中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 533-546 DOI: 10.7536/PC210352 Previous Articles   Next Articles

• Review •

Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO

Shujin Shen, Cheng Han(), Bing Wang, Yingde Wang()   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received: Revised: Online: Published:
  • Contact: Cheng Han, Yingde Wang
  • Supported by:
    National Natural Science Foundation of China(51773226); National Natural Science Foundation of China(61701514)
Richhtml ( 61 ) PDF ( 1204 ) Cited
Export

EndNote

Ris

BibTeX

Electrocatalytic carbon dioxide reduction (ECR) technology offers a potential strategy to achieve the goal of “carbon neutralization”. Transition metal single-atom catalysts have attracted much attention in ECR due to their adjustable electronic structure, high atom utilization and uniform active sites. This review firstly introduces the advantages of transition metal single-atom catalysts in CO2 reduction, especially in selective CO production. Then, the recent progress on controlling the active sites as well as the catalysis selectivity over Fe, Co, Ni and other single-atom electrocatalysts are reviewed, with special emphasis on the intermediate process control of proton coupled CO2 reduction to CO reaction path. Finally, the development direction of transition metal single-atom catalysts in ECR is briefly prospected to provide guidance and reference for promoting their large-scale application.

Contents

1 Introduction

2 The advantages of single-atom electrocatalysts for CO2 reduction to CO

3 Single-atom electrocatalysts for CO2 reduction to CO

3.1 Ni single-atom electrocatalysts for CO2 reduction to CO

3.2 Co single-atom electrocatalysts for CO2 reduction to CO

3.3 Fe single-atom electrocatalysts for CO2 reduction to CO

3.4 Other single-atom electrocatalysts for CO2 reduction to CO

4 The mechanism research of electrocatalytic CO2 reduction to CO

5 Conclusion and outlook

Fig.1 (a) Correlation between particle size with surface free energy and specific activity[44], Copyright 2013, American Chemical Society; (b) Correlation between geometric structure and electronic structure with particle size[45]. Copyright 2018, The Royal Society of Chemistry
Fig.2 Schematic of the reaction steps of electrocatalytic CO2 to CO reduction[46]. Copyright 2017, Elsevier
Table 1 Electrocatalytic performance of recently reported single-atom catalysts for electrocatalytic CO2 to CO
Catalysts Active site structure Potential
/vs. RHE
jCO
/mA·cm-2
FECO Electrolyte Loading
/mg·cm-2
ref
NiN-GS Ni-NxCy -0.70 V 4 93.2% 0.1 mol/L KHCO3 0.2 46
Ni-N4-C Ni-N4 -0.81 V 28.6 99% 0.5 mol/L KHCO3 0.2 59
H-CPs Ni-NxCy -1.0 V 48.66 97% 0.5 mol/L KHCO3 3.5 61
NiSA-Nx-C Ni-N2 -0.80 V ~15 98% 0.5 mol/L KHCO3 0.6 60
NiSA-Nx-C Ni-N3 -0.80 V ~7 ~90% 0.5 mol/L KHCO3 0.6 60
Ni-N3-V SAC Ni-N3 -0.80 V 48 94% 0.5 mol/L KHCO3 - 84
Ni-N4 Ni-N4 -0.8 V 10 ~78% 0.5 mol/L KHCO3 - 84
Ni-N3-C Ni-N3 -0.65 V ~7 95.6% 0.5 mol/L KHCO3 0.6 82
Ni-N4-C Ni-N4 -0.65 V ~4.5 89.2% 0.5 mol/L KHCO3 0.6 82
C-Zn1Ni4-ZIF-8 Ni-N4 -1.13 V 44.1 94% 0.5 mol/L KHCO3 0.088 43
A-Ni-NG Ni-N4 -0.61 V 31.5 97% 0.5 mol/L KHCO3 0.4 90
