中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 950-962 DOI: 10.7536/PC210442 Previous Articles   Next Articles

• Review •

Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis

Xiaowei Li1, Lei Zhang2(), Qixin Xing1, Jinyu Zan1, Jin Zhou1, Shuping Zhuo1   

  1. 1 School of Chemistry and Chemical Engineering, Shandong University of Technology,Zibo 255000, China
    2 School of Materials Science and Engineering, Anhui University of Science and Technology,Huainan 232001, China
  • Received: Revised: Online: Published:
  • Contact: Lei Zhang
  • Supported by:
    National Natural Science Foundation of China(51502162); National Natural Science Foundation of China(21975001); Key Project of Natural Science Research for Colleges and Universities of Anhui Province of China(KJ2019A0115); Young Teacher Supporting Fund of Shandong University of Technology
Richhtml ( 31 ) PDF ( 732 ) Cited
Export

EndNote

Ris

BibTeX

Environmental pollution and energy shortage caused by the rapid development of the economy have become two major problems in modern society. Accordingly, much research is currently focused on the exploitation of new alternative energy sources. Among various energy sources, solar energy is considered to be ideal and renewable energy. Under sunlight irradiation, photocatalysis, as a novel “green technology”, can directly convert organic pollutants into innoxious substances to solve both energy crisis and environmental pollution. However, the key to the success of this process is dependent on the rational design and fabrication of efficient photocatalysts. The NiFe2O4 possessing fast magnetism response and good photochemistry stability, is coupled with other semiconductor photocatalysts having a suited band gap in order to obtain greatly effective photocatalytic systems and achieve the magnetic separation, exhibiting wide application foreground. This paper mainly reviews the latest research progress on the synthesis and photocatalytic application of NiFe2O4-based composites, which may open a new avenue and idea for preparing highly active and magnetically separable composite photocatalysts. Finally, the future development of NiFe2O4-based photocatalytic materials is also prospected.

Contents

1 Introduction

2 NiFe2O4/carbon materials

2.1 NiFe2O4/graphene

2.2 NiFe2O4/g-C3N4

2.3 NiFe2O4/other carbon materials

3 NiFe2O4/Bismuth-based compounds

3.1 NiFe2O4/BiOX

3.2 NiFe2O4/Aurivillius Bismuth-based oxide

3.3 NiFe2O4/other Bismuth-based compounds

4 NiFe2O4/Silver-based compounds

4.1 NiFe2O4/Ag3PO4

4.2 NiFe2O4/AgX

5 NiFe2O4/TiO2

6 NiFe2O4/ZnO

7 Conclusion and outlook

Fig. 1 Mechanism of photocatalytic degradation of MB in the presence of NiFe2O4-RGO[24]
Fig. 2 The proposed direct Z-scheme photocatalytic mechanism for the g-C3N4/NiFe2O4 nanocomposite[35]
Fig. 3 The proposed all-solid-state Z-scheme photocatalytic mechanism for the g-C3N4/graphene/NiFe2O4 nanocomposite[39]
Fig. 4 (a,b) SEM images,(c) TEM image and (d) HRTEM image of NiFe2O4/C[40]
Table 1 The photocatalytic activity of pollutant degradation over different NiFe2O4/carbon material composites
Fig. 5 (a,b) TEM images of NiFe2O4/BiOBr[53]
Fig. 6 (a) TEM image of NiFe2O4/BiOBr; (b) HRTEM image of NiFe2O4/BiOBr[54]
Fig. 7 Band structure and possible photogenerated charges migration path of NiFe2O4/BiOI nanocomposite[56]
Fig. 8 Photocatalytic mechanism of MB degradation by Ag3PO4/Ag/NiFe2O4 composite[81]
Fig. 9 (a,b) SEM images of Ag3PO4/GO/NiFe2 O4[82]
Fig. 10 Photocatalytic mechanism of Ag3PO4/GO/NiFe2O4 composite[82]
Fig. 11 Photocatalytic mechanism of AFO/MOF/NFO[84]
[1]
Li X, Yu J G, Jaroniec M. Chem. Soc. Rev., 2016, 45(9): 2603.

