2 mM)
TEA
(0.05 M)
λ>420 nm CO2-saturated ACN solution 80
CO 57 178
H2 33 103 TEOA
(0.05 M)
a CO2-saturated ACN/H2O (3∶7 v/v) solution
CH4 12 3 Ir(ppy)2
(bpy)
(0.2 mM)
CO 73 19 TEA
(0.05 M)
Under CO atmosphere + 0.5 M TFE
H2 15 4
CH4 84 100
H2 16 19 Ir(ppy)3
(0.2 mM)
iron polypyridine complex
[Fe(qpy)
(OH2)2]2+
(5 μM)
CO 85 3844 Ru(bpy ) 3 2 +
(0.2 mM)
BIH (0.1 M) blue LED centered at 460 nm CO2-saturated MeCN/TEOA (4∶1 v/v) solution 38
H2 3 118
formate 12 534 MeCN saturated with CO2
CO 92 1365 purpurin (0.02 mM)
[Fe(qnpy)
(H2O)2]2+
(50 μM)
CO 99 2190 Ru(phen ) 3 2 +(0.2 mM) BIH (0.11 M) LED, centred at 460 nm CO2-saturated MeCN/H2O (1∶1, v/v) solution 71
H2 1 27
CO 98 14095
[Fe(qnpy)
(H2O)2]2+
(5 μM)
H2 2 360
iron pentadentate complex
[FeIII(L)
(Cl)2]2+
(20 μM)
HCOOH - 5 Ir(ppy)3 (0.2 mM) TEA
(0.05 M)
λ>420 nm MeCN saturated with CO2 39
Fig. 1 Mechanisms for the photochemical catalytic reduction of CO2 into CO with iron porphyrins as homogeneous catalysts,in both sensitized and non-sensitized conditions[68]
Fig. 2 Schematic mechanism for the multi-electrons multi-protons reduction of CO2 to CO and then CH4 by tandem catalysis,implying a molecular sensitizer,a sacrificial electron donor and a Fe-porphyrin as catalyst[69]
Fig. 3 Proposed mechanism for the photocatalytic reduction of CO2 to CO for the Ru(bpy ) 3 2 +/BIH/TEOA systems[38]
Fig. 4 Proposed mechanisms for the reduction of CO2 with [FeIII(L)Cl2]+[39]
Fig. 5 Structure of g-C3N4/FeTCPP heterogeneous catalyst system[75]
Fig. 6 Formation of CdS/Bi2S3 heterostructure and proposed charge transfer mechanism in CO2 photoreduction over CdS/Bi2S3/FeTCPP hybrid catalysts under visible-light illumination。The dashed line indicates the suppressed electron transfer[77]
Fig. 7 Proposed assembly mechanism for a subunit of a QD/FeTMA complex[79]
[1]
Akhter P, Farkhondehfal M A, Hernández S, Hussain M, Fina A, Saracco G, Khan A U, Russo N. J. Environ. Chem. Eng., 2016,4(4): 3934.

doi: 10.1016/j.jece.2016.09.004
[2]
Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010,4(3): 1259.

doi: 10.1021/nn9015423
[3]
Rakowski Dubois M, Dubois D L. Acc. Chem. Res., 2009,42(12): 1974.

doi: 10.1021/ar900110c
[4]
Liu M, Pang Y J, Zhang B, De Luna P, Voznyy O, Xu J X, Zheng X L, Dinh C T, Fan F J, Cao C H, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H. Nature, 2016,537(7620): 382.

doi: 10.1038/nature19060
[5]
Liu M Y, Wang Y S, Deng W, Wen Z H. Progress in Chemistry, 2018,30: 398.
( 刘孟岩, 王元双, 邓雯, 温珍海. 化学进展, 2018,30: 398.)

doi: 10.7536/PC170810
[6]
Lu Q, Jiao F. Nano Energy, 2016,29: 439.

doi: 10.1016/j.nanoen.2016.04.009
[7]
Li K, Peng B S, Peng T Y. ACS Catal., 2016,6(11): 7485.

doi: 10.1021/acscatal.6b02089
[8]
Chen Z Y, Liu J W, Cui H, Zhang L, Su C Y. Acta Chimica Sin., 2019,77(3): 242.
( 陈之尧, 刘捷威, 崔浩, 张利, 苏成勇. 化学学报, 2019,77(3): 242.)

doi: 10.6023/A18100440
[9]
Feng X, Ren X W, Jiang H F. Progress in Chemistry, 2020,32: 1697.
( 封啸, 任颜卫, 江焕峰. 化学进展, 2020,32: 1697.)

doi: 10.7536/PC200407
[10]
Centi G, Quadrelli E A, Perathoner S. Energy Environ. Sci., 2013,6(6): 1711.

