中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 547-556 DOI: 10.7536/PC210322 Previous Articles   Next Articles

• Review •

Surface/Interface Modulation in Oxygen Evolution Reaction

Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang()   

  1. Research Center for Nano Photoelectrochemistry and Device, School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Contact: Yuqiao Wang
  • Supported by:
    National Natural Science Foundation of China(61774033)
Richhtml ( 70 ) PDF ( 974 ) Cited
Export

EndNote

Ris

BibTeX

The increasing clean energy demands have promoted extensive attention on the development of alternative energy conversion technologies with high efficiency. Water splitting is a large-scale and sustainable technology for high-purity hydrogen production. However, the substantial overpotential and unsatisfied stability of oxygen evolution reaction (OER) electrocatalysts are great challenges for the widespread application of water splitting technology. Rational design of the structure of the OER electrocatalyst can significantly optimize its reaction thermodynamics and kinetics, thus improving the energy conversion efficiency of water splitting technology. The surface/interface is regarded as the main place where the electrocatalytic reaction occurs. The electrocatalysts, modified by surface/interface engineering, such as regulating intrinsic properties or designing synergistic interface, can improve their electrocatalytic efficiency and stability effectively. This review summarizes the application of surface/interface modulation strategies in OER, especially focusing on the research progress of layered double hydroxides, perovskite oxides, spinel compounds and alloy based materials. The design principles of high-efficient and stable electrocatalysts for OER are described. Based on the recent progress of surface/interface modulation applied in catalysts for OER,the effects of surface/interface modulation on the microstructure and electronic states of the catalysts are discussed. In addition, the challenges about modifications of above electrocatalysts are discussed. Finally, the opportunities of OER electrocatalysts via surface/interface modulation are prospected.

Contents

1 Introduction

2 Surface/interface modification of electrocatalyst

2.1 Modification based on layered double hydroxides

2.2 Modification based on perovskite oxides

2.3 Modification based on spinel compound

2.4 Modification based on alloy

3 Conclusion and outlook

Fig.1 (a) SEM image of ZnCo LDH nanosheets, (b) and (c) EDX mapping of Zn and Co elements[21]. Copyright 2015, the Royal Society of Chemistry
Table 1 Summary of OER performance of LDH based catalysts
Fig.2 (a) One-Pot Synthesis where (1) the intermediate LDH flower is formed in the early stage, on which later FeOOH NPs are deposited to form (2) the FeOOH2 nm/LDH Composite; (b) The stepwise synthesis where (3) the preformed LDH is used as a support for preferential deposition of FeOOH NPs with various average sizes to give (4) the FeOOH/LDH; and (c) Schematic depiction of the interfacial interaction via the formation of oxygen bridges (e.g., Fe(3+δ)+-O-Ni2+) with relative short bond length between the FeOOH NPs with Ni-Fe LDH[28]. Copyright 2018, the American Chemical Society
Fig.3 CVs of NiFe LDH on Co, NiFe LDH on Au, Ni-Fe-Co ternary hydroxides and bare Co foil in 1 mol·L-1 KOH at a sweeping rate of 10 mV/s, showing the interface between NiFe LDH and Co foil is crucial to enhance OER. Inset shows the schematic illustration highlighting the importance of the catalyst/support interface[29]. Copyright 2020, the American Chemical Society
Fig.4 Proposed mechanism describing potential interaction between MoSe2 and LSC. (a) HR-TEM image of LSC&MoSe2, indicating the presence of both 2H- and 1T-Phase MoSe2. (b) Enlarged region of 2H-MoSe2 shown with schematic lattice structure, illustrating the hexagonal crystal structure with Mo-Mo inter-atomic distance of 0.28nm. (c) Enlarged region of 1T-MoSe2 shown with schematic lattice structure, indicating the Mo-Mo (0.563nm) and Se-Se (0.324 nm) inter-atomic distances. (d) Schematic description of local phase transition in MoSe2 via electron transfer from Co to Mo. (e) Schematic diagram of proposed charge transfer processes between MoSe2 and LSC[38]. Copyright 2019, the Springer Nature
Fig.5 Schematic of p-block metal regulation of perovskite electrocatalysts for OER[39]. Copyright 2017, the Springer Nature
Table 2 Summary of OER performance of perovskite based catalysts
Fig.6 Schematic illustration of Co3O4 and Fe-Co3O4 replica formation with diverse symmetries[47]. Copyright 2014, the American Chemical Society
Table 3 Summary of OER performance of alloy based catalysts
[1]
Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

doi: 10.1038/nature11475
[2]
Ager J W, Lapkin A A. Science, 2018, 360(6390): 707.