doi: 10.1039/C5CS00838G
[2]
Qu Y Q, Duan X F. Chem. Soc. Rev., 2013, 42(7): 2568.

doi: 10.1039/C2CS35355E
[3]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.201601694
[4]
Dan M, Cai Q, Xiang J L, Li L J, Yu S, Zhou Y. Progress in Chemistry, 2020, 32(7): 917.
(淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 化学进展, 2020, 32(7): 917.).

doi: 10.7536/PC191209
[5]
Guo L J, Li R, Liu J X, Xi Q, Fan C M. Progress in Chemistry, 2020, 32(1): 46.
(郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 化学进展, 2020, 32(1): 46.).

doi: 10.7536/PC190528
[6]
Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C. Chem. Soc. Rev., 2014, 43(15): 5234.

doi: 10.1039/C4CS00126E
[7]
Dong S Y, Feng J L, Fan M H, Pi Y Q, Hu L M, Han X, Liu M L, Sun J Y, Sun J H. RSC Adv., 2015, 5(19): 14610.

doi: 10.1039/C4RA13734E
[8]
Anna K, Marcos F G, Gerardo C. Chem. Rev., 2012, 112(3): 1555.

doi: 10.1021/cr100454n
[9]
Zhu Y X, Zhang L, Zhang X, Li Z Y, Zha M, Li M, Hu G Z. Chem. Eng. J., 2021, 405: 127002.

doi: 10.1016/j.cej.2020.127002
[10]
Natarajan S, Bajaj H C, Tayade R J. J. Environ. Sci., 2018, 65: 201.

doi: 10.1016/j.jes.2017.03.011
[11]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0
[12]
Parashar A, Sikarwar S, Jain R. J. Dispers. Sci. Technol., 2020, 41(6): 884.

doi: 10.1080/01932691.2019.1614030
[13]
Hirthna, Sendhilnathan S, Rajan P I, Adinaveen T. J. Supercond. Nov. Magn., 2018, 31(10): 3315.

doi: 10.1007/s10948-018-4601-3
[14]
Talebi R. J. Mater. Sci.: Mater. Electron., 2017, 28(5): 4058.
[15]
Mohammadzadeh Kakhki R, Khorrampoor A, Rabbani M, Ahsani F. J. Mater. Sci.: Mater. Electron., 2017, 28(5): 4095.
[16]
Lassoued A, Lassoued M S, Dkhil B, Ammar S, Gadri A. J. Mater. Sci.: Mater. Electron., 2018, 29(9): 7057.
[17]
Shetty K, Renuka L, Nagaswarupa H P, Nagabhushana H, Anantharaju K S, Rangappa D, Prashantha S C, Ashwini K. Mater. Today: Proc., 2017, 4(11): 11806.
[18]
Domínguez-Arvizu J L, JimÉnez-Miramontes J A, Salinas-GutiÉrrez J M, MelÉndez-Zaragoza M J, LÓpez-Ortiz A, Collins-Martínez V. Int. J. Hydrog. Energy, 2019, 44(24): 12455.

doi: 10.1016/j.ijhydene.2018.08.148
[19]
Shan A X, Wu X, Lu J, Chen C, Wang R M. CrystEngComm, 2015, 17(7): 1603.

doi: 10.1039/C4CE02139H
[20]
Peng T Y, Zhang X H, Lv H, Zan L. Catal. Commun., 2012, 28: 116.

doi: 10.1016/j.catcom.2012.08.031
[21]
Su B T, He F Z, Dong N, Xin J L, Dong Y Y, Jin Z J, Chin. J. Inorg. Chem., 2016, 32(1): 69.
(苏碧桃, 何方振, 董娜, 莘俊莲, 董永永, 靳正娟. 无机化学学报, 2016, 32(1): 69).
[22]
Zhu H Y, Jiang R, Fu Y Q, Li R R, Yao J, Jiang S T. Appl. Surf. Sci., 2016, 369: 1.

