中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1648-1664 DOI: 10.7536/PC200851 Previous Articles   Next Articles

• Review •

Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment

Ming Ge(), Zheng Hu, Quanbao He   

  1. College of Chemical Engineering, North China University of Science and Technology,Tangshan 063210, China
  • Received: Revised: Online: Published:
  • Contact: Ming Ge
  • Supported by:
    Natural Science Foundation of Hebei Province(B2019209373)
Richhtml ( 96 ) PDF ( 1062 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of China's economy and the acceleration of urbanization, the problem about organic pollutions in natural water bodies has become more and more serious. The advanced oxidation processes (AOPs) based on free radical reaction can efficiently degrade the non-biodegradable organic pollutants remaining in water environment. Under the action of the catalyst, the advanced oxidation processes can effectively generate the strong oxidizing free radicals to degrade organic pollutants. Spinel ferrite (MFe2O4(M=Zn, Ni, Co, Cu, Mn)) is widely used as a catalyst to promote the generation of free radicals in the advanced oxidation processes, and at the same time, its strong magnetism and high stability ensure that it is easy to recycle by an external magnetic field and further reused. This article mainly reviews the research progress of spinel ferrite-based heterogeneous Fenton-like technology, photocatalytic technology and persulfate advanced oxidation technology in organic wastewater treatment, and focuses on the catalytic degradation mechanism of organic pollutants in water bodies by the different ferrite magnetic nanomaterials in the above three advanced oxidation technologies, and the ways to enhance catalytic performances of ferrite magnetic catalysts. Finally, we point out some problems about the application of spinel ferrite in advanced oxidation processes, and the future research directions of spinel ferrite-based advanced oxidation processes are also prospected.

