中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1181-1190 DOI: 10.7536/PC210449 Previous Articles   Next Articles

• Review •

Preparation and Application of Graphene/Metal-Organic Frameworks Composites

Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He()   

  1. Research Institute, School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University,Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Contact: Naipu He
  • Supported by:
    Science and Technology Programs of Gansu Province(20YF8GA032)
Richhtml ( 65 ) PDF ( 745 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs), a novel class of crystalline materials with the ordered porous network frameworks, are formed by the coordination of metal ions and organic bridging ligands. Because of special and unique features such as the large surface area, tunable structure and high porosity, MOFs have attracted a lot of attention in materials, environment, biomedicine and so on. However, MOFs have some disadvantages including of being easily hydrolyzed, low stability, and low electrical conductivity. It is an ideal strategy that MOFs combined with other materials to improve their features and performances. In particular, graphene shows outstanding chemical stability, good electrical conductivity, optical properties and mechanical properties. Graphene compositing with MOFs can effectively improve the photoelectric properties, stability and recyclability of MOFs. Hence, in the current paper, preparation methods of graphene/MOFs composites, including in situ growth method, interfacial growth method and blending molding method, are reviewed. We also discuss their superior performance in the fields of gas separation and storage, water purification, chemical sensors, and catalysts. Moreover, the preparation development and potential applications of graphene/MOFs composites are proposed.

Contents

1 Introduction

2 Preparation methods of graphene/MOFs composite materials

2.1 In situ growth method

2.2 Interfacial growth method

2.3 Blending molding method

3 Applications of graphene/MOFs composite materials

3.1 Gas adsorption and storage

3.2 Water purification

3.3 Chemical sensor

3.4 Catalyst

4 Conclusions and outlook

Fig. 1 Preparation of Ni-MOFs@GO nanosheets by the step-by-step method[25]. Copyright 2016, ACS
Fig. 2 Preparation of graphene/ZIF-8 hybrid aerogels by the step-by-step method[28]. Copyright 2018, ACS
Fig. 3 Preparation of SGO@HKUST-1 composite material by one-pot method[31]. Copyright 2016, ACS
Fig. 4 Preparation of Cu3(BTC)2/GO composite material by interfacial growth method[35]. Copyright 2015, ACS
Fig. 5 Adsorption and separation of gases using MOFs[39]. Copyright 2021, ACS
Fig. 6 Nitrobenzene recognition based on an MOF Sensor[65]. Copyright 2021, ACS
Fig. 7 A schematic diagram of the synthesis process of Ni-MOF-74/G[71]. Copyright 2018, ACS
[1]
Yaghi O M, Li G M, Li H L. Nature, 1995, 378: 703.

doi: 10.1038/378703a0
[2]
Liu X F, Zhang H, Yang K L, Huang S, Yang S. Journal Guizhou University, 2015, 32: 15.
(刘晓芳, 张衡, 杨凯丽, 黄珊, 杨松. 贵州大学学报, 2015, 32: 15.).
[3]
Li S Z, Huo F W. Nanoscale, 2015, 7(17): 7482.

doi: 10.1039/C5NR00518C
[4]
Jiang Z, Zhou P, Xu T, Fan L H, Hu S M, Chen J X, He Y B. CrystEngComm, 2020, 22(20): 3424.

doi: 10.1039/D0CE00475H
[5]
Jia C, Yuan X, Ma Z F. Prog. Chem., 2009, 21(9): 1954.
(贾超, 原鲜霞, 马紫峰. 化学进展, 2009, 21(9): 1954.)
[6]
Xu J, Liu J, Li Z, Wang X B, Xu Y F, Chen S, Wang Z. New J. Chem., 2019, 43(10): 4092.

doi: 10.1039/C8NJ06362A
[7]
Wang Y, He M H, Gao X, Li S D, Xiong S, Krishna R, He Y B. ACS Appl. Mater. Interfaces, 2018, 10(24): 20559.