doi: 10.1039/c3ee00056g
[11]
Taheri Najafabadi A. Int. J. Energy Res., 2013,37(6): 485.

doi: 10.1002/er.v37.6
[12]
Yang Z Z, He L N, Gao J, Liu A H, Yu B. Energy Environ. Sci., 2012,5(5): 6602.

doi: 10.1039/c2ee02774g
[13]
Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak C P. Annu. Rev. Phys. Chem., 2012,63(1): 541.

doi: 10.1146/physchem.2012.63.issue-1
[14]
Chen H K, Li H R, He L N. Chin. J. Org. Chem., 2020,40: 2195.

doi: 10.6023/cjoc202004030
( 陈凯宏, 李红茹, 何良年. 有机化学, 2020,40: 2195.)

doi: 10.6023/cjoc202004030
[15]
Liu C, ColÓn B C, Ziesack M, Silver P A, Nocera D G. Science, 2016,352(6290): 1210.

doi: 10.1126/science.aaf5039
[16]
Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nano Lett., 2015,15(5): 3634.

doi: 10.1021/acs.nanolett.5b01254
[17]
Dhakshinamoorthy A, Navalon S, Corma A, Garcia H. Energy Environ. Sci., 2012,5(11): 9217.

doi: 10.1039/c2ee21948d
[18]
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed., 2013,52(29): 7372.

doi: 10.1002/anie.201207199
[19]
Yu J G, Low J, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014,136(25): 8839.

doi: 10.1021/ja5044787
[20]
Xu Q L, Yu J G, Zhang J, Zhang J F, Liu G. Chem. Commun., 2015,51(37): 7950.

doi: 10.1039/C5CC01087J
[21]
Wang K, Li Q, Liu B S, Cheng B, Ho W, Yu J G. Appl. Catal. B: Environ., 2015,176/177: 44.

doi: 10.1016/j.apcatb.2015.03.045
[22]
Shi H F, Chen G Q, Zhang C L, Zou Z G. ACS Catal., 2014,4(10): 3637.

doi: 10.1021/cs500848f
[23]
Yu W L, Xu D F, Peng T Y. J. Mater. Chem. A, 2015,3(39): 19936.

doi: 10.1039/C5TA05503B
[24]
Fu J W, Zhu B C, Jiang C J, Cheng B, You W, Yu J G. Small, 2017,13(15): 1603938.

doi: 10.1002/smll.v13.15
[25]
Jiang Z F, Wan W M, Li H M, Yuan S Q, Zhao H J, Wong P K. Adv. Mater., 2018,30(10): 1706108.

doi: 10.1002/adma.v30.10
[26]
Lehn J M, Ziessel R P. Proc. Natl. Acad. Sci. U. S. A., 1982,79: 701.

pmid: 16593151
[27]
Hawecker J, Lehn J M, Ziessel R. J. Chem. Soc., Chem. Commun., 1983(9): 536.
[28]
Lehn J M, Ziessel R. J. Organomet. Chem., 1990,382(1/2): 157.

doi: 10.1016/0022-328X(90)85224-M
[29]
Kuriki R, Sekizawa K, Ishitani O, Maeda K. Angew. Chem. Int. Ed., 2015,54(8): 2406.

doi: 10.1002/anie.201411170
[30]
Maeda K, Kuriki R, Zhang M W, Wang X C, Ishitani O. J. Mater. Chem. A, 2014,2(36): 15146.

doi: 10.1039/C4TA03128H
[31]
Sato S, Morikawa T, Kajino T, Ishitani O. Angew. Chem. Int. Ed., 2013,52(3): 988.

doi: 10.1002/anie.201206137
[32]
Li L N, Zhang S Q, Xu L J, Wang J Y, Shi L X, Chen Z N, Hong M C, Luo J H. Chem. Sci., 2014,5(10): 3808.

doi: 10.1039/C4SC00940A
[33]
Reithmeier R O, Meister S, Siebel A, Rieger B. Dalton Trans., 2015,44(14): 6466.

doi: 10.1039/c5dt00370a pmid: 25749307
[34]
Agarwal J, Fujita E, Schaefer H F III, Muckerman J T. J. Am. Chem. Soc., 2012,134(11): 5180.

doi: 10.1021/ja2105834 pmid: 22364649
[35]
Ettedgui J, Diskin-Posner Y, Weiner L, Neumann R. J. Am. Chem. Soc., 2011,133(2): 188.

doi: 10.1021/ja1078199 pmid: 21158388
[36]
Morris A J, Meyer G J, Fujita E. Acc. Chem. Res., 2009,42(12): 1983.