Ni-CNT-CC Ni-N4 -0.60 V 32.3 99% 0.5 mol/L KHCO3 0.5 91
NiSA/PCFM Ni-N4 -0.70 V 56.1 96% 0.5 mol/L KHCO3 1 82
CoPc Co-N4 -0.80 V ~10 99% 0.5 mol/L KHCO3 2 63
Co-N5/HNPCS Co-N5 -0.79 V 10.2 99.3% 0.2 mol/L NaHCO3 - 64
Co-N2 Co-N2 -0.63 V 18.1 94% 0.5 mol/L KHCO3 0.4 68
Co-N3 Co-N3 -0.63 V 2.5 ~68% 0.5 mol/L KHCO3 0.4 68
Co-N4 Co-N4 -0.63 V 0 0 0.5 mol/L KHCO3 0.4 68
Fe3+-N-C Fe-N4 -0.47 V 20.0 >90% 0.5 mol/L KHCO3 0.6 69
Fe1NC/S1-1000 Fe-N3 -0.50 V 6.4 96% 0.5 mol/L KHCO3 1 71
FeN/CNT@GNR Fe-N4 -0.76 V 22.7 96% 0.5 mol/L KHCO3 0.8 57
DNG-SAFe Fe-N4 -0.95 V 33 90% 0.1 mol/L KHCO3 1 85
Fe-N/CNT Fe-N4 -0.60 V ~5 95.5% 0.5 mol/L KHCO3 1 86
ZnNx/C Zn-N4 -0.43 V 4.8 95% 0.5 mol/L KHCO3 1 72
Bi SAs/NC Bi-N4 -0.50 V 4 97% 0.1 mol/L NaHCO3 - 79
Cu-N2/GN Cu-N2 -0.50 V 1.7 81% 0.1 mol/L KHCO3 0.5 80
Cu-N4/GN-800 Cu-N4 -0.50 V 0.74 62% 0.1 mol/L KHCO3 0.5 80
Mn-C3N4/CNT Mn-N3 -0.55 V 14.0 98.8% 0.5 mol/L KHCO3 1 81
Fig.3 (a) Different atomic configurations, (b) the corresponding free energy diagram of CO2 to CO conversion of Ni-C/Ni-N-C catalyst[46], Copyright 2017, Elsevier; (c) The FECO of Ni-N4-C catalyst[60]; (d) Schematic illustration and (e) jCO of H-CPs compared with those of others[61]. Copyright 2019, Elsevier
Fig.4 (a) Projected density of states for crucial structures from *CO and *COOH adsorption and (b) calculated free-energy diagram of MePc catalyst[63], Copyright 2018, Wiley-VCH; (c) Schematic illustration and (d) LSV curves of Co-N5/HNPCS[64], Copyright 2018, American Chemical Society; (e) The EXAFS, (f) the corresponding free energy diagram of CO2 to CO conversion, (g) jtotal of Co-N2, Co-N3 and Co NPs of Co-Nx catalysts[68]. Copyright 2018, Wiley-VCH
Fig.5 (a) jCO, (b,c) Operando XAS characterization of Fe3+-N-C and Fe2+-N-C catalysts[69], Copyright 2019, The American Association for the Advancement of Science; (d) Schematic illustration of the support size, (e) Correlation between FECO and ESA as well as jCO and ESA of Fe1NC/SX-1000[71], Copyright 2020, Wiley-VCH; (f) Schematic illustration of location sites of Fe-N4, (g) Structural evolution from CNTs to CNT@GNR[56]. Copyright 2020, American Chemical Society
Fig.6 (a) HAADF-STEM image and EXAFS, (b) free energy of ECR to CO of ZnN4/C catalyst[72], Copyright 2018, Wiley-VCH; (c) EDS mapping image, (d) free energy of ECR to CO of Bi SAs/NC[79], Copyright 2019, American Chemical Society; (e) EXAFS spectra, (f) FECO and (g) free energy of ECR to CO of Cu-Nx/GN[80]. Copyright 2020, Wiley-VCH
Fig.7 (a) Operando XANES, (b) valence band spectra of A-Ni-NG before (black line) and after (red line) CO2 gas exposure, and after desorption of CO2 (blue line) of A-Ni-NG, (c) proposed structural evolution of the active site in ECR. E F 1 and E F 2 are Fermi levels of A-Ni-NG before and after formation of Ni-C O 2 δ -, respectively. 1πg and 2πu are CO2 molecular orbitals[92], Copyright 2018, Springer Nature; (d) Operando Raman spectra of Ni-TAPc acquired in Ar or CO2 saturated KHCO3 solution[93]. Copyright 2019, Wiley-VCH
[1]
Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

doi: 10.1038/nature11475
[2]
Fan L, Xia C, Yang F Q, Wang J, Wang H T, Lu Y Y. Sci. Adv., 2020, 6(8): eaay3111.