Contents

1 Introduction

2 Spinel ferrite-based heterogeneous Fenton-like oxidation technologies

2.1 ZnFe2O4

2.2 NiFe2O4

2.3 CoFe2O4

2.4 MnFe2O4

2.5 CuFe2O4

3 Spinel ferrite-based photocatalytic technologies

3.1 ZnFe2O4

3.2 MFe2O4 (M=Ni, Co, Cu)

4 Persulfate oxidation technologies with spinel ferrite as the catalyst

4.1 The organic pollutants degradation in water by persulfate activated with CoFe2O4

4.2 The organic pollutants degradation in water by persulfate activated with CuFe2O4

4.3 The organic pollutants degradation in water by persulfate activated with MnFe2O4

5 Conclusion and prospect

Fig.1 The schematic representation of spinel ferrite structure
Table 1 Magnetic ferrite-based heterogeneous Fenton-like oxidation technologies used for removal of organic pollutants in water
Catalyst Synthetic
method
Conditions for
Fenton-like reaction
Catlayst
dosage
H2O2
dosage
Pollutants and
degradation efficiency
ref
ZnFe2O4 hydrothermal route 150 W Xe lamp 0.5 g/L 12.0 mM AOII 100% (2 h) 19
ZnFe2O4/
graphene
solvothermal method 500 W Xe lamp 1.0 g/L 30% H2O2 (1 mL) RhB 100% (2 h);
MO 96% (2 h)
20
porous C/ZnFe2O4 CO2-mediated
ethanol route
300 W Xe lamp 1.0 g/L 30% H2O2 (2 mL) RhB 100% (1 h);
phenol 91% (2 h)
21
NiFe2O4 co-precipitation method - 2.0 g/L 120.0 mM phenol 95% (5.5 h) 22
NiFe2O4/C calcination method 800 W Xe lamp 0.1 g/L 30% H2O2 (0.1 mL) TC 97.25% (1 h) 23
NiFe2O4/CNTs hydrothermal route 150 W Xe lamp 0.025 g/L 1 μL/mL SMX 90% (2 h) 24
CoFe2O4 co-precipitation route 125 W Hg lamp 1.0 g/L 30% H2O2 (3 mL) MB 90% (1.25 h) 27
CoFe2O4-rGO liquid assembly method ultrasonic irradiation 0.08 g/L 3 mM AO7 90.5% (2 h) 28
rGO/CoFe2O4 solvothermal method 5.0 mmol/l NH2OH 0.1 g/L 3 mM MB 100% (0.25 h) 29
CoFe2O4@PPy oxidization polymerization 300 W Xe lamp 0.2 g/L 30% H2O2 (200 μL) RhB 100% (2 h) 30
MnFe2O4 sol-gel method - 0.6 g/L 200 mM NOR 90.6% (3 h) 31
MnFe2O4/
biochar
co-precipitation method 300 W Xe lamp 0.5 g/L 200 mM TC 95% (2 h) 33
MnFe2O4@SnS2 hydrothermal method 300 W Xe lamp 0.2 g/L 30% H2O2 (3 mL) MB 92% (2 h) 34
CuFe2O4 nanocasting strategy - 0.3 g/L 40 mM Imidacloprid
100% (5 h)
35
Cu/CuFe2O4 solvothermal method - 0.1 g/L 15 mM MB 99% (4 min) 12
CuFe2O4@C solvothermal route 300 W Xe lamp 0.1 g/L 30% H2O2 (0.2 mL) MB 97% (1.5 h) 37
CuFe2O4/rGO hydrothermal method 500 W of microwave power 0.3 g/L 30% H2O2 (600 μL) RhB 95.5% (1 min) 38
CuFe2O4@PDA self-polymerization - 0.2 g/L 0.5 M MB 97% (0.5 h) 39
CuFe2O4@
g-C3N4
self-assembly method 500 W Xe lamp 0.1 g/L 0.01 M OII 98% (3.5 h) 40
Fig.2 The photo-Fenton mechanism in ZnFe2O4
Table 2 Degradation of organic pollutants in water using magnetic ferrite-based photocatalytic oxidation technologies
Photocatalyst Synthetic
method
Light source Catalyst
dosage
Pollutants and
degradation efficiency
ref
hollow cube ZnFe2O4 template method 300 W Xe lamp 0.5 g/L TCHC 85% (20 min) 41
ZnFe2O4(111) hydrothermal route 500 W Xe lamp 1.0 g/L RhB 90% (1 h) 43
ZnFe2O4-TiO2 a reflux route 8 W visible-light lamp 1.0 g/L BPA 98.7% (30 min) 44
ZnFe2O4-ZnO co-precipitation method 500 W halogen lamp 0.5 g/L MB 98% (6 h) 46
Ag/ZnO/ZnFe2O4 facile calcination route 250 W Xe lamp 0.5 g/L MB 93% (100 min) 47
BiOBr-ZnFe2O4 precipitation method 300 W Xe lamp 1.0 g/L RhB 90% (25 min) 48
biochar
@ZnFe2O4/BiOBr
solvothermal method 300 W Xe lamp 0.5 g/L CIP 65% (1 h) 49
p-BiOI/n-ZnFe2O4 solvothermal method 400 W halogen lamp 1.0 g/L AO7 96% (3 h) 51
Ag3PO4/ZnFe2O4 precipitation route 10 W LED light 1.0 g/L MB 100% (1 h) 13
C@ZnFe2O4/Ag3PO4 precipitation method 300 W Xe lamp 1.0 g/L 2,4-DCP 95% (2.5 h) 52
ZnFe2O4/AgBr/Ag precipitation and
photoreduction
300 W Xe lamp 0.4 g/L MO 92% (30 min) 54
g-C3N4-ZnFe2O4 solvothermal method 500 W Xe lamp 0.25 g/L MO 98% (3 h) 56
Ag/NiFe2O4 combustion method 300 W Xe lamp 0.25 g/L MB 70% (2 h) 57
Ag/CuFe2O4 impregnation strategy 500 W Xe lamp 0.1 g/L 4-CP 81% (2 h) 58
rGO-CoFe2O4 hydrothermal route Solar light 0.4 g/L 4-CP 100% (2 h) 60
Pd-NiFe2O4/rGO hydrothermal route 300 W Xe lamp 1.0 g/L RhB 99% (2 h) 61
BiOBr/NiFe2O4 hydrothermal route 500 W Xe lamp 1.0 g/L RhB 100% (30 min) 62
Ag3PO4@CoFe2O4 precipitation approach 500 W halogen lamp 0.4 g/L MB 100% (40 min) 64
Ag3PO4/CuFe2O4 deposition method 300 W Xe lamp 0.2 g/L RhB 100% (35 min) 65
Ag3PO4/GO/NiFe2O4 deposition route 300 W Xe lamp 0.2 g/L RhB 100% (30 min) 66
Ag3PO4/CoFe2O4/GO precipitation process 300 W Xe lamp 0.3 g/L MO 91% (15 min) 67
biochar@CoFe2O4/Ag3PO4 in-situ precipitation method 300 W Xe lamp 0.5 g/L BPA 91% (60 min) 68
AgBr/NiFe2O4 a precipitation method 10 W LED lamp 1.0 g/L RhB 100% (60 min) 14
AgBr/CoFe2O4 a precipitation method 10 W LED lamp 1.0 g/L MO 95% (60 min) 15
AgBr-Cu-CuFe2O4 a precipitation method 10 W LED lamp 1.0 g/L RhB 95.2% (60 min) 16]
Fig.3 The schematic diagram of photo-generated carrier transfer[44,46]
Fig.4 (a) Z-scheme charge transfer mechanism[49]; (b) Ⅱ-type heterojunction charge transfer mechanism[50,51]
Table 3 Persulfate oxidation technologies with magnetic ferrite as catalyst used for the removal of pollutants from water
catalyst Synthetic
method
PMS or PDS
dosage
Catalyst
dosage
Pollutants and
degradation efficiency
ref