doi: 10.1126/science.aat7918
[3]
Gernaat D E H J, Bogaart P W, Vuuren D P V, Biemans H, Niessink R. Nat. Energy, 2017, 2(10): 821.

doi: 10.1038/s41560-017-0006-y
[4]
Kibsgaard J, Chorkendorff I. Nat. Energy, 2019, 4(6): 430.

doi: 10.1038/s41560-019-0407-1
[5]
Chang J F, Xiao Y, Luo Z Y, Ge J J, Liu C P, Xing W. Acta Phys. Chimica Sin., 2016, 32(7): 1556.
(常进法, 肖瑶, 罗兆艳, 葛君杰, 刘长鹏, 邢巍. 物理化学学报, 2016, 32(7): 1556.).
[6]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

doi: 10.1039/C6CS00328A
[7]
Tahir M, Pan L, Idrees F, Zhang X W, Wang L, Zou J J, Wang Z L. Nano Energy, 2017, 37: 136.

doi: 10.1016/j.nanoen.2017.05.022
[8]
Spöri C, Kwan J T H, Bonakdarpour A, Wilkinson D P, Strasser P. Angew. Chem. Int. Ed., 2017, 56(22): 5994.

doi: 10.1002/anie.201608601
[9]
Zeradjanin A R. Curr. Opin. Electrochem., 2018, 9: 214.
[10]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

doi: 10.1039/C6CS00328A
[11]
Görlin M, Chernev P, Ferreira de Araújo J, Reier T, Dresp S, Paul B, Krähnert R, Dau H, Strasser P. J. Am. Chem. Soc., 2016, 138(17): 5603.

doi: 10.1021/jacs.6b00332
[12]
Mefford J T, Akbashev A R, Kang M, Bentley C L, Gent W E, Deng H D, Alsem D H, Yu Y S, Salmon N J, Shapiro D A, Unwin P R, Chueh W C. Nature, 2021, 593(7857): 67.

doi: 10.1038/s41586-021-03454-x
[13]
Zhou L L, Xie R G, Wang L J. Progress in Chemistry, 2019, 31(2/3): 275.
(周伶俐, 谢瑞刚, 王林江. 化学进展, 2019, 31(2/3): 275.).

doi: 10.7536/PC180730
[14]
Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z J. Chem. Soc. Rev., 2020, 49(7): 2196.

doi: 10.1039/C9CS00607A
[15]
Shi Q R, Zhu C Z, Du D, Lin Y H. Chem. Soc. Rev., 2019, 48(12): 3181.

doi: 10.1039/C8CS00671G
[16]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.

doi: 10.1126/science.aad4998
[17]
Song J. ACS Energy Lett., 2017, 2(8): 1937.

doi: 10.1021/acsenergylett.7b00679
[18]
Yuan Y, Adimi S, Guo X Y, Thomas T, Zhu Y, Guo H C, Priyanga G S, Yoo P, Wang J C, Chen J, Liao P L, Attfield J P, Yang M H. Angew. Chem. Int. Ed., 2020, 59(41): 18036.

doi: 10.1002/anie.202008116
[19]
Wang Y, Zhu Y L, Zhao S L, She S X, Zhang F F, Chen Y, Williams T, Gengenbach T, Zu L H, Mao H Y, Zhou W, Shao Z P, Wang H T, Tang J, Zhao D Y, Selomulya C. Matter, 2020, 3(6): 2124.

doi: 10.1016/j.matt.2020.09.016
[20]
Song F, Hu X L. J. Am. Chem. Soc., 2014, 136(47): 16481.

doi: 10.1021/ja5096733
[21]
Qiao C, Zhang Y, Zhao B T, Chen H J, Liu X, Zhao R, Wang X W, Liu J, Chen Y, Zhu Y Q, Cao C B, Bao X H, Xu J Q. J. Mater. Chem. A, 2015, 3: 6878.

doi: 10.1039/C4TA06634K
[22]
Chen R, Hung S F, Zhou D J, Gao J J, Yang C J, Tao H B, Yang H B, Zhang L P, Zhang L L, Xiong Q H, Chen H M, Liu B. Adv. Mater., 2019, 31(41): 1903909.

