中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1627-1647 DOI: 10.7536/PC200836 Previous Articles   Next Articles

• Review •

Heavy Metal Speciation Analysis and Distribution Characteristics in Atmospheric Particulate Matters

Anen He1,2,3, Jiaojiao Xie1, Chungang Yuan1()   

  1. 1 Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
    2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Chungang Yuan
  • Supported by:
    National Natural Science Foundation of China(91543107); Fundamental Research Funds for the Central Universities(2017ZZD07)
Richhtml ( 28 ) PDF ( 675 ) Cited
Export

EndNote

Ris

BibTeX

Heavy metals (HMs), as one of the important toxic components in atmospheric particulate matters (PMs), are closely related to human health. The health risk of HMs in particulate matters highly depends on their species and bioavailability. Heavy metal speciation analysis in PMs is significant for the study of air pollution environmental health. Based on related researches in recent years, this paper summarizes and discusses about HMs species in atmospheric particulate matters from four key aspects: (1) Synthetic body fluids and sequential extraction procedures (such as BCR, Tessier's, Chester) have been widely used to extract operationally-defined species of HMs; (2) Chromatography-mass spectrometry technology and new functional materials have been applied for specific-selective analysis, and in-situ speciation and atomic cluster structures of HMs can be characterized by XAFS (X-ray absorption fine structure); (3) Particle size distribution of HMs species in PMs is complicated, which is affected by many factors and tends to be concentrated in fine particles; (4) Spatial and temporal distribution characteristics of HMs in PMs are highly regional. Social development, industrial, and climate are the main factors. Health risks at summer and hazy days are relatively higher.