doi: 10.1126/sciadv.aay3111
[3]
Peng L S, Wei Z D. Prog. Chem., 2018, 30(1): 14.
(彭立山, 魏子栋. 化学进展, 2018, 30(1): 14.).

doi: 10.7536/PC170912
[4]
Zhang Q, Xu W T, Liu Y H, Zhang J J. Chinese Journal of Nature, 2017, 39 (4): 242.
(张琪, 许武韬, 刘予宇, 张久俊. 自然杂志, 2017, 39 (4): 242.).
[5]
Mallapaty S. Nature, 2020, 586(7830): 482.

doi: 10.1038/d41586-020-02927-9
[6]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.

doi: 10.1002/advs.201700194
[7]
Liu M Y, Wang Y S, Deng W, Wen Z H. Prog. Chem., 2018, 30 (4): 398.
(刘孟岩, 王元双, 邓雯, 温珍海. 化学进展, 2018, 30 (4): 398.).

doi: 10.7536/PC170810
[8]
Kibria M G, Edwards J P, Gabardo C M, Dinh C T, Seifitokaldani A, Sinton D, Sargent E H. Adv. Mater., 2019, 31(31): 1807166.

doi: 10.1002/adma.201807166
[9]
Zhou W, Cheng K, Kang J C, Zhou C, Subramanian V, Zhang Q H, Wang Y. Chem. Soc. Rev., 2019, 48(12): 3193.

doi: 10.1039/c8cs00502h pmid: 31106785
[10]
Cui R R, Shen Q, Guo C Y, Tang B, Yang N J, Zhao G H. Appl. Catal. B:Environ., 2020, 261: 118253.

doi: 10.1016/j.apcatb.2019.118253
[11]
Zheng T T, Jiang K, Wang H T. Adv. Mater., 2018, 30(48): 1802066.

doi: 10.1002/adma.201802066
[12]
Shen S J, Han C, Wang B, Du Y A, Wang Y D. Appl. Catal. B:Environ., 2020, 279: 119380.

doi: 10.1016/j.apcatb.2020.119380
[13]
Wang H X, Liang Z, Tang M, Chen G X, Li Y B, Chen W, Lin D C, Zhang Z W, Zhou G M, Li J, Lu Z Y, Chan K R, Tan T W, Cui Y. Joule, 2019, 3(8): 1927.

doi: 10.1016/j.joule.2019.05.023
[14]
Xie H, Wang T Y, Liang J S, Li Q, Sun S H. Nano Today, 2018, 21: 41.

doi: 10.1016/j.nantod.2018.05.001
[15]
Zhang L, Mao F X, Zheng L R, Wang H F, Yang X H, Yang H G. ACS Catal., 2018, 8(12): 11035.

doi: 10.1021/acscatal.8b03789
[16]
Li J, Chen G X, Zhu Y Y, Liang Z, Pei A, Wu C L, Wang H X, Lee H R, Liu K, Chu S, Cui Y. Nat. Catal., 2018, 1(8): 592.

doi: 10.1038/s41929-018-0108-3
[17]
Yin Z L, Peng H Q, Wei X, Zhou H, Gong J, Huai M M, Xiao L, Wang G W, Lu J T, Zhuang L. Energy Environ. Sci., 2019, 12(8): 2455.

doi: 10.1039/C9EE01204D
[18]
Kumar B, Atla V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M. Angew. Chem. Int. Ed., 2017, 56(13): 3645.

doi: 10.1002/anie.201612194
[19]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794
[20]
Fan L, Xia Z, Xu M J, Lu Y Y, Li Z J. Adv. Funct. Mater., 2018, 28(17): 1706289.