doi: 10.1021/ar9001679
[37]
Chan S L F, Lam T L, Yang C, Yan S C, Cheng N M. Chem. Commun., 2015,51(37): 7799.

doi: 10.1039/C5CC00566C
[38]
Guo Z G, Cheng S W, Cometto C, AnxolabÉhère-Mallart E, Ng S M, Ko C C, Liu G J, Chen L J, Robert M, Lau T C. J. Am. Chem. Soc., 2016,138(30): 9413.

doi: 10.1021/jacs.6b06002
[39]
Chen L J, Guo Z G, Wei X G, Gallenkamp C, Bonin J, AnxolabÉhère-Mallart E, Lau K C, Lau T C, Robert M. J. Am. Chem. Soc., 2015,137(34): 10918.

doi: 10.1021/jacs.5b06535
[40]
Behar D, Dhanasekaran T, Neta P, Hosten C M, Ejeh D, Hambright P, Fujita E. J. Phys. Chem. A, 1998,102(17): 2870.

doi: 10.1021/jp9807017
[41]
Bi Q Q, Wang J W, Lv J X, Wang J, Zhang W, Lu T B. ACS Catal., 2018,8(12): 11815.

doi: 10.1021/acscatal.8b03457
[42]
Zhao G X, Pang H, Liu G G, Li P, Liu H M, Zhang H B, Shi L, Ye J H. Appl. Catal. B: Environ., 2017,200: 141.

doi: 10.1016/j.apcatb.2016.06.074
[43]
Wang J W, Huang H H, Sun J K, Ouyang T, Zhong D C, Lu T B. ChemSusChem, 2018,11(6): 1025.

doi: 10.1002/cssc.v11.6
[44]
Herrero C, Quaranta A, El Ghachtouli S, Vauzeilles B, Leibl W, Aukauloo A. Phys. Chem. Chem. Phys., 2014,16(24): 12067.

doi: 10.1039/c3cp54946a
[45]
Thoi V S, Kornienko N, Margarit C G, Yang P D, Chang C J. J. Am. Chem. Soc., 2013,135(38): 14413.

doi: 10.1021/ja4074003
[46]
Hong D C, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J. Am. Chem. Soc., 2017,139(19): 6538.

doi: 10.1021/jacs.7b01956
[47]
Kuehnel M F, Orchard K L, Dalle K E, Reisner E. J. Am. Chem. Soc., 2017,139(21): 7217.

doi: 10.1021/jacs.7b00369 pmid: 28467076
[48]
Kuehnel M F, Sahm C D, Neri G, Lee J R, Orchard K L, Cowan A J, Reisner E. Chem. Sci., 2018,9(9): 2501.

doi: 10.1039/c7sc04429a pmid: 29732127
[49]
Tinnemans A H A, Koster T P M, Thewissen D H M W, Mackor A. Recl. Trav. Chim. Pays-Bas, 2010,103(10): 288.

doi: 10.1002/recl.19841031004
[50]
Takeda H, Kamiyama H, Okamoto K, Irimajiri M, Mizutani T, Koike K, Sekine A, Ishitani O. J. Am. Chem. Soc., 2018,140(49): 17241.

doi: 10.1021/jacs.8b10619
[51]
Cheung P L, Machan C W, Malkhasian A Y S, Agarwal J, Kubiak C P. Inorg. Chem., 2016,55(6): 3192.

doi: 10.1021/acs.inorgchem.6b00379 pmid: 26996527
[52]
Fei H H, Sampson M D, Lee Y, Kubiak C P, Cohen S M. Inorg. Chem., 2015,54(14): 6821.

doi: 10.1021/acs.inorgchem.5b00752
[53]
Takeda H, Koizumi H, Okamoto K, Ishitani O. Chem. Commun., 2014,50(12): 1491.

doi: 10.1039/C3CC48122K
[54]
Grodkowski J, Behar D, Neta P, Hambright P. J. Phys. Chem. A, 1997,101(3): 248.

doi: 10.1021/jp9628139
[55]
Dhanasekaran T, Grodkowski J, Neta P, Hambright P, Fujita E. J. Phys. Chem. A, 1999,103(38): 7742.

doi: 10.1021/jp991423u
[56]
Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig B S, Shinozaki K, Fujita E. J. Phys. Chem. A, 2000,104(48): 11332.

doi: 10.1021/jp002709y
[57]
Grodkowski J, Neta P. J. Phys. Chem. A, 2000,104(19): 4475.

doi: 10.1021/jp993456f
[58]
Voyame P, Toghill K E, MÉndez M A, Girault H H. Inorg. Chem., 2013,52(19): 10949.