doi: 10.1021/acsami.8b05216
[8]
Gandara-Loe J, Ortuño-Lizarán I, Fernández-Sanchez L, AliÓ J L, Cuenca N, Vega-Estrada A, Silvestre-Albero J. ACS Appl. Mater. Interfaces, 2019, 11(2): 1924.

doi: 10.1021/acsami.8b20222
[9]
Wang P, Li X H, Zhang P, Zhang X F, Shen Y, Zheng B, Wu J S, Li S, Fu Y, Zhang W N, Huo F W. ACS Appl. Mater. Interfaces, 2020, 12(21): 23968.

doi: 10.1021/acsami.0c04606
[10]
Lian X, Yan B. Inorg. Chem., 2017, 56(12): 6802.

doi: 10.1021/acs.inorgchem.6b03009
[11]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A. Science, 2004, 306(5696): 666.

pmid: 15499015
[12]
Geim A K, Novoselov K S. Nanosci. Technol., 2007, 6: 183.
[13]
Song J G, Wang X Z, Chang C T. J. Nanomater., 2014, 2014: 1.
[14]
Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Chem. Commun., 2014, 50(64): 8944.

doi: 10.1039/C4CC02401J
[15]
Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W. Adv. Mater., 2017, 29(26): 1606814.

doi: 10.1002/adma.201606814
[16]
Shimoni R, He W H, Liberman I, Hod I. J. Phys. Chem. C, 2019, 123(9): 5531.

doi: 10.1021/acs.jpcc.8b12392
[17]
Li Y H, Qiao Y Y, Li C, He N P, Wen J, Zhao X Z, Zhang X H, Li B Y. Acta Polymerica Sinica, 2021, 21041.
(李禹红, 乔瑶雨, 李超, 何乃普, 闻静, 赵晓竹, 张学辉, 黎白钰. 高分子学报, 2021, 21041.).
[18]
Li C, Qiao Y Y, Li Y H, Wen J, He N P, Li B Y. Progress in Chemistry, 2021, 33 (11): 1964.
(李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. 化学进展, 2021, 33 (11): 1964.)
[19]
Zheng Y, Zheng S, Xue H G, Pang H. Adv. Funct. Mater., 2018, 28(47): 1804950.

doi: 10.1002/adfm.201804950
[20]
Park J S, Goo N I, Kim D E. Langmuir, 2014, 30(42): 12587.

doi: 10.1021/la503401d
[21]
Yang Y Z, Li Z, Huang Y F, Gong J X, Qiao C S, Zhang J F. Progress in Chemistry, 2021, 33(5): 726.
(杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. 化学进展, 2021, 33(5): 726.)

doi: 10.7536/PC200694
[22]
Sun Y F, Ma M, Tang B, Li S, Jiang L, Sun X H, Que M L, Tao C B, Wu Z T. J. Alloys Compd., 2019, 808: 151721.

doi: 10.1016/j.jallcom.2019.151721
[23]
Zhang Y, Zhang L X. J. Nanjing Tech Univ. Nat. Sci. Ed., 2018, 40(6): 124.
(张迎亚, 张利雄. 南京工业大学学报(自然科学版), 2018, 40(6): 124.)
[24]
Shekhah O. Materials, 2010, 3(2): 1302.

doi: 10.3390/ma3021302
[25]
Zhou Y J, Mao Z M, Wang W, Yang Z K, Liu X. ACS Appl. Mater. Interfaces, 2016, 8(42): 28904.

doi: 10.1021/acsami.6b10640
[26]
Wang Z H, Yu G, Xia J F, Zhang F, Liu Q Y. Microchimica Acta, 2018, 185(5): 1.

doi: 10.1007/s00604-017-2562-z
[27]
Liu L, Yan Y, Cai Z H, Lin S X, Hu X B. Adv. Mater. Interfaces, 2018, 5(8): 1701548.

doi: 10.1002/admi.201701548
[28]
Jiang M, Li H Z, Zhou L J, Xing R F, Zhang J M. ACS Appl. Mater. Interfaces, 2018, 10(1): 827.

