中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 474-486 DOI: 10.7536/PC201132 Previous Articles   

• Review •

Diels-Alder Reaction Catalyst

Yaqi Wang, Qiang Wu(), Junling Chen, Feng Liang()   

  1. School of Chemistry and Chemical Engineering, Wuhan University of Science & Technology,Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Contact: Qiang Wu, Feng Liang
  • Supported by:
    National Natural Science Foundation of China(21807083)
Richhtml ( 90 ) PDF ( 878 ) Cited
Export

EndNote

Ris

BibTeX

The Diels-Alder reaction (D-A) is considered as one of the cornerstone reactions in modern organic chemistry due to its powerful ability to build the structured organic compounds. Since it was discovered in 1928, the D-A reaction has been further developed, mainly because it can produce six-membered rings along with the generation of up to four stereogenic centers in one step, which greatly increases the molecule complexity. This particular transformation has been widely used in the synthesis of complex natural products as well as pharmaceutical chemistry or materials science and other fields. In the last decade, many natural biological enzymes (such as SpnF, MaDA, etc.) have been found to be used to catalyze D-A reactions in vitro. On the other hand, many other non-enzymatic catalysts (such as Lewis acid, transition metal and ligand complexes, etc.) have also been applied in the catalytic process of D-A reaction. This article mainly classifies the reaction catalysts, and briefly summarizes D-A reactions involving natural enzymes, acids, transition metals, and electrocatalysis in recent years. At the same time, the deficiencies as well as perspective of the catalyst have been highlighted.

Contents

1 Introduction

2 Natural enzyme catalysis

2.1 Enzyme catalyzes intramolecular D-A reaction

2.2 Enzyme catalyzes intermolecular D-A reaction

3 Non-enzymatic catalysis

3.1 Acid-catalyzed D-A reaction

3.2 Organic amines-catalyzed D-A reaction

3.3 D-A reaction based on transition metal catalysis

3.4 Photocatalytic D-A reaction

3.5 Electrocatalytic D-A reaction

4 Conclusion and outlook

Scheme 1 The synthesis of bis-adduct via D-A reaction[1,2]
Scheme 2 LovB-catalyzed synthesis of Lovastatin[33,34]
Scheme 3 Biosynthesis pathway of Spinosyn A[38]
Scheme 4 Enzyme catalytic link and functional comparison of homologues[39]
Scheme 5 Biosynthesis of aspidosperma and iboga alkaloids[40]
Scheme 6 Biosynthesis of varicidin A[41]
Scheme 7 LepI-catalyzed hetero D-A reaction and retro-Claisen rearrangement[42]
Scheme 8 EupfF-catalyzed hetero D-A reaction and oxidation reaction[46]
Scheme 9 Synthesis pathways of natural product derivatives and substrate scope of MaDA[49]
Scheme 10 Synthesis and catalytic cyclization of boron ionic liquid[55]
Fig. 1 The relationship between catalyst acid strength and the conversion rate[55]. Copyright 2017, Royal Society of Chemistry.
Scheme 11 D-A reaction of 2-bromodiene and N-phthalimide[56]
Table 1 Performance comparison of titanium cation catalyst[56]
Scheme 12 D-A reaction of 5-bromoindole and cinnamyloxybenzaldehyde[57]
Table 2 Comparison of the performance of Brønsted acids[57]
Scheme 13 D-A reaction of cyclopentadiene with unsaturated aldehyde[58]
Scheme 14 D-A reaction of nitroolefins with unsaturated aldehyde[60]
Scheme 15 D-A reaction of pyrones with unsaturated aldehyde[61]
Scheme 16 Intramolecular D-A reaction of enol ethers[65]
Table 3 Performance comparison of different ligand complexes[65]
Scheme 17 D-A reaction of indoles and alkyne-tethered cyclohexadienones[66]
Fig. 2 MOF material based on corrole monomer[71]. Copyright 2019, American Chemical Society.
Scheme 18 D-A reaction catalyzed by MOF material[71]
Scheme 19 Light-induced D-A reaction based on transition metals[72]
Scheme 20 Dearomatization reaction of pyridine[73]
Scheme 21 Light-induced D-A reaction of TAD and naphthalene ring[74]. Copyright 2019, American Chemical Society.
Scheme 22 Light-induced D-A reaction of o-MBA and alkynes[75]
Scheme 23 Electrocatalytic D-A reaction of furan and olefin[76]
Scheme 24 D-A reaction to generate quinone compounds in SDS micellar[78]
[1]
Albrecht W. Justus Liebigs Ann. Chem., 1906, 348(1/2): 31.