doi: 10.1002/adfm.201706289
[21]
Zhao Y, Liang J J, Wang C Y, Ma J M, Wallace G G. Adv. Energy Mater., 2018, 8(10): 1702524.

doi: 10.1002/aenm.201702524
[22]
Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z J, Wang X. Angew. Chem. Int. Ed., 2019, 58(12): 4041.

doi: 10.1002/anie.201814711
[23]
Ren S X, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, Berlinguette C P. Science, 2019, 365(6451): 367.

doi: 10.1126/science.aax4608
[24]
Zhang X, Wang Y, Gu M, Wang M Y, Zhang Z S, Pan W Y, Jiang Z, Zheng H Z, Lucero M, Wang H L, Sterbinsky G E, Ma Q, Wang Y G, Feng Z X, Li J, Dai H J, Liang Y Y. Nat. Energy, 2020, 5(9): 684.

doi: 10.1038/s41560-020-0667-9
[25]
Wang Y L, Hou P F, Wang Z, Kang P. ChemPhysChem, 2017, 18(22): 3142.

doi: 10.1002/cphc.201700716
[26]
Liu M, Pang Y J, Zhang B, de Luna P, Voznyy O, Xu J X, Zheng X L, Dinh C T, Fan F J, Cao C H, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H. Nature, 2016, 537(7620): 382.

doi: 10.1038/nature19060
[27]
Zhao S, Jin R X, Jin R C. ACS Energy Lett., 2018, 3(2): 452.

doi: 10.1021/acsenergylett.7b01104
[28]
Fujitani T, Nakamura I. Angew. Chem. Int. Ed., 2011, 123(43): 10326.

doi: 10.1002/ange.201104694
[29]
Chen Y X, Huang Z W, Ma Z, Chen J M, Tang X F. Catal. Sci. Technol., 2017, 7(19): 4250.

doi: 10.1039/C7CY00723J
[30]
Tran D T, Nguyen D C, le H T, Kshetri T, Hoa V H, Doan T L L, Kim N H, Lee J H. Prog. Mater. Sci., 2021, 115: 100711.

doi: 10.1016/j.pmatsci.2020.100711
[31]
Ji S F, Chen Y J, Wang X L, Zhang Z D, Wang D S, Li Y D. Chem. Rev., 2020, 120(21): 11900.

doi: 10.1021/acs.chemrev.9b00818
[32]
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2(7): 1242.

doi: 10.1016/j.joule.2018.06.019
[33]
Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Chem. Rev., 2018, 119(3): 1806.

doi: 10.1021/acs.chemrev.8b00501
[34]
Gao F Y, Bao R C, Gao M R, Yu S H. J. Mater. Chem. A, 2020, 8(31): 15458.

doi: 10.1039/D0TA03525D
[35]
Peng Y, Lu B Z, Chen S W. Adv. Mater., 2018, 30(48): 1801995.

doi: 10.1002/adma.201801995
[36]
Zhang L P, Lin C Y, Zhang D T, Gong L L, Zhu Y H, Zhao Z H, Xu Q, Li H J, Xia Z H. Adv. Mater., 2019, 31(13): 1805252.

doi: 10.1002/adma.201805252
[37]
Zhu Y Z, Yang X X, Peng C, Priest C, Mei Y, Wu G. Small, 2021, 17(16): 2005148.

doi: 10.1002/smll.202005148
[38]
Jin S, Hao Z M, Zhang K, Yan Z H, Chen J. Angew. Chem. Int. Ed. 2021, 60(38) 20627.

doi: 10.1002/anie.202101818
[39]
Zhao Y F, Zhou H, Chen W X, Tong Y J, Zhao C, Lin Y, Jiang Z, Zhang Q W, Xue Z G, Cheong W, Jin B J, Zhou F Y, Wang W Y, Chen M, Hong X, Dong J C, Wei S Q, Li Y D, Wu Y E. J. Am. Chem. Soc., 2019, 141(27): 10590.

doi: 10.1021/jacs.9b03182
[40]
Jones J, Xiong H F, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 2016, 353(6295): 150.