CoFe2O4 hydrothermal method 0.8 mM PMS 0.4 g/L ATZ 99% (30 min) 72
CoFe2O4 sol-gel method 0.5 mM PMS 0.25 g/L TPhP 99.5% (6 min) 73
CoFe2O4/Al2O3 sol-gel method 0.5 mM PMS 1.0 mM SCP 97.8% (15 min) 74
CoFe2O4/TiO2 impregnation-calcination method 4.0 g/L PMS 0.01 g/L RhB 100% (30 min)
Phenol 97.2% (60 min)
75
CoFe2O4-rGO solvothermal route 10 mg/150 mL 0.3 g/150 mL Phenol 100% (30 min) 76
CoFe2O4-GO hydrothermal method 0.5 mM PMS 0.3 g/L NOR 100% (20 min) 77
CoFe2O4-EG co-precipitation method 0.4 mM PMS 0.5 g/L SMX ~92% (20 min) 78
CoFe2O4-x hydrogen calcination method 3 mM PDS 0.1 g/L BPA 98% (60 min) 79
CuFe2O4 sol-gel combustion method 0.2 mM PMS 0.1 g/L TBBPA 99% (30 min) 80
CuFe2O4 a citrate combustion method 20 μM PMS 0.1 g/L IPM ~80% (10 min) 81
CuFe2O4 a citrate combustion method 0.5 g/L PMS 0.4 g/L BPA 100% (60 min) 82
CuFe2O4 co-precipitation-calcination method 0.5 mM PMS 0.2 g/L NOR 90% (120 min) 83
CuFe2O4 a coprecipitation method 0.2 mM PMS 0.1 g/L PCB28 89% (8 h) 84
CuFe2O4-OMS-2 a solvent-free process 0.65 mM PMS 0.2 g/L AO7 95.8% (20 min) 85
CuFe2O4-Fe2O3 a co-precipitation method 0.36 g/L PMS 0.2 g/L BPA 100% (10 min) 86
CuFe2O4/MWCNTs a sol-gel combustion method 0.6 mM PMS 0.2 g/L TMP 90% (24 min) 87
CuFe2O4-NG a hydrothermal route 1.0 g/L PMS 0.05 g/L OⅡ 100% (70 min) 88
CuFe2O4/ kaolinite a facile citrate combustion method 0.5 mM PMS 0.5 g/L BPA 100% (60 min) 89
CuFe2O4 a sol-gel combustion method 8 mM PDS 30 g/L PNP 89% (60 min) 90
CuFe2O4/MWCNTs a sol-gel combustion route 1.0 g/L PDS 0.1 g/L DEP 100% (30 min) 91
CuFe2O4-Cu a solvothermal method 1.5 g/L PDS 0.3 g/L TC 80% (120 min) 17
MnFe2O4 the nanocasting strategy 2 mM PMS 0.2 g/L OⅡ 100% (30 min) 92
MnFe2O4 - 0.1 mM PMS 0.2 g/L BPA 90% (30 min) 93
MnFe2O4 - 0.75 mM PMS 0.25 g/L TCS 100% (20 min) 94
MnFe2O4-rGO a precipitation method 0.5 g/L PMS 0.05 g/L OⅡ 90% (120 min) 95
MnFe2O4-MX a solvothermal method 0.5 g/L PMS 0.05 g/L OⅡ 100% (6 min) 96
MnFe2O4-MnO2 a hydrothermal method 0.4 g/L PMS 0.2 g/L RhB 100% (40 min) 97
MnFe2O4 thermal decomposition 0.5 g/L PDS 3 g/L Phenol 90% (360 min) 98
MnFe2O4/AC a solvothermal method 0.5 g/L PDS 0.2 g/L OG 100% (30 min) 99
CuO/MnFe2O4 an impregnation method 1.0 g/L PDS 1.0 g/L LVF 87% (120 min) 100
Fig.5 The structure of peroxymonosulfate (a) and peroxydisulfate (b)
Fig.6 Activation of PMS by CoFe2O4 to generate SO 4 · -[72]
Fig.7 PMS activation by CuFe2O4 to generate SO 4 · - [18]
Fig.8 PDS activation by AC/MnFe2O4 to generate SO 4 · -[99]
Table 4 Comparison of the application, catalytic mechanism and methods for activity enhancement of different ferrite in AOPs
Catalyst Application in AOPs Mechanism for organic
pollutants degradation
Methods for the
enhancement of activity
ZnFe2O4 (1)Fenton [19~21] ≡Fe3+ + e- → ≡Fe2+;
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[20,21]
(2)Photocatalysis [13,41,43~44,46~52,54,56] ZnFe2O4 + hν → e- + h+O2 + e- O 2 · - O 2 · -/h+ + pollutants → degradation
products
Carbon modification [49,52]
Construction of heterojunction [13,44,46~52,54]
NiFe2O4 (1)Fenton [22~24] ≡Fe3+ + e- → ≡Fe2+;
≡Ni2+ + ≡Fe3+ → ≡Fe2+ + ≡Ni3+
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[23,24]
(2)Photocatalysis [14,57,61,62,66] NiFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation
products
Metal deposition [57,61]
Construction of heterojunction [14,62,66]
CoFe2O4 (1)Fenton [27~30] ≡Co2+ + H2O2→·OH + ≡Co3+ + OH-
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[28,29]
(2)Photocatalysis [15,60,64,67,68] CoFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation
products
Carbon modification[60]
Construction of heterojunction [15,64,67,68]
(3)Persulfate oxidation [72~79] ≡Co2+-OH-+ HSO 5 -→≡CoO++ SO 4 · -+H2O
≡Fe3+ + HSO 5 -→ ≡Fe2+ + SO 5 · - + H+
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
SO 4 · -+H2O → SO 4 2 -+ ·OH + H+
SO 4 · -/·OH + pollutants → degradation products
Metallic oxide modification [74,75]
Carbon modification [76~78]
CuFe2O4 (1)Fenton [12,35,37~40] ≡Cu+ + H2O2→·OH + ≡Cu2+ + OH-
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification [37,38,40]
Metal modification [12]
(2)Photocatalysis [16,58,65] CuFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation products
Construction of heterojunction [16,65]
Metal deposition [58]
(3)Persulfate oxidation [17,80~91] ≡Cu+ + HSO 5 -→ ≡Cu2+ + SO 4 · - + OH-
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
≡Fe2+ + HSO 5 - → ≡Fe3+ + SO 4 2 - + ·OH
≡Cu+ + HSO 5 - → ≡Cu2+ + SO 4 2 - + ·OH
S2 O 8 2 - + ≡Cu+→≡Cu2+ + SO 4 · -+ SO 4 2 -
S2 O 8 2 - + ≡ Fe 2 +→≡Fe3++ SO 4 · -+ SO 4 2 -
SO 4 · -/·OH + pollutants → degradation products
Metal modification [17]
Carbon modification [87,88,91]
Metallic oxide modification [86]
MnFe2O4 (1)Fenton [31,33,34] Mn 2 ++ H2O2→·OH + ≡ Mn 3 + + OH-≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification [33]
(2)Persulfate oxidation [92~100] Mn 2 + + HSO 5 -→ ≡ Mn 3 ++ SO 4 · - + OH-
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
S2 O 8 2 - + ≡ Mn 2 +→ ≡Mn3++ SO 4 · -+ SO 4 2 -
SO 4 · -+H2O → SO 4 2 -+ ·OH + H+
SO 4 · -/·OH + pollutants → degradation products
Carbon modification [95,99]
Metallic oxide modification [97,100]
[1]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.).