doi: 10.1002/(ISSN)1099-0690
[2]
Wieland H. Ber. Dtsch. Chem. Ges., 1906, 39(2): 1492.

doi: 10.1002/cber.v39:2
[3]
Diels O, Alder K. Justus Liebigs Ann. Chem., 1928, 460(1): 98.

doi: 10.1002/(ISSN)1099-0690
[4]
Nagaoka H, Shimano M, Yamada Y. Tetrahedron Lett., 1989, 30(8): 971.

doi: 10.1016/S0040-4039(00)95293-6
[5]
Toyota M, Odashima T, Wada T, Ihara M. J. Am. Chem. Soc., 2000, 122(37): 9036.

doi: 10.1021/ja0017413
[6]
Mohr J T, Krout M R, Stoltz B M. Nature, 2008, 455(7211): 323.

doi: 10.1038/nature07370
[7]
Maier M E. Org. Biomol. Chem., 2015, 13(19): 5302.

doi: 10.1039/C5OB00169B
[8]
Stork G, Tamelen E E V, Friedman L J, Burgstahler A W. J. Am. Chem. Soc., 1951, 73(9): 4501.

doi: 10.1021/ja01153a552
[9]
Stork G, van Tamelen E E, Friedman L J, Burgstahler A W. J. Am. Chem. Soc., 1953, 75(2): 384.

doi: 10.1021/ja01098a039
[10]
Nicolaou K C, Snyder S A, Montagnon T, Vassilikogiannakis G E. Angew. Chem., 2002, 114(10): 1742.

doi: 10.1002/(ISSN)1521-3757
[11]
Nicolaou K C, Snyder S A, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed., 2002, 41(10): 1668.

doi: 10.1002/(ISSN)1521-3773
[12]
Breuning M, Corey E J. Angew. Chem., 2002, 114: 1724.

doi: 10.1002/(ISSN)1521-3757
[13]
Breuning M, Corey E J. Angew. Chem. Int. Ed., 2002, 41: 1650.

doi: 10.1002/(ISSN)1521-3773
[14]
Hudson G A, Zhang Z G, Tietz J I, Mitchell D A, van der Donk W A. J. Am. Chem. Soc., 2015, 137(51): 16012.

doi: 10.1021/jacs.5b10194
[15]
Schnermann M J, Shenvi R A. Nat. Prod. Rep., 2015, 32(4): 543.

doi: 10.1039/c4np00109e pmid: 25514696
[16]
Martin S F. J. Org. Chem., 2017, 82: 10757.

doi: 10.1021/acs.joc.7b01368
[17]
Stocking E M, Williams R M. Angew. Chem. Int. Ed., 2003, 42(27): 3078.

doi: 10.1002/anie.200200534
[18]
Qi C, Cong H, Cahill K J, Müller P, Johnson R P, Porco J A. Angew. Chem. Int. Ed., 2013, 52(32): 8345.

doi: 10.1002/anie.v52.32
[19]
Ramaraju P, Pawar A P, Iype E, Mir N A, Choudhary S, Sharma D K, Kant R, Kumar I. J. Org. Chem., 2019, 84(19): 12408.

doi: 10.1021/acs.joc.9b01865 pmid: 31486644
[20]
Zhang Z, Jamieson C S, Zhao Y L, Li D H, Ohashi M, Houk K N, Tang Y. J. Am. Chem. Soc., 2019, 141(14): 5659.

doi: 10.1021/jacs.9b02204
[21]
Eschenbrenner-Lux V, Kumar K, Waldmann H. Angew. Chem. Int. Ed., 2014, 53(42): 11146.

