中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 519-532 DOI: 10.7536/PC210224 Previous Articles   Next Articles

• Review •

Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction

Hao Sun, Chaopeng Wang, Jun Yin(), Jian Zhu()   

  1. School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University,Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Jun Yin, Jian Zhu
  • Supported by:
    National Natural Science Foundation of China(51873088); National Natural Science Foundation of China(12004195); Natural Science Foundation of Tianjin(18JCZDJC38400); Natural Science Foundation of Tianjin(20JCQNJC01820); “111” Project of China's Higher Education(B18030); Fundamental Research Funds for the Central Universities from Nankai University(63201061)
Richhtml ( 50 ) PDF ( 629 ) Cited
Export

EndNote

Ris

BibTeX

With the gradual depletion of fossil fuels and the deteriorating environment, it is urgent to develop clean and renewable energy technologies. In recent years, energy conversion and storage technologies, such as water electrolysis and rechargeable metal-air batteries, have attracted tremendous research attention. Oxygen evolution reaction (OER) is the core reaction of them. Remarkable OER electrocatalysts have been widely reported. The fabrication methods of electrocatalytic electrodes play a prominent role in the performance of the catalysts apart from the intrinsic activity of the catalysts. An increasing number of researchers are devoted to exploring the design and fabrication of high-performance OER electrodes. This review introduces the current fabrication strategies of OER electrodes, discusses their advantages and disadvantages with a summary of the latest research progress, and overviews the emerging approaches for new-type electrodes. Finally, future development in this field is prospected.

Contents

1 Introduction

2 Substrate-assisted electrodes

2.1 Drop casting

2.2 Hydro/solvothermal reaction

2.3 Electrodeposition

2.4 Chemical vapor deposition

2.5 Layer-by-Layer assembly

2.6 Combined strategies

3 Substrate-free electrodes

3.1 Electrospinning

3.2 3D printing

3.3 Other techniques

4 Conclusion and outlook

Table 1 Recent reports on the OER performances of substrate-assisted electrodes
Fig.1 (a) Schematic of the growth of Co-MOF nanoarrays preferring on a thermally evaporated metal layer, (b) SEM image of the top view of the Co-MOF nanoarrays grown on the Ni-coated Si substrate, (c) Cross-sectional SEM image of Co-MOF nanoarrays, (d) Optical images of patterned Ni-layers on the Si substrates before (left) and after (right) the growth of the Co-MOF nanoarrays, (e) SEM image of the growth of the Co-MOF nanoarrays on the patterned Ni layers[31]. Copyright 2019, Wiley-VCH
Fig.2 (a) Schematic preparation of Cr-CoFe LDHs/NF. (b) XRD patterns of CoFe LDHs, and Cr-CoFe LDHs scraped down from NF; SEM images of (c) CoFe LDHs/NF and (d) Cr-CoFe LDHs/NF[62]. Copyright 2019, Wiley-VCH
Fig.3 Schematic illustration of flexible electrode of NP Au/CoMoNx hybrid cable[64]. Copyright 2020, Wiley-VCH
Fig.4 (a) A schematic illustration of the electrodeposition of CoFeWOx on NFs. (b) A photo of a NiF electrode with CoFeWOx[69]. Copyright 2019, Wiley-VCH
Fig.5 (a) Synthetic route of CoNi-Fe3N NTs. (b) The surface reconstruction of CoNi-Fe3N NTs during OER catalysis[70]. Copyright 2020, Wiley-VCH
Fig.6 Schematic of the fabrication of FeNi@NCNT-CP clusters[75]. Copyright 2020, Wiley-VCH
Fig.7 Preparation of multilayer thin films using the LbL assembly technique[79]. Copyright 2016, Royal Society of Chemistry
Fig.8 (a) Schematic representation for the LbL assembly of the (CoNi-LDH/Fe-PP)n UTFs. (b) UV-vis spectra of the (CoNi-LDH/Fe-PP)n UTFs (n = 2~12) on quartz glass substrate (inset: the linear relationship between absorbance at 403 nm and bilayer number n)[82]. Copyright 2016, Royal Society of Chemistry
Fig.9 Approach used to synthesize the [M(BDC)] SURMOF directly at the electrode substrate[84]. Copyright 2019, American Chemical Society
Table 2 Pros and cons of various fabrication methods for substrate-assisted electrodes
Fig.10 Schematic illustration of the synthesis of the binder-free NCS@N-rGO/NF, NCS@rGO/NF, and NCS/NF electrodes[86]. Copyright 2020, Wiley-VCH
Table 3 Recent reports on the OER performances of substrate-free electrodes
Fig.11 (a) Schematic representation of the fabrication procedure toward the NCNF, (b) Photographs of the resultant flexible NCNF, (c) Chemical structure of PI polymer, SEM images of (d) the pristine PI film and (e) NCNF-1000[91]. Copyright 2016, Wiley-VCH
Fig.12 Schematic illustration of the fabrication process for the electrospun carbon (ESC) nanofibers integrated with ultrathin iron-nickel phosphate nanosheet arrays (namely, ESC@FNPO)[92]. Copyright 2018, Wiley-VCH
Fig.13 (a) 3D printed polymeric objects using different materials and techniques; (b) their NiP plated counterparts[98]. Copyright 2019, Wiley-VCH
Fig.14 (a~d) Schematic illustration of 3DP GC electrode, (e) Optical image of 3DP GC electrode immersed in water, (f) SEM image of 3DP GC electrode with macroscaffold and microporous structure, (g) SEM image of graphene/interlaced CNT nanostructure[99]. Copyright 2020, Wiley-VCH
[1]
Barack O. Science, 2017, 355(6321): 126.