doi: 10.1126/science.aaf8800 pmid: 27387946
[41]
Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energy Environ. Sci., 2015, 8(5): 1594.

doi: 10.1039/C5EE00751H
[42]
Wang C H, Shi H M, Liu H Z, Fu J C, Wei D H, Zeng W, Wan Q, Zhang G H, Duan H G. Electrochim. Acta, 2018, 292: 727.

doi: 10.1016/j.electacta.2018.10.011
[43]
Yan C C, Li H B, Ye Y F, Wu H H, Cai F, Si R, Xiao J P, Miao S, Xie S H, Yang F, Li Y S, Wang G X, Bao X H. Energy Environ. Sci., 2018, 11(5): 1204.

doi: 10.1039/C8EE00133B
[44]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m
[45]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776
[46]
Jiang K, Siahrostami S, Akey A J, Li Y B, Lu Z Y, Lattimer J, Hu Y F, Stokes C, Gangishetty M, Chen G X, Zhou Y W, Hill W, Cai W B, Bell D, Chan K R, Nørskov J K, Cui Y, Wang H T. Chem, 2017, 3(6): 950.

doi: 10.1016/j.chempr.2017.09.014
[47]
Lu L, Sun X F, Ma J, Yang D X, Wu H H, Zhang B X, Zhang J L, Han B X. Angew. Chem. Int. Ed., 2018, 57(43): 14149.

doi: 10.1002/anie.201808964 pmid: 30152923
[48]
Lee C W, Yang K D, Nam D H, Jang J H, Cho N H, Im S W, Nam K T. Adv. Mater., 2018, 30(42): 1704717.

doi: 10.1002/adma.201704717
[49]
Bernal M, Bagger A, Scholten F, Sinev I, Bergmann A, Ahmadi M, Rossmeisl J, Cuenya B R. Nano Energy, 2018, 53: 27.

doi: 10.1016/j.nanoen.2018.08.027
[50]
Wang Y C, Liu Y, Liu W, Wu J, Li Q, Feng Q G, Chen Z Y, Xiong X, Wang D S, Lei Y P. Energy Environ. Sci., 2020, 13(12): 4609.

doi: 10.1039/D0EE02833A
[51]
Sun T, Mitchell S, Li J, Lyu P, Wu X B, Pérez-Ramírez J, Lu J. Adv. Mater., 2021, 33(5): 2003075.

doi: 10.1002/adma.202003075
[52]
Koshy D M, Chen S C, Lee D U, Stevens M B, Abdellah A M, Dull S M, Chen G, Nordlund D, Gallo A, Hahn C, Higgins D C, Bao Z N, Jaramillo T F. Angew. Chem. Int. Ed., 2020, 59(10): 4043.

doi: 10.1002/anie.201912857
[53]
Geng Z G, Cao Y J, Chen W X, Kong X D, Liu Y, Yao T, Lin Y. Appl. Catal. B:Environ., 2019, 240: 234.

doi: 10.1016/j.apcatb.2018.08.075
[54]
Jiang K, Siahrostami S, Zheng T T, Hu Y F, Hwang S, Stavitski E, Peng Y D, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H T. Energy Environ. Sci., 2018, 11(4): 893.

doi: 10.1039/C7EE03245E
[55]
Guan A X, Chen Z, Quan Y L, Peng C, Wang Z Q, Sham T K, Yang C, Ji Y L, Qian L P, Xu X, Zheng G F. ACS Energy Lett., 2020, 5(4): 1044.

doi: 10.1021/acsenergylett.0c00018
[56]
Pan F P, Li B Y, Sarnello E, Fei Y H, Gang Y, Xiang X M, Du Z C, Zhang P, Wang G F, Nguyen H T, Li T, Hu Y H, Zhou H C, Li Y. ACS Nano, 2020, 14(5): 5506.

doi: 10.1021/acsnano.9b09658
[57]
Matin M A, Lee E, Kim H, Yoon W S, Kwon Y U. J. Mater. Chem. A, 2015, 3(33): 17154.