doi: 10.1016/j.apsusc.2016.02.025
[23]
Hong D C, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S. J. Am. Chem. Soc., 2012, 134(48): 19572.

doi: 10.1021/ja309771h
[24]
Liang J X, Wei Y, Zhang J G, Yao Y, He G Y, Tang B, Chen H Q. Ind. Eng. Chem. Res., 2018, 57(12): 4311.

doi: 10.1021/acs.iecr.8b00218
[25]
Bayantong A R B, Shih Y J, Dong C D, Garcia-Segura S, Luna M D G. Environ. Sci. Pollut. Res., 2021, 28(5): 5472.

doi: 10.1007/s11356-020-10545-1
[26]
Xu J H, Tan L H, Kou B, Hang Z S, Jiang W, Jia Y Q. Progress in Chemistry, 2016, 28(1): 131.
(徐建华, 谈玲华, 寇波, 杭祖圣, 姜炜, 郏永强. 化学进展, 2016, 28(1): 131.).

doi: 10.7536/PC150734
[27]
Mousavi M, Habibi-Yangjeh A, Pouran S R. J. Mater. Sci.: Mater. Electron., 2018, 29(3): 1719.

doi: 10.1007/BF00351288
[28]
Li Y, Li X, Zhang H W, Xiang Q J. Nanoscale Horiz., 2020, 5(5): 765.

doi: 10.1039/D0NH00046A
[29]
Yin S M, Han J Y, Zhou T H, Xu R. Catal. Sci. Technol., 2015, 5(12): 5048.

doi: 10.1039/C5CY00938C
[30]
Reddy K R, Reddy C V, Nadagouda M N, Shetti N P, Jaesool S, Aminabhavi T M. J. Environ. Manag., 2019, 238: 25.

doi: 10.1016/j.jenvman.2019.02.075
[31]
Sudhaik A, Raizada P, Shandilya P, Jeong D Y, Lim J H, Singh P. J. Ind. Eng. Chem., 2018, 67: 28.

doi: 10.1016/j.jiec.2018.07.007
[32]
Darkwah W K, Ao Y H. Nanoscale Res. Lett., 2018, 13(1): 1.

doi: 10.1186/s11671-017-2411-3
[33]
Liu Y, Song Y C, You Y H, Fu X J, Wen J, Zheng X G. J. Saudi Chem. Soc., 2018, 22(4): 439.

doi: 10.1016/j.jscs.2017.08.002
[34]
Palanivel B, Ayappan C, Jayaraman V, Chidambaram S, Maheswaran R, Mani A. Mater. Sci. Semicond. Process., 2019, 100: 87.

doi: 10.1016/j.mssp.2019.04.040
[35]
Gebreslassie G, Bharali P, Chandra U, Sergawie A, Baruah P K, Das M R, Alemayehu E. Appl. Organomet. Chem., 2019, 33(8): e5002.
[36]
Chen X M, He M L, He G Y, Zhou Y, Ren J, Meng C. Appl. Nanosci., 2020, 10(12): 4465.

doi: 10.1007/s13204-020-01362-6
[37]
Kamal S, Balu S, Palanisamy S, Uma K, Velusamy V, Yang T C K. Results Phys., 2019, 12: 1238.

doi: 10.1016/j.rinp.2019.01.004
[38]
Mishra P, Behera A, Kandi D, Parida K. Nanoscale Adv., 2019, 1(5): 1864.

doi: 10.1039/C9NA00018F
[39]
Gebreslassie G, Bharali P, Chandra U, Sergawie A, Boruah P K, Das M R, Alemayehu E. J. Photochem. Photobiol. A: Chem., 2019, 382: 111960.

doi: 10.1016/j.jphotochem.2019.111960
[40]
Chen Z, Gao Y T, Mu D Z, Shi H F, Lou D W, Liu S Y. Dalton Trans., 2019, 48(9): 3038.

doi: 10.1039/c9dt00396g pmid: 30758024
[41]
Nawaz M, Shahzad A, Tahir K, Kim J, Moztahida M, Jang J, Alam M B, Lee S H, Jung H Y, Lee D S. Chem. Eng. J., 2020, 382: 123053.