doi: 10.1021/ic401031j
[59]
Khalil M, Gunlazuardi J, Ivandini T A, Umar A. Renew. Sustain. Energy Rev., 2019,113: 109246.

doi: 10.1016/j.rser.2019.109246
[60]
Yuan Y J, Yu Z T, Chen X Y, Zhang J Y, Zou Z G. Chem. Eur. J., 2011,17(46): 12891.

doi: 10.1002/chem.v17.46
[61]
Rao H, Bonin J, Robert M. ChemSusChem, 2017,10(22): 4447.

doi: 10.1002/cssc.201701467
[62]
Eriksen J, Foote C S. J. Phys. Chem., 1978,82(25): 2659.

doi: 10.1021/j100514a005
[63]
Bonin J, Robert M, Routier M. J. Am. Chem. Soc., 2014,136(48): 16768.

doi: 10.1021/ja510290t
[64]
Pellegrin Y, Odobel Fabrice C R. Cr. Chimi., 2017,20: 283.

doi: 10.1016/j.crci.2015.11.026
[65]
Esswein A J, Nocera D G. Chem. Rev., 2007,107(10): 4022.

pmid: 17927155
[66]
Bonin J, Chaussemier M, Robert M, Routier M. ChemCatChem, 2014,6(11): 3200.

doi: 10.1002/cctc.201402515
[67]
Rao H, Bonin J, Robert M. Chem. Commun., 2017,53(19): 2830.

doi: 10.1039/C6CC09967J
[68]
Bonin J, Maurin A, Robert M. Coord. Chem. Rev., 2017,334: 184.

doi: 10.1016/j.ccr.2016.09.005
[69]
Rao H, Schmidt L C, Bonin J, Robert M. Nature, 2017,548(7665): 74.

doi: 10.1038/nature23016
[70]
Rao H, Lim C H, Bonin J, Miyake G M, Robert M. J. Am. Chem. Soc., 2018,140(51): 17830.

doi: 10.1021/jacs.8b09740
[71]
Qin Y F, Chen L J, Chen G, Guo Z G, Wang L, Fan H B, Robert M, Lau T C. Chem. Commun., 2020,56(46): 6249.

doi: 10.1039/D0CC01930E
[72]
Wong E L M, Fang G S, Che C M, Zhu N Y. Chem. Commun., 2005(36): 4578.
[73]
Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T. Angewandte Chemie Int. Ed., 2010,49(30): 5101.

doi: 10.1002/anie.201000613
[74]
Li B, Sun L Q, Bian J, Sun N, Sun J W, Chen L Q, Li Z J, Jing L Q. Appl. Catal. B: Environ., 2020,270: 118849.

doi: 10.1016/j.apcatb.2020.118849
[75]
Lin L, Hou C C, Zhang X H, Wang Y J, Chen Y, He T. Appl. Catal. B: Environ., 2018,221: 312.

doi: 10.1016/j.apcatb.2017.09.033
[76]
Zhang X H, Lin L, Qu D, Yang J G, Weng Y X, Wang Z, Sun Z C, Chen Y, He T. Appl. Catal. B: Environ., 2020,265: 118595.

doi: 10.1016/j.apcatb.2020.118595
[77]
Li P, Zhang X H, Hou C C, Chen Y, He T. Appl. Catal. B: Environ., 2018,238: 656.

doi: 10.1016/j.apcatb.2018.07.066
[78]
Lian S C, Kodaimati M S, Dolzhnikov D S, Calzada R, Weiss E A. J. Am. Chem. Soc., 2017,139(26): 8931.

doi: 10.1021/jacs.7b03134
[79]
Lian S C, Kodaimati M S, Weiss E A. ACS Nano, 2018,12(1): 568.

doi: 10.1021/acsnano.7b07377
[80]
Rao H, Bonin J, Robert M. J. Phys. Chem. C, 2018,122(25): 13834.

doi: 10.1021/acs.jpcc.8b00950
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[4] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[5] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[6] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[7] Zou Huaibo, Wang Huahua, Mei Guangquan, Liu Haiyang, Chang Chi-Kwong. Catalytic Application of Iron Corrole Complexes in Organic Synthesis [J]. Progress in Chemistry, 2015, 27(6): 666-674.
[8] Liu Lei, Liu Jingang*. Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction [J]. Progress in Chemistry, 2013, 25(04): 563-576.
[9] Li Xiaohui, Fan Tongxiang. Artificial Photosynthesis [J]. Progress in Chemistry, 2011, 23(9): 1841-1853.
[10] . Mechanism of Selective Oxidations of Hydrocarbons with Hydrogen Peroxide Catalyzed by Metalloporphyrins [J]. Progress in Chemistry, 2008, 20(11): 1635-1641.