doi: 10.1126/science.aam6284 pmid: 28069665
[2]
Yang Y C, Yang Y W, Pei Z X, Wu K H, Tan C H, Wang H Z, Wei L, Mahmood A, Yan C, Dong J C, Zhao S L, Chen Y. Matter, 2020, 3(5): 1442.

doi: 10.1016/j.matt.2020.07.032
[3]
Chen H, Liang X, Liu Y P, Ai X, Asefa T, Zou X X. Adv. Mater., 2020, 32(44): e2002435.
[4]
Wu A P, Gu Y, Yang B R, Wu H, Yan H J, Jiao Y Q, Wang D X, Tian C G, Fu H G. J. Mater. Chem. A, 2020, 8(43): 22938.

doi: 10.1039/D0TA09620B
[5]
Song H Q, Wu M, Tang Z Y, Tse J S, Yang B, Lu S Y. Angew. Chem. Int. Ed., 2021, 60(13): 7234.

doi: 10.1002/anie.202017102
[6]
Kim Y J, Lee G R, Cho E N, Jung Y S. Adv. Mater., 2020, 32(35): e1907500.
[7]
Bak J, Heo Y, Yun T G, Chung S Y. ACS Nano, 2020, 14(11): 14323.

doi: 10.1021/acsnano.0c06411
[8]
Miner E M, Dincă M. Nat. Energy, 2016, 1(12): 16184.

doi: 10.1038/nenergy.2016.184
[9]
Chen Z J, Duan X G, Wei W, Wang S B, Ni B J. Nano Energy, 2020, 78: 105392.

doi: 10.1016/j.nanoen.2020.105392
[10]
Wu Z P, Lu X F, Zang S Q, Lou X W D. Adv. Funct. Mater., 2020, 30(15): 1910274.

doi: 10.1002/adfm.201910274
[11]
Feng C, Faheem M B, Fu J, Xiao Y Q, Li C L, Li Y B. ACS Catal., 2020, 10(7): 4019.

doi: 10.1021/acscatal.9b05445
[12]
Zhao S L, Tan C H, He C T, An P F, Xie F, Jiang S, Zhu Y F, Wu K H, Zhang B W, Li H J, Zhang J, Chen Y, Liu S Q, Dong J C, Tang Z Y. Nat. Energy, 2020, 5(11): 881.