doi: 10.1002/anie.201404094
[22]
Caputi L, Franke J, Farrow S C, Chung K, Payne R M E, Nguyen T D, Dang T T T, Soares Teto Carqueijeiro I, Koudounas K, DugÉ de Bernonville T, Ameyaw B, Jones D M, Vieira I J C, Courdavault V, O’Connor S E. Science, 2018, 360(6394): 1235.

doi: 10.1126/science.aat4100
[23]
Farrow S C, Kamileen M O, Caputi L, Bussey K, Mundy J E A, McAtee R C, Stephenson C R J, O’Connor S E. J. Am. Chem. Soc., 2019, 141(33): 12979.

doi: 10.1021/jacs.9b05999 pmid: 31364847
[24]
Hong L C, Ahles S, Strauss M A, Logemann C, Wegner H A. Org. Chem. Front., 2017, 4(5): 871.

doi: 10.1039/C7QO00172J
[25]
Jia Z J, Zhou Q, Zhou Q Q, Chen P Q, Chen Y C. Angew. Chem. Int. Ed., 2011, 50(37): 8638.

doi: 10.1002/anie.201102013
[26]
Vermeeren P, Hamlin T A, Fernández I, Bickelhaupt F M. Angew. Chem. Int. Ed., 2020, 59(15): 6201.

doi: 10.1002/anie.v59.15
[27]
Takale B S, Bao M, Yamamoto Y. Org. Biomol. Chem., 2014, 12(13): 2005.

doi: 10.1039/c3ob42207k
[28]
Arto T, Fañanás F J, Rodríguez F. Angew. Chem. Int. Ed., 2016, 55(25): 7218.

doi: 10.1002/anie.201602948
[29]
Zhu C J, Kuniyil R, Ackermann L. Angew. Chem. Int. Ed., 2019, 58(16): 5338.

doi: 10.1002/anie.v58.16
[30]
Xu Y S, Li B, Zhang X Y, Fan X S. Adv. Synth. Catal., 2018, 360(14): 2613.

doi: 10.1002/adsc.v360.14
[31]
Li M L, Kwong F Y. Angew. Chem. Int. Ed., 2018, 57(22): 6512.

doi: 10.1002/anie.v57.22
[32]
Lu H, Fan Z L, Xiong C D, Zhang A. Org.. 2018, 20(10): 3065.
[33]
Auclair K, Sutherland A, Kennedy J, Witter D J., Van J P, Hutchinson C R, Vederas J C. J. Am. Chem. Soc., 2000, 122: 11519.

doi: 10.1021/ja003216+
[34]
Ma S M, Li J W H, Choi J W, Zhou H, Lee K K M, Moorthie V A, Xie X, Kealey J T, da Silva N A, Vederas J C, Tang Y. Science, 2009, 326(5952): 589.

doi: 10.1126/science.1175602
[35]
Watanabe K, Mie T, Ichihara A, Oikawa H, Honma M. J. Biol. Chem., 2000, 275(49): 38393.

doi: 10.1074/jbc.M003119200 pmid: 10984474
[36]
Kim R R, Illarionov B, Joshi M, Cushman M, Lee C Y, Eisenreich W, Fischer M, Bacher A. J. Am. Chem. Soc., 2010, 132(9): 2983.

doi: 10.1021/ja908395r
[37]
Jeon B S, Wang S A, Ruszczycky M W, Liu H W. Chem. Rev., 2017, 117(8): 5367.

doi: 10.1021/acs.chemrev.6b00578
[38]
Kim H J, Ruszczycky M W, Choi S H, Liu Y N, Liu H W. Nature, 2011, 473(7345): 109.

doi: 10.1038/nature09981
[39]
Tian Z H, Sun P, Yan Y, Wu Z H, Zheng Q F, Zhou S X, Zhang H, Yu F T, Jia X Y, Chen D D, Mándi A, Kurtán T, Liu W. Nat. Chem. Biol., 2015, 11(4): 259.

doi: 10.1038/nchembio.1769
[40]
Caputi L, Franke J, Bussey K, Farrow S C, Vieira I J C, Stevenson C E M, Lawson D M, O’Connor S E. Nat. Chem. Biol., 2020, 16(4): 383.