doi: 10.1039/C5TA03809J
[58]
Zhang T Y, Han X, Yang H B, Han A J, Hu E Y, Li Y P, Yang X Q, Wang L, Liu J F, Liu B. Angew. Chem. Int. Ed., 2020, 59(29): 12055.

doi: 10.1002/anie.202002984
[59]
Li X G, Bi W T, Chen M L, Sun Y X, Ju H X, Yan W S, Zhu J F, Wu X J, Chu W S, Wu C Z, Xie Y. J. Am. Chem. Soc., 2017, 139(42): 14889.

doi: 10.1021/jacs.7b09074
[60]
Zhang Y, Jiao L, Yang W J, Xie C F, Jiang H L. Angew. Chem. Int. Ed., 2021, 60(14): 7607.

doi: 10.1002/anie.202016219 pmid: 33432715
[61]
Zhao C M, Wang Y, Li Z J, Chen W X, Xu Q, He D S, Xi D S, Zhang Q H, Yuan T W, Qu Y T, Yang J, Zhou F Y, Yang Z K, Wang X Q, Wang J, Luo J, Li Y F, Duan H H, Li Y D. Joule, 2019, 3(2): 584.

doi: 10.1016/j.joule.2018.11.008
[62]
Li J K, Pršlja P, Shinagawa T, Martín Fernández A J, Krumeich F, Artyushkova K, Atanassov P, Zitolo A, Zhou Y C, García-Muelas R, López N, Pérez-Ramírez J, Jaouen F. ACS Catal., 2019, 9(11): 10426.

doi: 10.1021/acscatal.9b02594
[63]
Zhang Z, Xiao J P, Chen X J, Yu S, Yu L, Si R, Wang Y, Wang S H, Meng X G, Wang Y, Tian Z Q, Deng D H. Angew. Chem. Int. Ed., 2018, 57(50): 16339.

doi: 10.1002/anie.201808593
[64]
Pan Y, Lin R, Chen Y J, Liu S J, Zhu W, Cao X, Chen W X, Wu K L, Cheong W C, Wang Y, Zheng L R, Luo J, Lin Y, Liu Y Q, Liu C G, Li J, Lu Q, Chen X, Wang D S, Peng Q, Chen C, Li Y D. J. Am. Chem. Soc., 2018, 140(12): 4218.

doi: 10.1021/jacs.8b00814
[65]
Liu L N, Wang Y, Yan F, Zhu C L, Geng B, Chen Y J, Chou S L. Small Methods, 2020, 4(1): 1900571.

doi: 10.1002/smtd.201900571
[66]
He Y H, Hwang S, Cullen D A, Uddin M A, Langhorst L, Li B Y, Karakalos S, Kropf A J, Wegener E C, Sokolowski J, Chen M J, Myers D, Su D, More K L, Wang G F, Litster S, Wu G. Energy Environ. Sci., 2019, 12(1): 250.

doi: 10.1039/C8EE02694G
[67]
Zhang H B, Zhou W, Chen T, Guan B Y, Li Z, Lou X W D. Energy Environ. Sci., 2018, 11(8): 1980.

doi: 10.1039/C8EE00901E
[68]
Wang X Q, Chen Z, Zhao X Y, Yao T, Chen W X, You R, Zhao C M, Wu G, Wang J, Huang W X, Yang J L, Hong X, Wei S Q, Wu Y E, Li Y D. Angew. Chem. Int. Ed., 2018, 57(7): 1944.

doi: 10.1002/anie.201712451
[69]
Gu J, Hsu C S, Bai L C, Chen H M, Hu X L. Science, 2019, 364(6445): 1091.

doi: 10.1126/science.aaw7515
[70]
Hursán D, Samu A A, Janovák L, Artyushkova K, Asset T, Atanassov P, Janáky C. Joule, 2019, 3(7): 1719.

doi: 10.1016/j.joule.2019.05.007
[71]
Wang T T, Sang X H, Zheng W Z, Yang B, Yao S Y, Lei C J, Li Z J, He Q G, Lu J G, Lei L C, Dai L M, Hou Y. Adv. Mater., 2020, 32(29): 2002430.