doi: 10.1038/s41560-020-00709-1
[13]
Kasian O, Grote J P, Geiger S, Cherevko S, Mayrhofer K J J. Angew. Chem. Int. Ed., 2018, 57(9): 2488.

doi: 10.1002/anie.201709652 pmid: 29219237
[14]
Zhang H B, Liu Y Y, Chen T, Zhang J T, Zhang J, Lou X W D. Adv. Mater., 2019, 31(48): e1904548.
[15]
Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. Adv. Energy Mater., 2019, 9(17): 1803358.

doi: 10.1002/aenm.201803358
[16]
Du Y, Liu D P, Yan S C, Yu T, Zou Z G. Progress in Chemistry, 2020, 32(9): 1386.

doi: 10.7536/PC200126
(杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 化学进展, 2020, 32(9): 1386.).

doi: 10.7536/PC200126
[17]
Wang Y Q, Tao S, Lin H, Wang G P, Zhao K N, Cai R M, Tao K W, Zhang C X, Sun M Z, Hu J, Huang B L, Yang S H. Nano Energy, 2021, 81: 105606.

doi: 10.1016/j.nanoen.2020.105606
[18]
Chen G B, Wang T, Zhang J, Liu P, Sun H J, Zhuang X D, Chen M W, Feng X L. Adv. Mater., 2018, 30(10): 1706279.

doi: 10.1002/adma.201706279
[19]
Wang T, Fan J T, Do-Thanh C L, Suo X, Yang Z Z, Chen H, Yuan Y T, Lyu H L, Yang S Z, Dai S. Angew. Chem. Int. Ed., 2021, 60(18): 9953.

doi: 10.1002/anie.202101120 pmid: 33524205
[20]
Song H J, Yoon H, Ju B, Kim D W. Adv. Energy Mater., 2021, 11(27): 2002428.

doi: 10.1002/aenm.202002428
[21]
Li Z, Achenie L E K, Xin H L. ACS Catal., 2020, 10(7): 4377.

doi: 10.1021/acscatal.9b05248
[22]
Wan K, Luo J S, Zhou C, Zhang T, Arbiol J, Lu X H, Mao B W, Zhang X, Fransaer J. Adv. Funct. Mater., 2019, 29(18): 1900315.

doi: 10.1002/adfm.201900315
[23]
Fei B, Chen Z L, Liu J X, Xu H B, Yan X X, Qing H L, Chen M, Wu R B. Adv. Energy Mater., 2020, 10(41): 2001963.

doi: 10.1002/aenm.202001963
[24]
Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Adv. Funct. Mater., 2021, 31(1): 2006484.

doi: 10.1002/adfm.202006484
[25]
Quan Q, Lai Z X, Bao Y, Bu X M, Meng Y, Wang W, Takahashi T, Hosomi T, Nagashima K, Yanagida T, Liu C T, Lu J, Ho J C. Small, 2021, 17(7): e2006860.
[26]
Yuan G J, Bai J L, Zhang L, Chen X, Ren L L. Appl. Catal. B: Environ., 2021, 284: 119693.

doi: 10.1016/j.apcatb.2020.119693
[27]
Lian Y B, Shi K F, Yang H J, Sun H, Qi P W, Ye J, Wu W B, Deng Z, Peng Y. Small, 2020, 16(23): e1907368.
[28]
Yu Y D, Zhou J, Sun Z M. Adv. Funct. Mater., 2020, 30(47): 2000570.

doi: 10.1002/adfm.202000570
[29]
Ji Q Q, Kong Y, Wang C, Tan H, Duan H L, Hu W, Li G N, Lu Y, Li N, Wang Y, Tian J, Qi Z M, Sun Z H, Hu F C, Yan W S. ACS Catal., 2020, 10(10): 5691.

doi: 10.1021/acscatal.0c00989
[30]
Hou C C, Zou L L, Wang Y, Xu Q. Angew. Chem. Int. Ed., 2020, 59(48): 21360.