doi: 10.7536/PC170310
[2]
Bethi B, Sonawane S H, Bhanvase B A, Gumfekar S P. Chem. Eng. Process. Process. Intensif., 2016, 109: 178.

doi: 10.1016/j.cep.2016.08.016
[3]
Lv L, Hu C, Prog. Chem., 2017, 29: 981.
(吕来, 胡春. 化学进展, 2017, 29: 981.).

doi: 10.7536/PC170552
[4]
Scaria J, Gopinath A, Nidheesh P V. J. Clean. Prod., 2021, 278: 124014.

doi: 10.1016/j.jclepro.2020.124014
[5]
Lu S, Liu L B, Demissie H, An G Y, Wang D S. Environ. Int., 2021, 146: 106273.

doi: 10.1016/j.envint.2020.106273
[6]
Pang Y L, Lim S, Ong H C, Chong W T. Ceram. Int., 2016, 42(1): 9.

doi: 10.1016/j.ceramint.2015.08.144
[7]
Yang S Y, Ren T F, Zhang Y X, Zheng D, Xin J. Prog. Chem., 2017, 29(4): 388.
(杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.).

doi: 10.7536/PC170133
[8]
Routray K L, Saha S, Behera D. Mater. Chem. Phys., 2019, 224: 29.

doi: 10.1016/j.matchemphys.2018.11.073
[9]
Valente F, Astolfi L, Simoni E, Danti S, Franceschini V, Chicca M, Martini A. J. Drug Deliv. Sci. Technol., 2017, 39: 28.
[10]
Šutka A, Gross K A. Sens. Actuat. B: Chem., 2016, 222: 95.

doi: 10.1016/j.snb.2015.08.027
[11]
Kefeni K K, Mamba B B, Msagati T A M. Sep. Purif. Technol., 2017, 188: 399.