Contents

1 Introduction

2 Heavy metal speciation analysis methods

2.1 Operationally-define speciation

2.2 Specific-selective speciation

2.3 In-situ speciation

3 Heavy metal speciation distribution characteristics

3.1 Spatial distribution characteristics

3.2 Temporal distribution characteristics

3.3 Particle size distribution characteristics

4 Conclusion and outlook

Table 1 Extractant and its chemical components for extracting soluble heavy metals from atmospheric particulate matters
Extractant Chemical components Reaction condition ref
Water Deionized water (pH=7.0) Shake/ultrasonicate for several hours 43~49
Buffered salt solution/dilute acid Normal saline (0.9% NaCl solution, pH=7.0)
1 mM Ethylenediaminetetraacetic acid (EDTA, pH=4.77)
10 mM CH3COOK/CH3COOH (acetate buffer, pH=4.3)
6∶2∶5 v/v HNO3∶HCl∶HClO4 (pH=1.0)
0.4% v/v HNO3 solution (pH=1.2)
15 mL 0.1 mol/L HCl (pH=1.0)
Ultrasonicate for 30 mins
Ultrasonicate for 15 mins
Ultrasonicate for 15 mins
Shake at 95 ℃ for 4 h
Shake for 24 h
Shake for 1 h
50
49
49
51
52
53
Serum-based fluid 4.5 g/L contained glucose, 2.4 g/L HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 1500 g/L NaHCO3, 0.11 g/L Na-pyruvate,0.29 g/L L-glutamine,5 mL penicillin/streptomycin, 50 mL fetal bovine serum. (pH=7.4) Slowly shake at 37 ℃ for 24 h 54
Physiologically based
extraction test (PBET)-simulated gastric juice
0.5 g sodium citrate, 0.5 g malic acid, 420 μL lactic acid, 500 μL acetic acid, 1.25 g pepsin, finally dilute the volume to 1L with deionized water. (adjust pH to 2.0 with NaOH and HCl) Slowly shake at 37 ℃ for 24 h 55,56
Physiologically based
extraction test (PBET)-simulated intestinal
juice
0.5 g sodium citrate, 0.5 g malic acid, 420 μL lactic acid, 500 μL acetic acid, 1.25 g pepsin, 0.05 g trypsin, 0.175 g bile salts, finally dilute the volume to 1L with deionized water. (adjust pH to 7.0 with saturated NaHCO3) Slowly shake at 37 ℃ for 24 h 55,56
Surrogate lung fluid
(SLF)
130 mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 5mM NaHCO3, 1.5 mM CaCl2, 5.5 mM glucose, 10 mM HEPES. (pH=7.4) Slowly shake in the dark at
37 ℃
57~59
Artificial lysosomal fluid (ALF) 0.05 g/L MgCl2, 3.21 g/L NaCl, 0.071 g/L Na2HPO4, 0.039 g/L Na2SO4, 0.128 g/L CaCl2·H2O, 0.077 g/L C6H5Na3O7·2H2O, 6.00 g/L NaOH, 20.8 g/L C6H8O7, 0.059 g/L NH2CH2COOH, 0.090 g/L C4H4O6Na2·2H2O, 0.085 g/L C3H5NaO3, 0.086 g/L C3H3O3Na. (pH=4.5) Slowly shake in the dark at
37 ℃ in a closed container
60,61
Gamble's solution 0.095 g/L MgCl2, 6.019 g/L NaCl, 0.298 g/L KCl, 0.126 g/L Na2HPO4, 0.063 g/L Na2SO4, 0.368 g/L CaCl2·H2O, 0.574 g/L C2H3O2Na, 2.604 g/L NaHCO3, 0.097 g/L C6H5Na3O7·2H2O. (pH=7.4) Slowly shake in the dark at 37 ℃ in a closed container 60,61
Table 2 The main sequential extraction procedure in the literature and their applications
Table 3 Standard limits for heavy metals in ambient air in China and major countries around the world (Annual mean, ng/m3)
Table 4 The characteristics of the average volume concentration of heavy metal elements bioavailability in atmospheric particulate matters in foreign regions (ng/m3)
Table 5 The characteristics of the average volume concentration of heavy metal elements bioavailability in atmospheric particulate matters in Chinese cities (ng/m3)
Table 6 A summary table of the average percentage of heavy metals speciation with different particle sizes analyzed by the sequential extraction procedures in four domestic cities
[1]
Wang Y G, Ying Q, Hu J L, Zhang H L. Environ. Int., 2014, 73: 413.

doi: 10.1016/j.envint.2014.08.016
[2]
Chan C K, Yao X H. Atmos. Environ., 2008, 42(1): 1.

doi: 10.1016/j.atmosenv.2007.09.003
[3]
Cao C, Jiang W J, Wang B Y, Fang J H, Lang J D, Tian G, Jiang J K, Zhu T F. Environ. Sci. Technol., 2014, 48(3): 1499.

doi: 10.1021/es4048472
[4]
Zhang C G, Zou Z, Chang Y H, Zhang Y, Wang X F, Yang X. Chemosphere, 2020, 251: 126598.

doi: 10.1016/j.chemosphere.2020.126598
[5]
Cerro J C, Cerdà V, Querol X, Alastuey A, Bujosa C, Pey J. Sci. Total. Environ., 2020, 717: 137177.

doi: 10.1016/j.scitotenv.2020.137177
[6]
Wang Y H, Tang G Q, Zhao W, Yang Y, Wang L L, Liu Z R, Wen T X, Cheng M T, Wang Y M, Wang Y S. Atmos. Environ., 2020, 224: 117325.

doi: 10.1016/j.atmosenv.2020.117325
[7]
Ren G F, Yan X L, Ma Y G, Qiao L P, Chen Z X, Xin Y L, Zhou M, Shi Y C, Zheng K W, Zhu S H, Huang C, Li L. Atmos. Res., 2020, 237: 104817.

doi: 10.1016/j.atmosres.2019.104817
[8]
Ramírez O, Sánchez de la Campa A M, Sánchez-Rodas D, de la Rosa J D. Sci. Total. Environ., 2020, 710: 136344.

doi: 10.1016/j.scitotenv.2019.136344
[9]
Pérez Pastor R, Salvador P, García Alonso S, Alastuey A,García dos Santos S, Querol X, Artíñano B. Chemosphere, 2020, 248: 125896.