doi: 10.1002/anie.202011347
[31]
Wang C P, Liu H Y, Bian G, Gao X X, Zhao S C, Kang Y, Zhu J, Bu X H. Small, 2019, 15(51): e1906086.
[32]
Kuai C G, Zhang Y, Wu D Y, Sokaras D, Mu L Q, Spence S, Nordlund D, Lin F, Du X W. ACS Catal., 2019, 9(7): 6027.

doi: 10.1021/acscatal.9b01935
[33]
Zhao Y F, Zhang X, Jia X D, Waterhouse G I N, Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O'Hare D, Zhang T R. Adv. Energy Mater., 2018, 8(18): 1703585.

doi: 10.1002/aenm.201703585
[34]
Hu Y D, Luo G, Wang L G, Liu X K, Qu Y T, Zhou Y S, Zhou F Y, Li Z J, Li Y F, Yao T, Xiong C, Yang B, Yu Z Q, Wu Y E. Adv. Energy Mater., 2021, 11(1): 2002816.

doi: 10.1002/aenm.202002816
[35]
Smith R D L, Prévot M S, Fagan R D, Zhang Z P, Sedach P A, Siu M K J, Trudel S, Berlinguette C P. Science, 2013, 340(6128): 60.

doi: 10.1126/science.1233638
[36]
Zhang X, Zhao Y F, Zhao Y X, Shi R, Waterhouse G I N, Zhang T R. Adv. Energy Mater., 2019, 9(24): 1900881.

doi: 10.1002/aenm.201900881
[37]
Chattot R, Bordet P, Martens I, Drnec J, Dubau L, Maillard F. ACS Catal., 2020, 10(16): 9046.

doi: 10.1021/acscatal.0c02144
[38]
Lee C, Shin K, Jung C, Choi P P, Henkelman G, Lee H M. ACS Catal., 2020, 10(1): 562.

doi: 10.1021/acscatal.9b02249
[39]
Li P S, Duan X X, Kuang Y, Li Y P, Zhang G X, Liu W, Sun X M. Adv. Energy Mater., 2018, 8(15): 1703341.

doi: 10.1002/aenm.201703341
[40]
Anantharaj S, Kundu S. ACS Energy Lett., 2019, 4(6): 1260.

doi: 10.1021/acsenergylett.9b00686
[41]
Sun H M, Yan Z H, Liu F M, Xu W C, Cheng F Y, Chen J. Adv. Mater., 2020, 32(3): e1806326.
[42]
Jiang S, Li J L, Fang J, Wang X G. Small, 2021, 17(9): e1903760.
[43]
Wang H F, Chen R X, Feng J Y, Qiao M, Doszczeczko S, Zhang Q, Jorge A B, Titirici M M. ChemElectroChem, 2018, 5(14): 1786.

doi: 10.1002/celc.201800292
[44]
Zhao H, Zhu Y P, Yuan Z Y. Eur. J. Inorg. Chem., 2016, 2016(13/14): 1916.

doi: 10.1002/ejic.201501181
[45]
Wang P C, Wang B G. ChemSusChem, 2020, 13(18): 4795.

doi: 10.1002/cssc.202001293
[46]
Tavakkoli M, Flahaut E, Peljo P, Sainio J, Davodi F, Lobiak E V, Mustonen K, Kauppinen E I. ACS Catal., 2020, 10(8): 4647.

doi: 10.1021/acscatal.0c00352
[47]
Cai Z, Zhou D J, Wang M Y, Bak S M, Wu Y S, Wu Z S, Tian Y, Xiong X Y, Li Y P, Liu W, Siahrostami S, Kuang Y, Yang X Q, Duan H H, Feng Z X, Wang H L, Sun X M. Angew. Chem. Int. Ed., 2018, 57(30): 9392.

doi: 10.1002/anie.201804881
[48]
Liu Q Q, Wang Q C, Wang J, Li Z G, Liu J J, Sun X Y, Li J, Lei Y P, Dai L M, Wang P S. Adv. Funct. Mater., 2020, 30(38): 2000593.