doi: 10.1016/j.seppur.2017.07.015
[12]
Li Z L, Lyu J C, Ge M. J. Mater. Sci., 2018, 53(21): 15081.

doi: 10.1007/s10853-018-2699-0
[13]
Ge M, Chen Y Y, Liu M L, Li M. J. Environ. Chem. Eng., 2015, 3(4): 2809.

doi: 10.1016/j.jece.2015.10.011
[14]
Ge M, Hu Z. Ceram. Int., 2016, 42(5): 6510.

doi: 10.1016/j.ceramint.2016.01.035
[15]
Li Z L, Ai J Z, Ge M. J. Environ. Chem. Eng., 2017, 5(2): 1394.

doi: 10.1016/j.jece.2017.02.024
[16]
Li Z L, Lyu J C, Sun K L, Ge M. Mater. Lett., 2018, 214: 257.

doi: 10.1016/j.matlet.2017.12.034
[17]
Li Z L, Guo C S, Lyu J C, Hu Z, Ge M. J. Hazard. Mater., 2019, 373: 85.

doi: 10.1016/j.jhazmat.2019.03.075
[18]
Wang T Y, Bai Y C, Si W, Mao W, Gao Y H, Liu S X. J. Photochem. Photobiol. A: Chem., 2021, 404: 112856.

doi: 10.1016/j.jphotochem.2020.112856
[19]
Su M H, He C, Sharma V K, Abou Asi M, Xia D H, Li X Z, Deng H Q, Xiong Y. J. Hazard. Mater., 2012, 211/212: 95.

doi: 10.1016/j.jhazmat.2011.10.006
[20]
Lu D B, Zhang Y, Lin S X, Wang L T, Wang C M. J. Alloys Compd., 2013, 579: 336.

doi: 10.1016/j.jallcom.2013.06.098
[21]
Wang F X, Chen Y L, Zhu R S, Sun J M. Dalton Trans., 2017, 46(34): 11306.

doi: 10.1039/C7DT01528C
[22]
Zhang H, Liu J G, Ou C J, Faheem, Shen J Y, Jiao Z H, Han W Q, Sun X Y, Li J S, Wang L J. J. Environ. Sci., 2017, 53: 1.

doi: 10.1016/j.jes.2016.05.010
[23]
Chen Z, Gao Y T, Mu D Z, Shi H F, Lou D W, Liu S Y. Dalton Trans., 2019, 48(9): 3038.

doi: 10.1039/c9dt00396g pmid: 30758024
[24]
Nawaz M, Shahzad A, Tahir K, Kim J, Moztahida M, Jang J, Alam M B, Lee S H, Jung H Y, Lee D S. Chem. Eng. J., 2020, 382: 123053.

doi: 10.1016/j.cej.2019.123053
[25]
Guo X J, Wang D J. J. Environ. Chem. Eng., 2019, 7: 102814.

doi: 10.1016/j.jece.2018.102814
[26]
Feng X, Mao G Y, Bu F X, Cheng X L, Jiang D M, Jiang J S. J. Magn. Magn. Mater., 2013, 343: 126.

doi: 10.1016/j.jmmm.2013.05.001
[27]
Annie Vinosha P, Jerome Das S. Mater. Today: Proc., 2018, 5(2): 8662.
[28]
Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S, Metin Ö. Ultrason. Sonochemistry, 2018, 40: 841.

doi: 10.1016/j.ultsonch.2017.08.026
[29]
Wu Q, Zhang H, Zhou L C, Bao C, Zhu H, Zhang Y M. J. Taiwan Inst. Chem. Eng., 2016, 67: 484.

doi: 10.1016/j.jtice.2016.08.004
[30]
Deng Y M, Zhao X M, Luo J X, Wang Z, Tang J N. RSC Adv., 2020, 10(4): 1858.

doi: 10.1039/C9RA09191B
[31]
Wang G, Zhao D Y, Kou F Y, Ouyang Q, Chen J Y, Fang Z Q. Chem. Eng. J., 2018, 351: 747.

doi: 10.1016/j.cej.2018.06.033
[32]
Peng X Y, Qu J Y, Tian S, Ding Y W, Hai X, Jiang B, Wu M B, Qiu J S. RSC Adv., 2016, 6(106): 104549.

doi: 10.1039/C6RA24320G
[33]
Lai C, Huang F L, Zeng G M, Huang D L, Qin L, Cheng M, Zhang C, Li B S, Yi H, Liu S Y, Li L, Chen L. Chemosphere, 2019, 224: 910.

doi: 10.1016/j.chemosphere.2019.02.193
[34]
Zhao W H, Wei Z Q, Zhang X D, Ding M J, Huang S P. Mater. Res. Bull., 2020, 124: 110749.

doi: 10.1016/j.materresbull.2019.110749
[35]
Wang Y B, Zhao H Y, Li M F, Fan J Q, Zhao G H. Appl. Catal. B: Environ., 2014, 147: 534.