doi: 10.1038/s41589-019-0460-x
[41]
Tan D, Jamieson C S, Ohashi M, Tang M C, Houk K N, Tang Y. J. Am. Chem. Soc., 2019, 141(2): 769.

doi: 10.1021/jacs.8b12010
[42]
Ohashi M, Liu F, Hai Y, Chen M B, Tang M C, Yang Z Y, Sato M, Watanabe K, Houk K N, Tang Y. Nature, 2017, 549(7673): 502.

doi: 10.1038/nature23882
[43]
Ose T, Watanabe K, Mie T, Honma M, Watanabe H, Yao M, Oikawa H, Tanaka I. Nature, 2003, 421: 611.

doi: 10.1038/nature01414
[44]
Eberhardt S, Zingler N, Kemter K, Richter G, Cushman M, Bacher A. Eur. J. Biochem., 2001, 268(15): 4315.

pmid: 11488927
[45]
Kim H J, Ruszczycky M W, Choi S H, Liu Y N, Liu H W. Nature, 2011, 473(7345): 109.

doi: 10.1038/nature09981
[46]
Chen Q B, Gao J, Jamieson C, Liu J W, Ohashi M, Bai J, Yan D J, Liu B Y, Che Y S, Wang Y N, Houk K N, Hu Y C. J. Am. Chem. Soc., 2019, 141(36): 14052.

doi: 10.1021/jacs.9b06592
[47]
Guimarães C R W, Udier-Blagovi M, Jorgensen W L. J. Am. Chem. Soc., 2005, 127(10): 3577.

doi: 10.1021/ja043905b
[48]
Serafimov J M, Gillingham D, Kuster S, Hilvert D. J. Am. Chem. Soc., 2008, 130(25): 7798.

doi: 10.1021/ja8017994 pmid: 18512926
[49]
Gao L, Su C, Du X X, Wang R S, Chen S M, Zhou Y, Liu C W, Liu X J, Tian R Z, Zhang L Y, Xie K B, Chen S, Guo Q Q, Guo L P, Hano Y, Shimazaki M, Minami A, Oikawa H, Huang N, Houk K N, Huang L Q, Dai J G, Lei X G. Nat. Chem., 2020, 12(7): 620.

doi: 10.1038/s41557-020-0467-7 pmid: 32451436
[50]
Vermeeren P, Hamlin T A, Fernández I, Bickelhaupt F M. Angew. Chem. Int. Ed., 2020, 59(15): 6201.

doi: 10.1002/anie.v59.15
[51]
Corey E J, Shibata T, Lee T W. J. Am. Chem. Soc., 2002, 124(15): 3808.

pmid: 11942799
[52]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4(1): 24.

doi: 10.1039/b108431c
[53]
Erfurt K, Wandzik I, Walczak K, Matuszek K, Chrobok A. Green Chem., 2014, 16(7): 3508.

doi: 10.1039/C4GC00380B
[54]
Chiappe C, Malvaldi M, Pomelli C S. Green Chem., 2010, 12(8): 1330.

doi: 10.1039/c0gc00074d
[55]
Matuszek K, Coffie S, Chrobok A, Swadźba-Kwaśny M. Catal. Sci. Technol., 2017, 7(5): 1045.

doi: 10.1039/C7CY00106A
[56]
Choi H, Shirley H J, Aitken H R M, Schulte T, Söhnel T, Hume P A, Brimble M A, Furkert D P. Org. Lett., 2020, 22(3): 1022.

doi: 10.1021/acs.orglett.9b04567
[57]
Min C, Lin C T, Seidel D. Angew. Chem. Int. Ed., 2015, 54(22): 6608.

doi: 10.1002/anie.201501536
[58]
Kim H, Gerosa G, Aronow J, Kasaplar P, Jie O Y, Lingnau J B, Guerry P, Farès C, List B. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[59]
Li J L, Liu T Y, Chen Y C. Acc. Chem. Res., 2012, 45(9): 1491.

doi: 10.1021/ar3000822
[60]
Liu Y K, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc., 2011, 133(38): 15212.