doi: 10.1002/adfm.202000593
[49]
Zhang H, Jiang Q F, Hadden J H L, Xie F, Riley D J. Adv. Funct. Mater., 2021, 31(10): 2008989.

doi: 10.1002/adfm.202008989
[50]
Xia C, Jiang Q, Zhao C, Hedhili M N, Alshareef H N. Adv. Mater., 2016, 28(1): 77.

doi: 10.1002/adma.201503906
[51]
Hou J G, Wu Y Z, Zhang B, Cao S Y, Li Z W, Sun L C. Adv. Funct. Mater., 2019, 29(20): 1808367.

doi: 10.1002/adfm.201808367
[52]
Wang P W, Hayashi T, Meng Q A, Wang Q B, Liu H, Hashimoto K, Jiang L. Small, 2017, 13(4): 1601250.

doi: 10.1002/smll.201601250
[53]
Li J, Gao X, Li Z Z, Wang J H, Zhu L, Yin C, Wang Y, Li X B, Liu Z F, Zhang J, Tung C H, Wu L Z. Adv. Funct. Mater., 2019, 29(16): 1808079.

doi: 10.1002/adfm.201808079
[54]
Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Adv. Funct. Mater., 2016, 26(19): 3314.

doi: 10.1002/adfm.201505626
[55]
Sun H M, Xu X B, Yan Z H, Chen X, Jiao L F, Cheng F Y, Chen J. J. Mater. Chem. A, 2018, 6(44): 22062.

doi: 10.1039/C8TA02999G
[56]
Walton R I. Chem. Eur. J., 2020, 26(42): 9041.

doi: 10.1002/chem.202000707
[57]
Liu B, Zhao Y F, Peng H Q, Zhang Z Y, Sit C K, Yuen M F, Zhang T R, Lee C S, Zhang W J. Adv. Mater., 2017, 29(19): 1606521.

doi: 10.1002/adma.201606521
[58]
Ni L, Zhou J H, Chen N N, Li X G, Xu S C, Zhang L, Lu C L, Chen J, Xu L, Hou W H. Int. J. Hydrog. Energy, 2020, 45(43): 22788.

doi: 10.1016/j.ijhydene.2020.06.139
[59]
Gao J H, Xuan H C, Xu Y K, Liang T, Han X K, Yang J, Han P D, Wang D H, Du Y W. Electrochim. Acta, 2018, 286: 92.

doi: 10.1016/j.electacta.2018.08.043
[60]
Liu H X, Wang Y R, Lu X Y, Hu Y, Zhu G Y, Chen R P, Ma L B, Zhu H F, Tie Z X, Liu J, Jin Z. Nano Energy, 2017, 35: 350.

doi: 10.1016/j.nanoen.2017.04.011
[61]
Kim J, Lee S, Kim J, Lee D. Adv. Funct. Mater., 2019, 29(8): 1808466.

doi: 10.1002/adfm.201808466
[62]
Wen L L, Zhang X L, Liu J Y, Li X Y, Xing C C, Lyu X J, Cai W P, Wang W C, Li Y. Small, 2019, 15(35): e1902373.
[63]
Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J N, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Adv. Energy Mater., 2020, 10(17): 1903891.

doi: 10.1002/aenm.201903891
[64]
Yao R Q, Shi H, Wan W B, Wen Z, Lang X Y, Jiang Q. Adv. Mater., 2020, 32(10): e1907214.
[65]
Li R P, Li Y, Yang P X, Wang D, Xu H, Wang B, Meng F, Zhang J Q, An M Z. J. Energy Chem., 2021, 57: 547.

doi: 10.1016/j.jechem.2020.08.040
[66]
Bernal Lopez M, Ustarroz J. Curr. Opin. Electrochem., 2021, 27: 100688.
[67]
Daryakenari A A, Mosallanejad B, Zare E, Daryakenari M A, Montazeri A, Apostoluk A, Delaunay J J. Int. J. Hydrog. Energy, 2021, 46(10): 7263.

doi: 10.1016/j.ijhydene.2020.11.261
[68]
Pei Y, Ge Y C, Chu H, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Appl. Catal. B: Environ., 2019, 244: 583.