doi: 10.1021/acsami.7b17728
[29]
Patel D G D, Walton I M, Cox J M, Gleason C J, Butzer D R, Benedict J B. Chem. Commun., 2014, 50(20): 2653.

doi: 10.1039/C3CC49666J
[30]
Radwan D R, Matloob A, Mikhail S, Mikhail L, Guirguis D. J. Hazard. Mater., 2019, 373: 447.

doi: S0304-3894(19)30380-2 pmid: 30939427
[31]
Wang Q X, Yang Y Z, Gao F, Ni J C, Zhang Y H, Lin Z Y. ACS Appl. Mater. Interfaces, 2016, 8(47): 32477.

doi: 10.1021/acsami.6b11965
[32]
Li L, Liu Y N, Sun K, He Y Q, Liu L. Mater. Lett., 2017, 197: 196.

doi: 10.1016/j.matlet.2017.03.004
[33]
Qiu X, Wang X, Li Y W. Chem. Commun., 2015, 51(18): 3874.

doi: 10.1039/C4CC09933H
[34]
He Y Q, Wu F, Sun X Y, Li R Q, Guo Y Q, Li C B, Zhang L, Xing F B, Wang W, Gao J P. ACS Appl. Mater. Interfaces, 2013, 5(11): 4843.

doi: 10.1021/am400582n
[35]
Bian Z J, Xu J, Zhang S P, Zhu X M, Liu H L, Hu J. Langmuir, 2015, 31(26): 7410.

doi: 10.1021/acs.langmuir.5b01171
[36]
Zhang F Y, Liu L F, Tan X N, Sang X, Zhang J L, Liu C, Zhang B X, Han B X, Yang G Y. Soft Matter, 2017, 13(40): 7365.

doi: 10.1039/C7SM01567D
[37]
Zhao S Q. Master Dissertation of Hunan University, 2018.
(赵帅奇. 湖南大学硕士论文, 2018.).
[38]
Wei N, Zheng X D, Li Q, Gong C X, Ou H X, Li Z Y. J. Colloid Interface Sci., 2020, 565: 337.

doi: 10.1016/j.jcis.2020.01.031
[39]
Li Y Z, Wang G D, Ma L N, Hou L, Wang Y, Zhu Z H. ACS Appl. Mater. Interfaces, 2021, 13(3): 4102.

doi: 10.1021/acsami.0c21554
[40]
Liu J, Wei Y J, Li P Z, Zhao Y L, Zou R Q. J. Phys. Chem. C, 2017, 121(24): 13249.

doi: 10.1021/acs.jpcc.7b04465
[41]
Szczęśniak B, Choma J, Jaroniec M. J. Colloid Interface Sci., 2018, 514: 801.

doi: 10.1016/j.jcis.2017.11.049
[42]
Kumar R, Raut D, Ramamurty U, Rao C N R. Angew. Chem., 2016, 128(27): 7988.

doi: 10.1002/ange.201603320
[43]
Petit C, Mendoza B, Bandosz T J. ChemPhysChem, 2010, 11(17): 3678.

doi: 10.1002/cphc.201000689
[44]
Huang Z H, Liu G Q, Kang F Y. ACS Appl. Mater. Interfaces, 2012, 4(9): 4942.

doi: 10.1021/am3013104
[45]
Assen A H, Yassine O, Shekhah O, Eddaoudi M, Salama K N. ACS Sens., 2017, 2(9): 1294.

doi: 10.1021/acssensors.7b00304
[46]
Petit C, Bandosz T J. J. Mater. Chem., 2009, 19(36): 6521.

doi: 10.1039/b908862h
[47]
Petit C, Mendoza B, Bandosz T J. Langmuir, 2010, 26(19): 15302.

doi: 10.1021/la1021092
[48]
Li J S, Sha J Q, Du B, Tang B. Chem. Commun., 2017, 53(93): 12576.