doi: 10.1016/j.apcatb.2013.09.017
[36]
Faheem M, Jiang X B, Wang L J, Shen J Y. RSC Adv., 2018, 8(11): 5740.

doi: 10.1039/C7RA13608K
[37]
Guo X J, Wang K B, Li D, Qin J B. Appl. Surf. Sci., 2017, 420: 792.

doi: 10.1016/j.apsusc.2017.05.178
[38]
Yao T J, Qi Y, Mei Y Q, Yang Y, Aleisa R, Tong X, Wu J. J. Hazard. Mater., 2019, 378: 120712.

doi: 10.1016/j.jhazmat.2019.05.105
[39]
Ma S D, Feng J, Qin W J, Ju Y Y, Chen X G. RSC Adv., 2015, 5(66): 53514.

doi: 10.1039/C5RA09114D
[40]
Yao Y J, Lu F, Zhu Y P, Wei F Y, Liu X T, Lian C, Wang S B. J. Hazard. Mater., 2015, 297: 224.

doi: 10.1016/j.jhazmat.2015.04.046
[41]
Cao Y, Lei X Y, Chen Q L, Kang C, Li W X, Liu B J. J. Photochem. Photobiol. A: Chem., 2018, 364: 794.

doi: 10.1016/j.jphotochem.2018.07.023
[42]
Wu S M, Xu Y, Li X L, Tong R F, Chen L, Han Y D, Wu J B, Zhang X. Inorg. Chem., 2018, 57(24): 15481.

doi: 10.1021/acs.inorgchem.8b02803
[43]
Sun Y Y, Wang W Z, Zhang L, Sun S M, Gao E P. Mater. Lett., 2013, 98: 124.

doi: 10.1016/j.matlet.2013.02.014
[44]
Nguyen T B, Huang C P, Doong R A. Sci. Total. Environ., 2019, 646: 745.

doi: 10.1016/j.scitotenv.2018.07.352
[45]
Nada A A, Nasr M, Viter R, Miele P, Roualdes S, Bechelany M. J. Phys. Chem. C, 2017, 121(44): 24669.

doi: 10.1021/acs.jpcc.7b08567
[46]
Rameshbabu R, Kumar N, Karthigeyan A, Neppolian B. Mater. Chem. Phys., 2016, 181: 106.

doi: 10.1016/j.matchemphys.2016.06.040
[47]
Wu S K, Shen X P, Zhu G X, Zhou H, Ji Z Y, Chen K M, Yuan A H. Appl. Catal. B: Environ., 2016, 184: 328.

doi: 10.1016/j.apcatb.2015.11.035
[48]
Kong L, Jiang Z, Xiao T C, Lu L F, Jones M O, Edwards P P. Chem. Commun., 2011, 47(19): 5512.

doi: 10.1039/C1CC10446B
[49]
Chen M X, Dai Y Z, Guo J, Yang H T, Liu D N, Zhai Y L. Appl. Surf. Sci., 2019, 493: 1361.

doi: 10.1016/j.apsusc.2019.04.160
[50]
Zhou Y W, Fang S S, Zhou M, Wang G Q, Xue S, Li Z Y, Xu S, Yao C. J. Alloys Compd., 2017, 696: 353.

doi: 10.1016/j.jallcom.2016.11.323
[51]
Yosefi L, Haghighi M, Allahyari S. Sep. Purif. Technol., 2017, 178: 18.

doi: 10.1016/j.seppur.2017.01.005
[52]
Chen X J, Dai Y Z, Liu T H, Guo J, Wang X Y, Li F F. J. Mol. Catal. A: Chem., 2015, 409: 198.

doi: 10.1016/j.molcata.2015.08.021
[53]
Li X J, Tang D L, Tang F, Zhu Y Y, He C F, Liu M H, Lin C X, Liu Y F. Mater. Res. Bull., 2014, 56: 125.

doi: 10.1016/j.materresbull.2014.05.013
[54]
He J, Cheng Y H, Wang T Z, Feng D Q, Zheng L C, Shao D W, Wang W C, Wang W H, Lu F, Dong H, Zheng R K, Liu H. Appl. Surf. Sci., 2018, 440: 99.

doi: 10.1016/j.apsusc.2017.12.219
[55]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.

doi: 10.1021/acs.chemrev.6b00075
[56]
Zhang S W, Li J X, Zeng M Y, Zhao G X, Xu J Z, Hu W P, Wang X K. ACS Appl. Mater. Interfaces, 2013, 5(23): 12735.

doi: 10.1021/am404123z
[57]
Zhang D F, Pu X P, Du K P, Yu Y M, Shim J J, Cai P Q, Kim S I, Seo H J. Sep. Purif. Technol., 2014, 137: 82.