doi: 10.1016/j.apcatb.2018.11.091
[69]
Chen J S, Li H, Yu Z X, Liu C, Yuan Z W, Wang C J, Zhao S L, Henkelman G, Li S Z, Wei L, Chen Y. Adv. Energy Mater., 2020, 10(43): 2002593.

doi: 10.1002/aenm.202002593
[70]
Dong J, Lu Y, Tian X X, Zhang F Q, Chen S, Yan W J, He H L, Wang Y S, Zhang Y B, Qin Y, Sui M L, Zhang X M, Fan X J. Small, 2020, 16(40): e2003824.
[71]
Ullah S, Hasan M, Ta H Q, Zhao L, Shi Q T, Fu L, Choi J, Yang R Z, Liu Z F, Rümmeli M H. Adv. Funct. Mater., 2019, 29(48): 1904457.

doi: 10.1002/adfm.201904457
[72]
Wang Q C, Lei Y P, Wang Y C, Liu Y, Song C Y, Zeng J, Song Y H, Duan X D, Wang D S, Li Y D. Energy Environ. Sci., 2020, 13(6): 1593.

doi: 10.1039/D0EE00450B
[73]
Sagu J S, Mehta D, Wijayantha K G U. Electrochem. Commun., 2018, 87: 1.

doi: 10.1016/j.elecom.2017.12.017
[74]
Stienen C, Bendt G. ChemSusChem, 2020, 13(22): 5954.

doi: 10.1002/cssc.202001896
[75]
Zheng X J, Cao X C, Zeng K, Yan J, Sun Z H, Rümmeli M H, Yang R Z. Small, 2021, 17(4): e2006183.
[76]
Bigiani L, de Barreca D, Gasparotto A, Andreu T, Verbeeck J, Sada C, Modin E, Lebedev O I, Morante J R, Maccato C. Appl. Catal. B: Environ., 2021, 284: 119684.

doi: 10.1016/j.apcatb.2020.119684
[77]
Richardson J J, Bjornmalm M, Caruso F. Science, 2015, 348(6233): aaa2491.

doi: 10.1126/science.aaa2491
[78]
Wang Z, Kang Y, Zhao S C, Zhu J. Adv. Mater., 2020, 32(3): e1806480.
[79]
Xiao F X, Pagliaro M, Xu Y J, Liu B. Chem. Soc. Rev., 2016, 45(11): 3088.

doi: 10.1039/C5CS00781J
[80]
Lipton J, Weng G M, Röhr J A, Wang H, Taylor A D. Matter, 2020, 2(5): 1148.

doi: 10.1016/j.matt.2020.03.012
[81]
Richardson J J, Cui J W, Björnmalm M, Braunger J A, Ejima H, Caruso F. Chem. Rev., 2016, 116(23): 14828.

pmid: 27960272
[82]
Zhang C, Zhao J W, Zhou L, Li Z H, Shao M F, Wei M. J. Mater. Chem. A, 2016, 4(29): 11516.

doi: 10.1039/C6TA02537D
[83]
Urgunde A B, Kamboj V, Kannattil H P, Gupta R. Energy Technol., 2019, 7(9): 1900603.

doi: 10.1002/ente.201900603
[84]
Li W J, Watzele S, El-Sayed H A, Liang Y C, Kieslich G, Bandarenka A S, Rodewald K, Rieger B, Fischer R A. J. Am. Chem. Soc., 2019, 141(14): 5926.

doi: 10.1021/jacs.9b00549
[85]
Li C, Gao Y T, Xia X F, Zhu J W, Wang X, Fu Y S. Small, 2020, 16(8): e1907043.
[86]
Lee H S, Pan J, Gund G S, Park H S. Adv. Mater. Interfaces, 2020, 7(9): 2000138.

doi: 10.1002/admi.202000138
[87]
Yang W, Chen S W. Chem. Eng. J., 2020, 393: 124726.