doi: 10.1016/j.chemosphere.2020.125896
[10]
Jo Y J, Lee H J, Jo H Y, Woo J H, Kim Y, Lee T, Heo G, Park S M, Jung D, Park J, Kim C H. Atmos. Res., 2020, 240: 104948.

doi: 10.1016/j.atmosres.2020.104948
[11]
International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Human, 2012, 100C. [2020-6-15]. https://publications.iarc.fr/120.
[12]
Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S. Geosciences, 2014, 4(3): 128.

doi: 10.3390/geosciences4030128
[13]
International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risk to human, 1993, 58. [2020-6-15]. https://publications.iarc.fr/76.
[14]
Hu X, Zhang Y, Ding Z H, Wang T J, Lian H Z, Sun Y Y, Wu J C. Atmos. Environ., 2012, 57: 146.

doi: 10.1016/j.atmosenv.2012.04.056
[15]
Faraji Ghasemi F, Dobaradaran S, Saeedi R, Nabipour I, Nazmara S,Ranjbar Vakil Abadi D, Arfaeinia H, Ramavandi B, Spitz J, Mohammadi M J, Keshtkar M. Environ. Sci. Pollut. Res., 2020, 27(5): 5305.

doi: 10.1007/s11356-019-07272-7
[16]
Chen P F, Bi X H, Zhang J Q, Wu J H, Feng Y C. Particuology, 2015, 20: 104.

doi: 10.1016/j.partic.2014.04.020
[17]
Xue H Q, Liu G J, Zhang H, Hu R Y, Wang X. Chemosphere, 2019, 220: 760.

doi: 10.1016/j.chemosphere.2018.12.123
[18]
Yuan C G, Zhang K G, Wang Z H, Jiang G B. J. Anal. At. Spectrom., 2010, 25(10): 1605.

doi: 10.1039/c0ja00005a
[19]
Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. Environ. Int., 2004, 30(6): 769.

doi: 10.1016/j.envint.2004.01.001
[20]
Wang Y W, Yuan C G, Jin X L, Jiang G B. J. Environ. Sci., 2005, 17 (4): 540.
[21]
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A, Weichenthal S. Proc. Natl. Acad. Sci. U.S.A., 2018, 115 (38): 9592.

doi: 10.1073/pnas.1803222115
[22]
Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. Nature, 2015, 525(7569): 367.

doi: 10.1038/nature15371
[23]
Lim S S, Vos T, Flaxman A D, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa M A, Amann M, Anderson H R, Andrews K G, Aryee M, Atkinson C, Bacchus L J, Bahalim A N, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell M L, Blore J D, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce N G, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett R T, Byers T E, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H L, Chen J S, Cheng A T A, Child J C, Cohen A, Colson K E, Cowie B C, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, des Jarlais D C, Devries K, Dherani M, Ding E L, Dorsey E R, Driscoll T, Edmond K, Ali S E, Engell R E, Erwin P J, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane M M, Flaxman S, Fowkes F G R, Freedman G, Freeman M K, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez H R, Hall W, Hoek H W, Hogan A, Hosgood H D III, Hoy D, Hu H, Hubbell B J, Hutchings S J, Ibeanusi S E, Jacklyn G L, Jasrasaria R, Jonas J B, Kan H D, Kanis J A, Kassebaum N, Kawakami N, Khang Y H, Khatibzadeh S, Khoo J P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher J L, Leigh J, Li Y, Lin J K, Lipshultz S E, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish Z A, Mensah G A, Merriman T R, Micha R, Michaud C, Mishra V, Hanafiah K M, Mokdad A A, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson P K, Nolla J M, Norman R, Olives C, Omer S B, Orchard J, Osborne R, Ostro B, Page A, Pandey K D, Parry C D, Passmore E, Patra J, Pearce N, Pelizzari P M, Petzold M, Phillips M R, Pope D, Pope C A III, Powles J, Rao M, Razavi H, Rehfuess E A, Rehm J T, Ritz B, Rivara F P, Roberts T, Robinson C, Rodriguez-Portales J A, Romieu I, Room R, Rosenfeld L C, Roy A, Rushton L, Salomon J A, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P L, Shield K, Shivakoti R, Singh G M, Sleet D A, Smith E, Smith K R, Stapelberg N J, Steenland K, Stöckl H, Stovner L J, Straif K, Straney L, Thurston G D, Tran J H, van Dingenen R, van Donkelaar A, Veerman J L, Vijayakumar L, Weintraub R, Weissman M M, White R A, Whiteford H, Wiersma S T, Wilkinson J D, Williams H C, Williams W, Wilson N, Woolf A D, Yip P, Zielinski J M, Lopez A D, Murray C J, Ezzati M. Lancet, 2012, 380(9859): 2224.