doi: 10.1016/j.cej.2019.123053
[42]
He R A, Cao S W, Zhou P, Yu J G. Chin. J. Catal., 2014, 35(7): 989.

doi: 10.1016/S1872-2067(14)60075-9
[43]
Cao X J, Zhang L, Zhu Y X, Zhang X, Lv N, Hou C M. Prog. Chem., 2020, 32(Z1): 262.
(秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 化学进展, 2020, 32(Z1): 262.)
[44]
Song J, Zhang L, Yang J, Huang X H, Hu J S. Ceram. Int., 2017, 43(12): 9214.

doi: 10.1016/j.ceramint.2017.04.075
[45]
Song J, Zhang L, Yang J, Huang X H, Hu J S. Mater. Des., 2017, 123: 128.

doi: 10.1016/j.matdes.2017.03.046
[46]
Song J, Zhang L, Yang J, Hu J S, Huang X H. J. Alloys Compd., 2018, 735: 660.

doi: 10.1016/j.jallcom.2017.11.190
[47]
Meng X C, Zhang Z S. J. Mol. Catal. A: Chem., 2016, 423: 533.

doi: 10.1016/j.molcata.2016.07.030
[48]
Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P. Adv. Colloid Interface Sci., 2018, 254: 76.

doi: 10.1016/j.cis.2018.03.004
[49]
Cheng H F, Huang B B, Dai Y. Nanoscale, 2014, 6(4): 2009.

doi: 10.1039/c3nr05529a
[50]
Xu H F, Xu Z C, Zhou J, Yan G, Li X W, Zhuo S P. Ceram. Int., 2019, 45(12): 15458.

doi: 10.1016/j.ceramint.2019.05.048
[51]
Lv D, Zhang D F, Liu X Y, Liu Z R, Hu L J, Pu X P, Ma H Y, Li D C, Dou J M. Sep. Purif. Technol., 2016, 158: 302.

doi: 10.1016/j.seppur.2015.12.032
[52]
Ji H Y, Jing X C, Xu Y G, Yan J, Li Y P, Huang L Y, Zhang Q, Xu H, Li H M. Fresenius Environ Bull, 2016, 25(8): 3083.
[53]
Li X W, Wang L, Zhang L, Zhuo S P. Appl. Surf. Sci., 2017, 419: 586.

doi: 10.1016/j.apsusc.2017.05.013
[54]
Li X W, Xu H F, Wang L, Zhang L, Cao X F, Guo Y C. J. Taiwan Inst. Chem. Eng., 2018, 85: 257.

doi: 10.1016/j.jtice.2018.01.043
[55]
He Z M, Xia Y M, Su J B, Tang B. Opt. Mater., 2019, 88: 195.

doi: 10.1016/j.optmat.2018.11.025
[56]
Xia Y M, He Z M, Su J B, Tang B, Hu K J, Lu Y L, Sun S P, Li X P. RSC Adv., 2018, 8(8): 4284.

doi: 10.1039/C7RA12546A
[57]
Jiang Z, Chen L D, Shi N Q, Ji L. Mater. Res. Express, 2019, 6(6): 066207.

doi: 10.1088/2053-1591/ab0c39
[58]
Zhang Z, Zou C T, Yang S J. Progress in Chemistry, 2020, 32(9): 1427.

doi: 10.7536/PC200526
(张志, 邹晨涛, 杨水金. 化学进展, 2020, 32(9): 1427.).

doi: 10.7536/PC200526
[59]
Dong S Y, Ding X H, Guo T, Yue X P, Han X, Sun J H. Chem. Eng. J., 2017, 316: 778.

doi: 10.1016/j.cej.2017.02.017
[60]
Zhao Y Y, Liang X H, Wang Y B, Shi H X, Liu E Z, Fan J, Hu X Y. J. Colloid Interface Sci., 2018, 523: 7.

doi: 10.1016/j.jcis.2018.03.078
[61]
Zhao Y Y, Wang Y B, Liu E Z, Fan J, Hu X Y. Appl. Surf. Sci., 2018, 436: 854.