doi: 10.1002/adma.201903909
[23]
Dionigi F, Zeng Z H, Sinev I, Merzdorf T, Deshpande S, Lopez M B, Kunze S, Zegkinoglou I, Sarodnik H, Fan D X, Bergmann A, Drnec J, Araujo J F D, Gliech M, Teschner D, Zhu J, Li W X, Greeley J, Cuenya B R, Strasser P. Nat. Commun., 2020, 11(1): 2522.

doi: 10.1038/s41467-020-16237-1 pmid: 32433529
[24]
Jiao S L, Yao Z Y, Li M F, Mu C, Liang H W, Zeng Y J, Huang H W. Nanoscale, 2019, 11(40): 18894.

doi: 10.1039/C9NR07465A
[25]
Xie J F, Xin J P, Wang R X, Zhang X D, Lei F C, Qu H C, Hao P, Cui G W, Tang B, Xie Y. Nano Energy, 2018, 53: 74.

doi: 10.1016/j.nanoen.2018.08.045
[26]
Sun H, Chen L, Lian Y B, Yang W J, Lin L, Chen Y F, Xu J B, Wang D, Yang X Q, Rümmerli M H, Guo J, Zhong J, Deng Z, Jiao Y, Peng Y, Qiao S Z. Adv. Mater., 2020, 32(52): 2006784.

doi: 10.1002/adma.202006784
[27]
Yu M Z, Zhou S, Wang Z Y, Zhao J J, Qiu J S. Nano Energy, 2018, 44: 181.

doi: 10.1016/j.nanoen.2017.12.003
[28]
Chen J D, Zheng F, Zhang S J, Fisher A, Zhou Y, Wang Z Y, Li Y Y, Xu B B, Li J T, Sun S G. ACS Catal., 2018, 8(12): 11342.

doi: 10.1021/acscatal.8b03489
[29]
Gu H Y, Shi G S, Chen H C, Xie S H, Li Y Z, Tong H N, Yang C L, Zhu C Y, Mefford J T, Xia H Y, Chueh W C, Chen H M, Zhang L M. ACS Energy Lett., 2020, 5(10): 3185.

doi: 10.1021/acsenergylett.0c01584
[30]
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334(6061): 1383.

doi: 10.1126/science.1212858 pmid: 22033519
[31]
Zhou S M, Miao X B, Zhao X, Ma C, Qiu Y H, Hu Z P, Zhao J Y, Shi L, Zeng J. Nat. Commun., 2016, 7(1): 11510.

doi: 10.1038/ncomms11510
[32]
Li B Q, Tang C, Wang H F, Zhu X L, Zhang Q. Sci. Adv., 2016, 2(10): e1600495.

doi: 10.1126/sciadv.1600495
[33]
Wang H P, Wang J, Pi Y C, Shao Q, Tan Y M, Huang X Q. Angew. Chem. Int. Ed., 2019, 58(8): 2316.

doi: 10.1002/anie.201812545
[34]
Elumeeva K, Masa J, Sierau J, Tietz F, Muhler M, Schuhmann W. Electrochim. Acta, 2016, 208: 25.

doi: 10.1016/j.electacta.2016.05.010
[35]
Zhu Y M, Zhang L, Zhao B T, Chen H J, Liu X, Zhao R, Wang X W, Liu J, Chen Y, Liu M L. Adv. Funct. Mater., 2019, 29(34): 1901783.

doi: 10.1002/adfm.201901783
[36]
Chen G, Zhou W, Guan D Q, Sunarso J, Zhu Y P, Hu X F, Zhang W, Shao Z P. Sci. Adv., 2017, 3(6): e1603206.

doi: 10.1126/sciadv.1603206
[37]
Kim N I, Sa Y J, Yoo T S, Choi S R, Afzal R A, Choi T, Seo Y S, Lee K S, Hwang J Y, Choi W S, Joo S H, Park J Y. Sci. Adv., 2018, 4(6): eaap9360.

doi: 10.1126/sciadv.aap9360
[38]
Oh N K, Kim C, Lee J, Kwon O, Choi Y, Jung G Y, Lim H Y, Kwak S K, Kim G, Park H. Nat. Commun., 2019, 10(1): 1723.

doi: 10.1038/s41467-019-09339-y
[39]
Li B Q, Xia Z J, Zhang B S, Tang C, Wang H F, Zhang Q. Nat. Commun., 2017, 8(1): 934.

doi: 10.1038/s41467-017-01053-x
[40]
Zhou Y, Sun S N, Wei C, Sun Y M, Xi P X, Feng Z X, Xu Z J. Adv. Mater., 2019, 31(41): 1902509.