doi: 10.1016/S0140-6736(12)61766-8
[24]
Wang Y H, Wang T, Xu M M, Yu H T, Ding C G, Wang Z J, Pan X F, Li Y B, Niu Y, Yan R X, Song J Y, Yan H F, Dai Y F, Sun Z W, Su W G, Duan H W. Environ. Int., 2020, 134: 105296.

doi: 10.1016/j.envint.2019.105296
[25]
Lu Y, Lin S, Fatmi Z, Malashock D, Hussain M M, Siddique A, Carpenter D O, Lin Z Q, Khwaja H A. Environ. Pollut., 2019, 252: 1412.

doi: 10.1016/j.envpol.2019.06.078
[26]
Dunea D, Iordache S, Liu H Y, Bøhler T, Pohoata A, Radulescu C. Environ. Sci. Pollut. Res., 2016, 23(15): 15395.

doi: 10.1007/s11356-016-6734-x
[27]
Chen K, Huang L, Yan B Z, Li H B, Sun H, Bi J. Environ. Sci. Technol., 2014, 48(21): 12930.

doi: 10.1021/es502994j pmid: 25294690
[28]
Xie J J, Yuan C G, Xie J, Shen Y W, He K Q, Zhang K G. Environ. Pollut., 2019, 252: 336.

doi: 10.1016/j.envpol.2019.04.106
[29]
Xie J J, Yuan C G, Shen Y W, Xie J, He K Q, Zhu H T, Zhang K G. Ecotoxicol. Environ. Saf., 2019, 169: 487.

doi: 10.1016/j.ecoenv.2018.11.026
[30]
Dreher K L, Jaskot R H, Lehmann J R, Richards J H, McGee J K, Ghio A J, Costa D L. J. Toxicol. Environ. Health Sci., 1997, 50 (3): 285.
[31]
Prieditis H, Adamson I Y R. Exp. Lung Res., 2002, 28(7): 563.

pmid: 12396249
[32]
Gioda A, Fuentes-Mattei E, Jimenez-Velez B. Int. J. Environ. Heal. Res., 2011, 21(2): 106.
[33]
Wallenborn J G, McGee J K, Schladweiler M C, Ledbetter A D, Kodavanti U P. Toxicol. Sci., 2007, 98(1): 231.

pmid: 17434951
[34]
Gilmour P S, Schladweiler M C, Nyska A, McGee J K, Thomas R, Jaskot R H, Schmid J, Kodavanti U P. J. Toxicol. Environ. Heal. A, 2006, 69(22): 2011.

doi: 10.1080/15287390600746173
[35]
Kodavanti U P, Schladweiler M C, Gilmour P S, Wallenborn J G, Mandavilli B S, Ledbetter A D, Christiani D C, Runge M S, Karoly E D, Costa D L, Peddada S, Jaskot R, Richards J H, Thomas R, Madamanchi N R, Nyska A. Environ. Heal. Perspect., 2008, 116(1): 13.
[36]
Zhang Z H, Chau P Y K, Lai H K, Wong C M. Int. J. Environ. Heal. Res., 2009, 19(3): 175.
[37]
Kastury F, Smith E, Lombi E, Donnelley M W, Cmielewski P L, Parsons D W, Noerpel M, Scheckel K G, Kingston A M, Myers G R, Paterson D, de Jonge M D, Juhasz A L. Environ. Sci. Technol., 2019, 53(19): 11486.