doi: 10.1016/j.apsusc.2017.12.064
[62]
Xiao L B, Lin R B, Wang J, Cui C, Wang J Y, Li Z Q. J. Colloid Interface Sci., 2018, 523: 151.

doi: 10.1016/j.jcis.2018.03.064
[63]
Xue W J, Peng Z W, Huang D L, Zeng G M, Wen X J, Deng R, Yang Y, Yan X L. Ceram. Int., 2019, 45(5): 6340.

doi: 10.1016/j.ceramint.2018.12.119
[64]
Zhang G Q, Zhou S X, Liu J, Dong B S, Zeng M. Mater. Res. Innov., 2015, 19(3): S363.
[65]
Zarringhadam P, Farhadi S. J. Alloys Compd., 2017, 729: 1046.

doi: 10.1016/j.jallcom.2017.09.247
[66]
Malathi A, Madhavan J, Ashokkumar M, Arunachalam P. Appl. Catal. A: Gen., 2018, 555: 47.

doi: 10.1016/j.apcata.2018.02.010
[67]
Zhao Y, Li R G, Mu L C, Li C. Cryst. Growth Des., 2017, 17(6): 2923.

doi: 10.1021/acs.cgd.7b00291
[68]
Lv D, Zhang D F, Pu X P, Kong D Z, Lu Z H, Shao X, Ma H Y, Dou J M. Sep. Purif. Technol., 2017, 174: 97.

doi: 10.1016/j.seppur.2016.10.010
[69]
Wang Q Z, He J J, Shi Y B, Zhang S L, Niu T J, de She H, Bi Y P, Lei Z Q. Appl. Catal. B: Environ., 2017, 214: 158.

doi: 10.1016/j.apcatb.2017.05.044
[70]
Sakhare P A, Pawar S S, Bhat T S, Yadav S D, Patil G R, Patil P S, Sheikh A D. Mater. Res. Bull., 2020, 129: 110908.

doi: 10.1016/j.materresbull.2020.110908
[71]
Ji L, Chen L D, Jiang Z. Chem. Pap., 2018, 72(12): 3195.

doi: 10.1007/s11696-018-0552-1
[72]
Zhang D F, Pu X P, Du K P, Yu Y M, Shim J J, Cai P Q, Kim S I, Seo H J. Sep. Purif. Technol., 2014, 137: 82.

doi: 10.1016/j.seppur.2014.09.025
[73]
Boukhemikhem Z, Brahimi R, Rekhila G, Fortas G, Boudjellal L, Trari M. Renew. Energy, 2020, 145: 2615.

doi: 10.1016/j.renene.2019.08.021
[74]
Ge M, Li Z L. Chin. J. Catal., 2017, 38(11): 1794.

doi: 10.1016/S1872-2067(17)62905-X
[75]
Chen X J, Dai Y Z, Wang X Y. J. Alloys Compd., 2015, 649: 910.

doi: 10.1016/j.jallcom.2015.07.174
[76]
Yang Z M, Tian Y, Huang G F, Huang W Q, Liu Y Y, Jiao C, Wan Z, Yan X G, Pan A L. Mater. Lett., 2014, 116: 209.

doi: 10.1016/j.matlet.2013.11.041
[77]
Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. Nat. Mater., 2010, 9(7): 559.

doi: 10.1038/nmat2780
[78]
Patil S S, Tamboli M S, Deonikar V G, Umarji G G, Ambekar J D, Kulkarni M V, Kolekar S S, Kale B B, Patil D R. Dalton Trans., 2015, 44(47): 20426.

doi: 10.1039/C5DT03173G
[79]
Zhao G Y, Liu L J, Li J R, Liu Q. J. Alloys Compd., 2016, 664: 169.

doi: 10.1016/j.jallcom.2016.01.004
[80]
Huang S Q, Xu Y G, Zhou T, Xie M, Ma Y, Liu Q Q, Jing L Q, Xu H, Li H M. Appl. Catal. B: Environ., 2018, 225: 40.