doi: 10.1039/C7CC06660K
[49]
Liu S, Sun L X, Xu F, Zhang J, Jiao C L, Li F, Li Z B, Wang S, Wang Z Q, Jiang X, Zhou H Y, Yang L N, Schick C. Energy Environ. Sci., 2013, 6(3): 818.

doi: 10.1039/c3ee23421e
[50]
Dastbaz A, Karimi-Sabet J, Moosavian M A. Int. J. Hydrog. Energy, 2019, 44(48): 26444.

doi: 10.1016/j.ijhydene.2019.08.116
[51]
Flügel E A, Ranft A, Haase F, Lotsch B V. J. Mater. Chem., 2012, 22(20): 10119.

doi: 10.1039/c2jm15675j
[52]
Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I. Chem. Eng. J., 2017, 326: 1145.

doi: 10.1016/j.cej.2017.06.054
[53]
Jabbari V, Veleta J M, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Chem. Eng. J., 2016, 304: 774.

doi: 10.1016/j.cej.2016.06.034
[54]
Liu H M, Fan H, Dang S H, Li M D, Gu A, Yu H. Chromatographia, 2020, 83(9): 1065.

doi: 10.1007/s10337-020-03930-y
[55]
Yang Q F, Wang J, Zhang W T, Liu F B, Yue X Y, Liu Y N, Yang M, Li Z H, Wang J L. Chem. Eng. J., 2016, 313: 19.

doi: 10.1016/j.cej.2016.12.041
[56]
Zhang S L, Du Z, Li G K. Talanta, 2013, 115: 32.

doi: 10.1016/j.talanta.2013.04.029
[57]
Yang P P, Liu Q, Liu J Y, Zhang H S, Li Z S, Li R M, Liu L H, Wang J. J. Mater. Chem. A, 2017, 5(34): 17933.

doi: 10.1039/C6TA10022H
[58]
Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23): 11873.

doi: 10.1039/C7TA01343D
[59]
Rao Z, Feng K, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(3): 2594.

doi: 10.1021/acsami.6b15873
[60]
Rahimi E, Mohaghegh N. Environ. Sci. Pollut. Res., 2017, 24(28): 22353.

doi: 10.1007/s11356-017-9823-6
[61]
Sun H Z, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(31): 26077.

doi: 10.1021/acsami.7b07651
[62]
Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112(2): 1105.

doi: 10.1021/cr200324t
[63]
Yang L J, Tang B B, Wu P Y. J. Mater. Chem. A, 2015, 3(31): 15838.

doi: 10.1039/C5TA03507D
[64]
Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. Trac Trends Anal. Chem., 2010, 29(9): 954.

doi: 10.1016/j.trac.2010.05.011
[65]
Sun B Q, Tao T Y, Liu L, Ding R, Mao Y Y. J. Phys. Chem. C, 2021, 125(22): 12433.

doi: 10.1021/acs.jpcc.1c02942
[66]
Travlou N A, Singh K, Rodríguez-CastellÓn E, Bandosz T J. J. Mater. Chem. A, 2015, 3(21): 11417.

doi: 10.1039/C5TA01738F
[67]
Lee J H, Kang S, Jaworski J, Kwon K Y, Seo M L, Lee J Y, Jung J H. Chem. Eur. J., 2012, 18(3): 765.

doi: 10.1002/chem.201102603
[68]
Wang Y, Zhang Y, Hou C, Liu M Z. RSC Adv., 2015, 5(119): 98260.

doi: 10.1039/C5RA20996J
[69]
Tung T T, Tran M T, Feller J F, Castro M, van Ngo T, Hassan K, Nine M J, Losic D. Carbon, 2020, 159: 333.

doi: 10.1016/j.carbon.2019.12.010
[70]
Ding D G, Xue Q Z, Lu W B, Xiong Y, Zhang J Q, Pan X L, Tao B S. Sens. Actuat. B: Chem., 2018, 259: 289.

doi: 10.1016/j.snb.2017.12.074
[71]
Zhang Y X, Xu J Y, Xia J F, Zhang F F, Wang Z H. ACS Appl. Mater. Interfaces, 2018, 10(45): 39151.