doi: 10.1002/adma.201902509
[41]
Sun S N, Sun Y M, Zhou Y, Shen J J, Mandler D, Neumann R, Xu Z J. Chem. Mater., 2019, 31(19): 8106.

doi: 10.1021/acs.chemmater.9b02737
[42]
Ma L, Hung S F, Zhang L P, Cai W Z, Yang H B, Chen H M, Liu B. Ind. Eng. Chem. Res., 2018, 57(5): 1441.

doi: 10.1021/acs.iecr.7b04812
[43]
Hsu S H, Hung S F, Wang H Y, Xiao F X, Zhang L P, Yang H B, Chen H M, Lee J M, Liu B. Small Methods, 2018, 2(5): 1800001.

doi: 10.1002/smtd.201800001
[44]
Xu Q Z, Su Y Z, Wu H, Cheng H, Guo Y P, Li N, Liu Z Q. Curr. Nanosci., 2014, 11(1): 107.

doi: 10.2174/1573413710666140925200938
[45]
Liu Q F, Chen Z P, Yan Z, Wang Y, Wang E D, Wang S, Wang S D, Sun G Q. ChemElectroChem, 2018, 5(7): 1080.

doi: 10.1002/celc.201701302
[46]
Li Y, Shen W J. Chem. Soc. Rev., 2014, 43(5): 1543.

doi: 10.1039/C3CS60296F
[47]
Grewe T, Deng X H, Tüysüz H. Chem. Mater., 2014, 26(10): 3162.

doi: 10.1021/cm5005888
[48]
Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. J. Am. Chem. Soc., 2016, 138(1): 36.

doi: 10.1021/jacs.5b10525
[49]
Du G J, Liu X G, Zong Y, Hor T S A, Yu A S, Liu Z L. Nanoscale, 2013, 5(11): 4657.

doi: 10.1039/c3nr00300k
[50]
Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q, Zheng G F. Adv. Energy Mater., 2014, 4(16): 1400696.

doi: 10.1002/aenm.201400696
[51]
Liu Y W, Xiao C, Lyu M J, Lin Y, Cai W Z, Huang P C, Tong W, Zou Y M, Xie Y. Angew. Chem., 2015, 127(38): 11383.

doi: 10.1002/ange.201505320
[52]
Wang X F, Sun P F, Lu H L, Tang K, Li Q, Wang C, Mao Z Y, Ali T, Yan C L. Small, 2019, 15(11): 1804886.

doi: 10.1002/smll.201804886
[53]
Luo M C, Zhao Z L, Zhang Y L, Sun Y J, Xing Y, Lv F, Yang Y, Zhang X, Hwang S, Qin Y N, Ma J Y, Lin F, Su D, Lu G, Guo S J. Nature, 2019, 574(7776): 81.

doi: 10.1038/s41586-019-1603-7
[54]
Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Nat. Catal., 2019, 2(4): 304.

doi: 10.1038/s41929-019-0246-2
[55]
Sun Y J, Zhang X, Luo M C, Chen X, Wang L, Li Y J, Li M Q, Qin Y N, Li C J, Xu N Y, Lu G, Gao P, Guo S J. Adv. Mater., 2018, 30(38): 1802136.

doi: 10.1002/adma.201802136
[56]
Fu Y, Yu H Y, Jiang C, Zhang T H, Zhan R, Li X W, Li J F, Tian J H, Yang R Z. Adv. Funct. Mater., 2018, 28(9): 1705094.

doi: 10.1002/adfm.201705094
[57]
Wang C H, Yang H C, Zhang Y J, Wang Q B. Angew. Chem. Int. Ed., 2019, 58(18): 6099.

doi: 10.1002/anie.201902446
[58]
Dai W J, Lu T, Pan Y. J. Power Sources, 2019, 430: 104.

doi: 10.1016/j.jpowsour.2019.05.030
[59]
Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Nat. Commun., 2019, 10(1): 3115.

doi: 10.1038/s41467-019-11219-4 pmid: 31292450
[60]
Ban J J, Wen X H, Xu H J, Wang Z, Liu X H, Cao G Q, Shao G S, Hu J H. Adv. Funct. Mater., 2021, 31(19): 2010472.

doi: 10.1002/adfm.202010472
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[4] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[5] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[6] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[7] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[8] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[9] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[10] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[11] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[12] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[13] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[14] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[15] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.