doi: 10.1002/adma.202002430
[72]
Yang F, Song P, Liu X Z, Mei B B, Xing W, Jiang Z, Gu L, Xu W L. Angew. Chem. Int. Ed., 2018, 57(38): 12303.

doi: 10.1002/anie.201805871 pmid: 30033610
[73]
Li J J, Xia W, Wang T, Zheng L R, Lai Y, Pan J J, Jiang C, Song L, Wang M Y, Zhang H T, Chen N, Chen G, He J P. Chem. Eur. J., 2020, 26: 4070.

doi: 10.1002/chem.201903822
[74]
Geng Z G, Liu Y, Kong X D, Li P, Li K, Liu Z Y, Du J J, Shu M, Si R, Zeng J. Adv. Mater., 2018, 30(40): 1870301.

doi: 10.1002/adma.201870301
[75]
Li Z, Chen Y J, Ji S F, Tang Y, Chen W X, Li A, Zhao J, Xiong Y, Wu Y E, Gong Y, Yao T, Liu W, Zheng L R, Dong J C, Wang Y, Zhuang Z B, Xing W, He C T, Peng C, Cheong W C, Li Q H, Zhang M L, Zheng C, Fu N H, Gao X, Zhu W, Wan J W, Zhang J, Gu L, Wei S Q, Hu P J, Luo J, Li J, Chen C, Peng Q, Duan X F, Huang Y, Chen X M, Wang D S, Li Y D. Nat. Chem., 2020, 12: 764.

doi: 10.1038/s41557-020-0473-9
[76]
Xiao M L, Zhu J B, Li G R, Li N, Li S, Cano Z P, Ma L, Cui P X, Xu P, Jiang G P, Jin H L, Wang S, Wu T P, Lu J, Yu A P, Su D, Chen Z W. Angew. Chem. Int. Ed., 2019, 58(28): 9648.

doi: 10.1002/anie.201907250
[77]
Chen W X, Pei J J, He C T, Wan J W, Ren H L, Wang Y, Dong J C, Wu K L, Cheong W C, Mao J J, Zheng X S, Yan W S, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(30): 1800396.

doi: 10.1002/adma.201800396
[78]
Yang Z K, Chen B X, Chen W X, Qu Y T, Zhou F Y, Zhao C M, Xu Q, Zhang Q H, Duan X Z, Wu Y E. Nat. Commun., 2019, 10: 3734.

doi: 10.1038/s41467-019-11796-4
[79]
Zhang E H, Wang T, Yu K, Liu J, Chen W X, Li A, Rong H P, Lin R, Ji S F, Zheng X S, Wang Y, Zheng L R, Chen C, Wang D S, Zhang J T, Li Y D. J. Am. Chem. Soc., 2019, 141(42): 16569.

doi: 10.1021/jacs.9b08259
[80]
Zheng W Z, Yang J, Chen H Q, Hou Y, Wang Q, Gu M, He F, Xia Y, Xia Z, Li Z J, Yang B, Lei L C, Yuan C, He Q G, Qiu M, Feng X L. Adv. Funct. Mater., 2020, 30(4): 1907658.

doi: 10.1002/adfm.201907658
[81]
Feng J Q, Gao H S, Zheng L R, Chen Z P, Zeng S J, Jiang C Y, Dong H F, Liu L C, Zhang S J, Zhang X P. Nat. Commun., 2020, 11: 4341.

doi: 10.1038/s41467-020-18143-y
[82]
Yang H P, Lin Q, Zhang C, Yu X Y, Cheng Z, Li G D, Hu Q, Ren X Z, Zhang Q L, Liu J H, He C X. Nat. Commun., 2020, 11: 593.

doi: 10.1038/s41467-020-14402-0
[83]
Gong Y N, Jiao L, Qian Y Y, Pan C Y, Zheng L R, Cai X C, Liu B, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2020, 59(7): 2705.

doi: 10.1002/anie.201914977
[84]
Rong X, Wang H J, Lu X L, Si R, Lu T B. Angew. Chem. Int. Ed., 2020, 59(5): 1961.

doi: 10.1002/anie.201912458 pmid: 31674119
[85]
Ni W P, Liu Z X, Zhang Y, Ma C, Deng H Q, Zhang S G, Wang S Y. Adv. Mater., 2021, 33(1): 2003238.