doi: 10.1021/acsami.8b11867
[72]
Wang Y, Hou C, Zhang Y, He F, Liu M Z, Li X L. J. Mater. Chem. B, 2016, 4(21): 3695.

doi: 10.1039/C6TB00276E
[73]
Xu G L, Gang F L, Dong T S, Fu Y, Du Z Y. Chinese Journal of Organic Chemistry, 2016, 36: 1513.

doi: 10.6023/cjoc201601028
(徐光利, 刚芳莉, 董涛生, 傅颖, 杜正银. 有机化学, 2016, 36: 1513.).
[74]
Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Coord. Chem. Rev., 2019, 378: 262.

doi: 10.1016/j.ccr.2018.02.009
[75]
Solomon M B, Church T L, D’Alessandro D M. CrystEngComm, 2017, 19(29): 4049.

doi: 10.1039/C7CE00215G
[76]
Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S. Catal. Today, 2010, 151(1/2): 39.

doi: 10.1016/j.cattod.2010.01.015
[77]
Wu Y, Luo H J, Zhang L. Environ. Sci. Pollut. Res., 2015, 22(21): 17238.

doi: 10.1007/s11356-015-5364-z
[78]
Yang Y F, Wang W J, Li H, Jin X G, Wang H F, Zhang L, Zhang Y. Mater. Lett., 2017, 197: 17.

doi: 10.1016/j.matlet.2017.03.041
[79]
Zhao X H, Liu X, Zhang Z Y, Liu X, Zhang W. RSC Adv., 2016, 6(94): 92011.

doi: 10.1039/C6RA18140F
[80]
Yang C, You X, Cheng J H, Zheng H D, Chen Y C. Appl. Catal. B: Environ., 2017, 200: 673.

doi: 10.1016/j.apcatb.2016.07.057
[81]
Wei D, Tang W, Gan Y D, Xu X Q. Catal. Sci. Technol., 2020, 10(16): 5666.

doi: 10.1039/D0CY00842G
[82]
Uddin N, Zhang H Y, Du Y P, Jia G H, Wang S B, Yin Z Y. Adv. Mater., 2020, 32(9): 1905739.

doi: 10.1002/adma.201905739
[83]
Zhuang S, Lei L, Nunna B, Lee E S. ECS Trans., 2016, 72(8): 149.
[84]
Jahan M, Bao Q L, Loh K P. J. Am. Chem. Soc., 2012, 134(15): 6707.

doi: 10.1021/ja211433h
[85]
Sohrabi S, Dehghanpour S, Ghalkhani M. ChemCatChem, 2016, 8(14): 2356.

doi: 10.1002/cctc.201600298
[86]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

doi: 10.1039/C6CS00328A
[87]
Chen C, Wang J Z, Li P, Tian Q F, Xiao Z W, Li S J, Cai N, Xue Y N, Chen W M, Yu F Q. ChemCatChem, 2021, 13(1): 346.

doi: 10.1002/cctc.202001326
[88]
Khiarak B N, Hasanzadeh M, Mojaddami M, Shahriyar Far H, Simchi A. Chem. Commun., 2020, 56(21): 3135.

doi: 10.1039/C9CC09908E
[89]
Chen Z L, Qing H L, Zhou K, Sun D L, Wu R B. Prog. Mater. Sci., 2020, 108: 100618.

doi: 10.1016/j.pmatsci.2019.100618
[90]
Li J S, Sha J Q, Du B, Tang B. Chem. Commun., 2017, 53(93): 12576.

doi: 10.1039/C7CC06660K
[91]
He J, Wang J Q, Chen Y J, Zhang J P, Duan D L, Wang Y, Yan Z Y. Chem. Commun., 2014, 50(53): 7063.

doi: 10.1039/C4CC01086H
[92]
Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Appl. Catal. B: Environ., 2017, 210: 45.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[4] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[5] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[6] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[7] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[8] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[9] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[10] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[13] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[14] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[15] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.