doi: 10.1016/j.seppur.2014.09.025
[58]
Zhu Z R, Li X Y, Zhao Q D, Li Y H, Sun C Z, Cao Y Q. Mater. Res. Bull., 2013, 48(8): 2927.

doi: 10.1016/j.materresbull.2013.04.042
[59]
Liang J X, Wei Y, Zhang J G, Yao Y, He G Y, Tang B, Chen H Q. Ind. Eng. Chem. Res., 2018, 57(12): 4311.

doi: 10.1021/acs.iecr.8b00218
[60]
Devi L G, Srinivas M. J. Environ. Chem. Eng., 2017, 5(4): 3243.

doi: 10.1016/j.jece.2017.06.023
[61]
Li Y L, Zhang Z Q, Pei L Y, Li X G, Fan T, Ji J, Shen J F, Ye M X. Appl. Catal. B: Environ., 2016, 190: 1.
[62]
Li X W, Xu H F, Wang L, Zhang L, Cao X F, Guo Y C. J. Taiwan Inst. Chem. Eng., 2018, 85: 257.

doi: 10.1016/j.jtice.2018.01.043
[63]
Patil S S, Tamboli M S, Deonikar V G, Umarji G G, Ambekar J D, Kulkarni M V, Kolekar S S, Kale B B, Patil D R. Dalton Trans., 2015, 44(47): 20426.

doi: 10.1039/C5DT03173G
[64]
Gan L, Xu L J, Qian K. Mater. Des., 2016, 109: 354.

doi: 10.1016/j.matdes.2016.07.043
[65]
Zhou T H, Zhang G Z, Ma P J, Qiu X L, Zhang H W, Yang H, Liu G. Mater. Lett., 2018, 210: 271.

doi: 10.1016/j.matlet.2017.09.044
[66]
Zhou T H, Zhang G Z, Yang H, Zhang H W, Suo R N, Xie Y S, Liu G. RSC Adv., 2018, 8(49): 28179.

doi: 10.1039/C8RA02962H
[67]
Chao D Y, Liu Y B, Zhu Z L. Mater. Lett., 2018, 217: 239.

doi: 10.1016/j.matlet.2018.01.084
[68]
Zhai Y L, Dai Y Z, Guo J, Zhou L L, Chen M X, Yang H T, Peng L P. J. Colloid Interface Sci., 2020, 560: 111.

doi: 10.1016/j.jcis.2019.08.065
[69]
Long A H, Lei Y, Zhang H. Prog. Chem., 2014, 26(5): 898.
(龙安华, 雷洋, 张晖. 化学进展, 2014, 26(5): 898.).
[70]
Wacławek S, Lutze H V, Grübel K, Padil V V T, Černík M, Dionysiou D D. Chem. Eng. J., 2017, 330: 44.

doi: 10.1016/j.cej.2017.07.132
[71]
Duan X G, Sun H Q, Kang J, Wang Y X, Indrawirawan S, Wang S B. ACS Catal., 2015, 5(8): 4629.

doi: 10.1021/acscatal.5b00774
[72]
Li J, Xu M J, Yao G, Lai B. Chem. Eng. J., 2018, 348: 1012.

doi: 10.1016/j.cej.2018.05.032
[73]
Song Q Y, Feng Y P, Wang Z, Liu G G, Lv W. Sci. Total. Environ., 2019, 681: 331.

doi: 10.1016/j.scitotenv.2019.05.105
[74]
Wang Q F, Shao Y S, Gao N Y, Chu W H, Chen J X, Lu X, Zhu Y P, An N. Sep. Purif. Technol., 2017, 189: 176.

doi: 10.1016/j.seppur.2017.07.046
[75]
Du Y C, Ma W J, Liu P X, Zou B H, Ma J. J. Hazard. Mater., 2016, 308: 58.

doi: 10.1016/j.jhazmat.2016.01.035
[76]
Yao Y J, Yang Z H, Zhang D W, Peng W C, Sun H Q, Wang S B. Ind. Eng. Chem. Res., 2012, 51(17): 6044.

doi: 10.1021/ie300271p
[77]
Chen L W, Ding D H, Liu C, Cai H, Qu Y, Yang S J, Gao Y, Cai T M. Chem. Eng. J., 2018, 334: 273.

doi: 10.1016/j.cej.2017.10.040
[78]
Xu M J, Li J, Yan Y, Zhao X G, Yan J F, Zhang Y H, Lai B, Chen X, Song L P. Chem. Eng. J., 2019, 369: 403.

doi: 10.1016/j.cej.2019.03.075
[79]
Wu L Y, Zhang Q, Hong J M, Dong Z Y, Wang J. Chemosphere, 2019, 221: 412.

doi: 10.1016/j.chemosphere.2019.01.049
[80]
Ding Y B, Zhu L H, Wang N, Tang H Q. Appl. Catal. B: Environ., 2013, 129: 153.