doi: 10.1016/j.apcatb.2017.11.045
[81]
Dong T, Wang P, Yang P. Int. J. Hydrog. Energy, 2018, 43(45): 20607.

doi: 10.1016/j.ijhydene.2018.09.079
[82]
Zhou T H, Zhang G Z, Yang H, Zhang H W, Suo R N, Xie Y S, Liu G. RSC Adv., 2018, 8(49): 28179.

doi: 10.1039/C8RA02962H
[83]
Chen Y J, Zhu P F, Duan M, Li J, Ren Z H, Wang P P. Appl. Surf. Sci., 2019, 486: 198.

doi: 10.1016/j.apsusc.2019.04.232
[84]
Zhou T H, Zhang G Z, Zhang H W, Yang H, Ma P J, Li X T, Qiu X L, Liu G. Catal. Sci. Technol., 2018, 8(9): 2402.

doi: 10.1039/C8CY00182K
[85]
Ge M, Hu Z. Ceram. Int., 2016, 42(5): 6510.

doi: 10.1016/j.ceramint.2016.01.035
[86]
Ge M, Liu W, Hu X R, Li Z L. J. Phys. Chem. Solids, 2017, 109: 1.

doi: 10.1016/j.jpcs.2017.05.008
[87]
Gao X, Liu X X, Zhu Z M, Xie Z, She Z B. J. Inorg. Mater., 2016, 31(9): 935.

doi: 10.15541/jim20160048
(高鑫, 刘祥萱, 朱左明, 谢拯, 佘兆斌, 无机材料学报, 2016, 31(9): 935.).

doi: 10.15541/jim20160048
[88]
Liu Y W, Gao P Z, Cherkasov N, Rebrov E V. RSC Adv., 2016, 6(103): 100997.

doi: 10.1039/C6RA22659K
[89]
Baig M M, Pervaiz E, Afzal M J. J. Chem. Soc. Pak., 2020, 42(4): 531.
[90]
Rao R, Zhang X, Sun X, Wang M, Ma Y Q. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(2): 320.

doi: 10.1007/s11595-020-2259-8
(饶瑞, 张贤, 孙潇, 王敏, 马永青. 武汉理工大学学报-材料科学版, 2020, 35(2): 320.).
[91]
Šutka A, Käämbre T, Pärna R, Döbelin N, Vanags M, Smits K, Kisand V. RSC Adv., 2016, 6(23): 18834.

doi: 10.1039/C6RA00728G
[92]
Chen Y, Wu Q, Jin Q T, Liu K R. Adv. Powder Technol., 2021, 32(3): 974.

doi: 10.1016/j.apt.2021.02.028
[93]
Wang Y H, Yan H X, Zhang Q Y. J. Chin. Chem. Soc., 2018, 65(7): 868.

doi: 10.1002/jccs.201700458
[94]
Saravani A Z, Nadimi M, Aroon M A, Pirbazari A E. J. Alloys Compd., 2019, 803: 291.

doi: 10.1016/j.jallcom.2019.06.245
[95]
Rahmayeni R, Zulhadjri Z, Jamarun N, Emriadi E, Arief S. Orient. J. Chem, 2016, 32(3): 1411.

doi: 10.13005/ojc/320315
[96]
Adeleke J T, Theivasanthi T, Thiruppathi M, Swaminathan M, Akomolafe T, Alabi A B. Appl. Surf. Sci., 2018, 455: 195.

doi: 10.1016/j.apsusc.2018.05.184
[97]
Soto-Arreola A, Huerta-Flores A M, Mora-Hernández J M, Torres-Martínez L M. J. Photochem. Photobiol. A: Chem., 2018, 364: 433.

doi: 10.1016/j.jphotochem.2018.06.033
[98]
Moradi S, Taghavi Fardood S, Ramazani A. J. Mater. Sci.: Mater. Electron., 2018, 29(16): 14151.
[99]
Yeganeh F E, Yousefi M, Hekmati M, Bikhof M. C. R. Chim., 2020, 23(6/7): 385.
[1] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[13] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[14] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[15] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.