doi: 10.1021/ja206517s
[61]
Charles J F C, Fuentes L, Scott A S. Chem. Sci., 2020, 11: 2175.

doi: 10.1039/C9SC05738B
[62]
Nakamura I, Yamamoto Y. Chem. Rev., 2004, 104(5): 2127.

pmid: 15137788
[63]
Asao N, Nogami T, Takahashi K, Yamamoto Y. J. Am. Chem. Soc., 2002, 124(5): 764.

doi: 10.1021/ja017366b
[64]
Xie J H, Zhu S F, Zhou Q L. Chem. Rev., 2011, 111(3): 1713.

doi: 10.1021/cr100218m
[65]
McGee P, BÉtournay G, BarabÉ F, Barriault L. Angew. Chem. Int. Ed., 2017, 56(22): 6280.

doi: 10.1002/anie.201611606
[66]
Liu B X, Li J, Hu P J, Zhou X K, Bai D C, Li X W. ACS Catal., 2018, 8(10): 9463.

doi: 10.1021/acscatal.8b02560
[67]
Bai D C, Xu T, Ma C R, Zheng X, Liu B X, Xie F, Li X W. ACS Catal., 2018, 8(5): 4194.

doi: 10.1021/acscatal.8b00746
[68]
Zhou X K, Pan Y P, Li X W. Angew. Chem. Int. Ed., 2017, 56(28): 8163.

doi: 10.1002/anie.v56.28
[69]
Xie F, Yu S J, Qi Z S, Li X W. Angew. Chem. Int. Ed., 2016, 55(49): 15351.

doi: 10.1002/anie.v55.49
[70]
Zhou X K, Luo Y X, Kong L H, Xu Y W, Zheng G F, Lan Y, Li X W. ACS Catal., 2017, 7(10): 7296.

doi: 10.1021/acscatal.7b02248
[71]
Zhao Y M, Qi S B, Niu Z, Peng Y L, Shan C, Verma G, Wojtas L, Zhang Z J, Zhang B, Feng Y Q, Chen Y S, Ma S Q. J. Am. Chem. Soc., 2019, 141(36): 14443.

doi: 10.1021/jacs.9b07700
[72]
Higgins R F, Fatur S M, Damrauer N H, Ferreira E M, RappÉ A K, Shores M P. ACS Catal., 2018, 8(10): 9216.

doi: 10.1021/acscatal.8b03013
[73]
Ma J J, Strieth-Kalthoff F, Dalton T, Freitag M, Schwarz J L, Bergander K, Daniliuc C, Glorius F. Chem, 2019, 5(11): 2854.

doi: 10.1016/j.chempr.2019.10.016
[74]
Houck H A, Blasco E, du Prez F E, Barner-Kowollik C. J. Am. Chem. Soc., 2019, 141(31): 12329.

doi: 10.1021/jacs.9b05092
[75]
Feist F, Rodrigues L L, Walden S L, Krappitz T W, Dargaville T R, Weil T, Goldmann A S, Blinco J P, Barner-Kowollik C. J. Am. Chem. Soc., 2020, 142(17): 7744.

doi: 10.1021/jacs.0c02002
[76]
Aragonès A C, Haworth N L, Darwish N, Ciampi S, Bloomfield N J, Wallace G G, Diez-Perez I, Coote M L. Nature, 2016, 531(7592): 88.

doi: 10.1038/nature16989
[77]
Meir R, Chen H, Lai W Z, Shaik S. ChemPhysChem, 2010, 11(1): 301.

doi: 10.1002/cphc.v11:1
[78]
Heravi M M, Zadsirjan V, Kouhestanian E, AlimadadiJani B. Chem. Rec., 2020, 20(4): 273.

doi: 10.1002/tcr.201900018
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[4] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[7] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[8] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[9] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[10] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[11] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[12] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
[13] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[14] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.
[15] Tianyi Shang, Qiyan Lv, Yan Liu, Bing Yu. Application of Ugi/Diels-Alder Tandem Reaction in the Construction of Heterocyclic Compounds [J]. Progress in Chemistry, 2019, 31(10): 1362-1371.
Viewed
Full text


Abstract

Diels-Alder Reaction Catalyst