doi: 10.1002/adma.202003238
[86]
Tuo J Q, Lin Y X, Zhu Y H, Jiang H L, Li Y H, Cheng L, Pang R C, Shen J H, Song L, Li C Z. Appl. Catal. B:Environ., 2020, 272: 118960.

doi: 10.1016/j.apcatb.2020.118960
[87]
Karapinar D, Huan N T, Ranjbar Sahraie N, Li J K, Wakerley D, Touati N, Zanna S, Taverna D, Galvão Tizei L H, Zitolo A, Jaouen F, Mougel V, Fontecave M. Angew. Chem. Int. Ed., 2019, 58(42): 15098.

doi: 10.1002/anie.201907994 pmid: 31453650
[88]
Fang S, Zhu X R, Liu X K, Gu J, Liu W, Wang D H, Zhang W, Lin Y, Lu J L, Wei S Q, Li Y F, Yao T. Nat. Commun., 2020, 11: 1029.

doi: 10.1038/s41467-020-14848-2 pmid: 32098951
[89]
He Q, Xie H, Rehman Z U, Wang C D, Wan P, Jiang H L, Chu W S, Song L. ACS Energy Lett. 2018, 3(4), 861.

doi: 10.1021/acsenergylett.8b00342
[90]
Shang H S, Sun W M, Sui R, Pei J J, Zheng L R, Dong J C, Jiang Z L, Zhou D N, Zhuang Z B, Chen W X, Zhang J T, Wang D S, Li Y D. Nano Lett., 2020, 20(7): 5443.

doi: 10.1021/acs.nanolett.0c01925
[91]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.

doi: 10.1038/s41467-019-12886-z
[92]
Yang H B, Hung S F, Liu S, Yuan K D, Miao S, Zhang L P, Huang X, Wang H Y, Cai W Z, Chen R, Gao J J, Yang X F, Chen W, Huang Y Q, Chen H M, Li C M, Zhang T, Liu B. Nat. Energy, 2018, 3(2): 140.

doi: 10.1038/s41560-017-0078-8
[93]
Liu S, Yang H B, Hung S F, Ding J, Cai W Z, Liu L H, Gao J J, Li X N, Ren X Y, Kuang Z C, Huang Y Q, Zhang T, Liu B. Angew. Chem. Int. Ed., 2020, 59(2): 798.

doi: 10.1002/anie.201911995
[94]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2019, 2(2): 134.

doi: 10.1038/s41929-018-0203-5
[95]
Xu H X, Cheng D J, Cao D P, Zeng X C. Nat. Catal., 2018, 1(5): 339.

doi: 10.1038/s41929-018-0063-z
[96]
Sun M Z, Wu T, Xue Y R, Dougherty A W, Huang B L, Li Y L, Yan C H. Nano Energy, 2019, 62: 754.

doi: 10.1016/j.nanoen.2019.06.008
[97]
Xu Y, Edwards J P, Liu S J, Miao R K, Huang J E, Gabardo C M, O'Brien C P, Li J, Sargent E H, Sinton D. ACS Energy Lett., 2021, 6(2): 809.

doi: 10.1021/acsenergylett.0c02401
[98]
Ren W H, Tan X, Yang W F, Jia C, Xu S M, Wang K X, Smith S C, Zhao C. Angew. Chem., 2019, 131(21): 7046.

doi: 10.1002/ange.201901575
[99]
Wang F H, Xie H P, Liu T, Wu Y F, Chen B. Appl. Energy, 2020, 269: 115029.

doi: 10.1016/j.apenergy.2020.115029
[100]
Zhu W J, Zhang L, Liu S H, Li A, Yuan X T, Hu C L, Zhang G, Deng W Y, Zang K T, Luo J, Zhu Y M, Gu M, Zhao Z J, Gong J L. Angew. Chem. Int. Ed., 2020, 59(31): 12664.

doi: 10.1002/anie.201916218
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[5] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[6] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[7] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[10] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[11] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[12] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[13] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
[14] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[15] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.