doi: 10.1016/j.cej.2020.124726
[88]
Abdelkader A M, Karim N, Vallés C, Afroj S, Novoselov K S, Yeates S G. 2D Mater., 2017, 4(3): 035016.
[89]
Li S, Cui Z M, Li D M, Yue G C, Liu J, Ding H G, Gao S W, Zhao Y C, Wang N, Zhao Y. Compos. Commun., 2019, 13: 1.

doi: 10.1016/j.coco.2019.01.008
[90]
Lei Y P, Wang Q C, Peng S J, Ramakrishna S, Zhang D, Zhou K C. Adv. Energy Mater., 2020, 10(45): 1902115.

doi: 10.1002/aenm.201902115
[91]
Liu Q, Wang Y B, Dai L M, Yao J N. Adv. Mater., 2016, 28(15): 3000.

doi: 10.1002/adma.201506112
[92]
Li Y, Chen S M, Xi D W, Bo Y N, Long R, Wang C M, Song L, Xiong Y J. Small, 2018, 14(1): 1702109.

doi: 10.1002/smll.201702109
[93]
Patil B, Satilmis B, Khalily M A, Uyar T. ChemSusChem, 2019, 12(7): 1469.

doi: 10.1002/cssc.201802500
[94]
Browne M P, Redondo E, Pumera M. Chem. Rev., 2020, 120(5): 2783.

doi: 10.1021/acs.chemrev.9b00783
[95]
Ambrosi A, Shi R R S, Webster R D. J. Mater. Chem. A, 2020, 8(42): 21902.

doi: 10.1039/D0TA07939A
[96]
Yuk H, Lu B Y, Lin S, Qu K, Xu J K, Luo J H, Zhao X H. Nat. Commun., 2020, 11(1): 1604.

doi: 10.1038/s41467-020-15316-7
[97]
Ligon S C, Liska R, Stampfl J, Gurr M, Mülhaupt R. Chem. Rev., 2017, 117(15): 10212.

doi: 10.1021/acs.chemrev.7b00074
[98]
Su X R, Li X W, Ong C Y A, Herng T S, Wang Y Q, Peng E, Ding J. Adv. Sci., 2019, 6(6): 1801670.

doi: 10.1002/advs.201801670
[99]
Peng M W, Shi D L, Sun Y H, Cheng J, Zhao B, Xie Y M, Zhang J C, Guo W, Jia Z, Liang Z Q, Jiang L. Adv. Mater., 2020, 32(23): e1908201.
[100]
Li Y, Zou L L, Li J, Guo K, Dong X W, Li X W, Xue X Z, Zhang H F, Yang H. Electrochim. Acta, 2014, 129: 14.

doi: 10.1016/j.electacta.2014.02.070
[101]
Cai X Y, Xia B Y, Franklin J, Li B S, Wang X, Wang Z, Chen L W, Lin J Y, Lai L F, Shen Z X. J. Mater. Chem. A, 2017, 5(6): 2488.

doi: 10.1039/C6TA09615H
[102]
Xie Y D, Kocaefe D, Chen C Y, Kocaefe Y. J. Nanomater., 2016, 2016: 2302595.
[103]
Christodouleas D C, Simeone F C, Tayi A, Targ S, Weaver J C, Jayaram K, Fernández-Abedul M T, Whitesides G M. Adv. Mater. Technol., 2017, 2(2): 1600229.

doi: 10.1002/admt.201600229
[104]
Chen J Y, Guo Y L, Huang L P, Xue Y Z, Geng D C, Liu H T, Wu B, Yu G, Hu W P, Liu Y Q, Zhu D B. Phil. Trans. R. Soc. A., 2014, 372(2013): 20130017.
[105]
Eda G, Fanchini G, Chhowalla M. Nat. Nanotechnol., 2008, 3(5): 270.

doi: 10.1038/nnano.2008.83
[106]
Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2): 101.

doi: 10.1038/nnano.2007.451
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[4] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[5] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[6] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[7] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[8] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[9] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[10] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[11] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[12] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
[13] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[14] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.
[15] Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao. Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2019, 31(10): 1406-1416.