doi: 10.1016/j.apcatb.2012.09.015
[81]
Zhang T, Zhu H B, Croué J P. Environ. Sci. Technol., 2013, 47(6): 2784.

doi: 10.1021/es304721g pmid: 23439015
[82]
Xu Y, Ai J, Zhang H. J. Hazard. Mater., 2016, 309: 87.

doi: 10.1016/j.jhazmat.2016.01.023
[83]
Wang Y R, Tian D F, Chu W, Li M R, Lu X W. Sep. Purif. Technol., 2019, 212: 536.

doi: 10.1016/j.seppur.2018.11.051
[84]
Qin W X, Fang G D, Wang Y J, Zhou D M. Chem. Eng. J., 2018, 348: 526.

doi: 10.1016/j.cej.2018.04.215
[85]
Ye P, Wu D M, Wang M Y, Wei Y, Xu A H, Li X X. Appl. Surf. Sci., 2018, 428: 131.

doi: 10.1016/j.apsusc.2017.09.107
[86]
Oh W D, Dong Z L, Hu Z T, Lim T T. J. Mater. Chem. A, 2015, 3(44): 22208.

doi: 10.1039/C5TA06563A
[87]
Kong J, Li R B, Wang F L, Chen P, Liu H J, Liu G G, Lv W. RSC Adv., 2018, 8(44): 24787.

doi: 10.1039/C8RA04103B
[88]
Li Z Q, Ma S L, Xu S J, Fu H C, Li Y, Zhao P, Meng Q X. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 577: 202.

doi: 10.1016/j.colsurfa.2019.05.067
[89]
Dong X B, Ren B X, Sun Z M, Li C Q, Zhang X W, Kong M H, Zheng S L, Dionysiou D D. Appl. Catal. B: Environ., 2019, 253: 206.

doi: 10.1016/j.apcatb.2019.04.052
[90]
Li J, Ren Y, Ji F Z, Lai B. Chem. Eng. J., 2017, 324: 63.

doi: 10.1016/j.cej.2017.04.104
[91]
Zhang X L, Feng M B, Qu R J, Liu H, Wang L S, Wang Z Y. Chem. Eng. J., 2016, 301: 1.

doi: 10.1016/j.cej.2016.04.096
[92]
Deng J, Feng S F, Ma X Y, Tan C Q, Wang H Y, Zhou S Q, Zhang T Q, Li J. Sep. Purif. Technol., 2016, 167: 181.

doi: 10.1016/j.seppur.2016.04.035
[93]
Deng J, Xu M Y, Qiu C G, Chen Y, Ma X Y, Gao N Y, Li X Y. Appl. Surf. Sci., 2018, 459: 138.

doi: 10.1016/j.apsusc.2018.07.198
[94]
So H L, Lin K Y, Chu W, Gong H. Ind. Eng. Chem. Res., 2020, 59(10): 4257.

doi: 10.1021/acs.iecr.9b05481
[95]
Yao Y J, Cai Y M, Lu F, Wei F Y, Wang X Y, Wang S B. J. Hazard. Mater., 2014, 270: 61.

doi: 10.1016/j.jhazmat.2014.01.027
[96]
Fu H C, Ma S L, Zhao P, Xu S J, Zhan S H. Chem. Eng. J., 2019, 360: 157.

doi: 10.1016/j.cej.2018.11.207
[97]
Chen G, Zhang X Y, Gao Y J, Zhu G X, Cheng Q F, Cheng X W. Sep. Purif. Technol., 2019, 213: 456.

doi: 10.1016/j.seppur.2018.12.049
[98]
Stoia M, Muntean C, Militaru B. J. Environ. Sci., 2017, 53: 269.

doi: 10.1016/j.jes.2015.10.035
[99]
Li Y, Yang Z Q, Zhang H G, Tong X W, Feng J N. Colloids Surf. A: Physicochem. Eng. Aspects, 2017, 529: 856.

doi: 10.1016/j.colsurfa.2017.06.043
[100]
Ma Q L, Zhang H X, Zhang X Y, Li B, Guo R N, Cheng Q F, Cheng X W. Chem. Eng. J., 2019, 360: 848.

doi: 10.1016/j.cej.2018.12.036
[101]
Jiang R, Zhu H Y, Li J B, Fu F Q, Yao J, Jiang S T, Zeng G M. Appl. Surf. Sci., 2016, 364: 604.

doi: 10.1016/j.apsusc.2015.12.200
[102]
Huang S Q, Xu Y G, Liu Q Q, Zhou T, Zhao Y, Jing L Q, Xu H, Li H M. Appl. Catal. B: Environ., 2017, 218: 174.

doi: 10.1016/j.apcatb.2017.06.030
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[10] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[11] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[12] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[13] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[14] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[15] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.