doi: 10.1021/acs.est.9b03249
[38]
Sangani R G, Soukup J M, Ghio A J. Inhal. Toxicol., 2010, 22(8): 621.

doi: 10.3109/08958371003599037 pmid: 20388004
[39]
Grandjean P, Weihe P, White R F, Debes F. Environ. Res., 1998, 77(2): 165.

pmid: 9600810
[40]
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007
[41]
Wan X M, Li C Y, Parikh S J. Environ. Pollut., 2020, 261: 114157.

doi: 10.1016/j.envpol.2020.114157
[42]
Shaheen S M, Wang J X, Swertz A C, Feng X B, Bolan N, Rinklebe J. Environ. Pollut., 2019, 248: 1059.

doi: S0269-7491(18)31956-0 pmid: 31091638
[43]
Karthikeyan S, Joshi U M, Balasubramanian R. Anal. Chimica Acta, 2006, 576(1): 23.

doi: 10.1016/j.aca.2006.05.051
[44]
Wang G H, Huang L M, Gao S X, Gao S T, Wang L S. Atmos. Environ., 2002, 36(8): 1299.

doi: 10.1016/S1352-2310(01)00550-7
[45]
Birmili W, Allen A G, Bary F, Harrison R M. Environ. Sci. Technol., 2006, 40(4): 1144.

doi: 10.1021/es0486925
[46]
Sun J, Shen Z X, Zhang Y, Zhang Q, Lei Y L, Huang Y, Niu X Y, Xu H M, Cao J J, Ho S S H, Li X X. Atmos. Environ., 2019, 205: 36.

doi: 10.1016/j.atmosenv.2019.02.038
[47]
Galon-Negru A G, Olariu R I, Arsene C. Sci. Total. Environ., 2019, 695: 133839.

doi: 10.1016/j.scitotenv.2019.133839
[48]
Heal M R, Hibbs L R, Agius R M, Beverland I J. Atmos. Environ., 2005, 39(8): 1417.
[49]
Canepari S, Astolfi M L, Moretti S, Curini R. Talanta, 2010, 82(2): 834.

doi: 10.1016/j.talanta.2010.05.068 pmid: 20602978
[50]
Artelt S, Kock H, Nachtigall D, Heinrich U. Toxicol. Lett., 1998, 96: 163.
[51]
Dos Santos M, Gómez D, Dawidowski L, Gautier E, Smichowski P. Microchem. J., 2009, 91(1): 133.

doi: 10.1016/j.microc.2008.09.001
[52]
Graney J R, Landis M S, Norris G A. Atmos. Environ., 2004, 38(2): 237.

doi: 10.1016/j.atmosenv.2003.09.052
[53]
Voutsa D, Samara C. Atmos. Environ., 2002, 36(22): 3583.

doi: 10.1016/S1352-2310(02)00282-0
[54]
Gray J E, Plumlee G S, Morman S A, Higueras P L, Crock J G, Lowers H A, Witten M L. Environ. Sci. Technol., 2010, 44(12): 4782.

doi: 10.1021/es1001133
[55]
Oomen A G, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, van de Wiele T, Wragg J, Rompelberg C J M, Sips A J A M, van Wijnen J H. Environ. Sci. Technol., 2002, 36(15): 3326.

doi: 10.1021/es010204v
[56]
Huang H, Jiang Y, Xu X Y, Cao X D. Sci. Total. Environ., 2018, 610/611: 546.

doi: 10.1016/j.scitotenv.2017.08.074
[57]
Mazziotti Tagliani S, Carnevale M, Armiento G, Montereali M R, Nardi E, Inglessis M, Sacco F, Palleschi S, Rossi B, Silvestroni L, Gianfagna A. Atmos. Environ., 2017, 153: 47.

doi: 10.1016/j.atmosenv.2017.01.009
[58]
Charrier J G, McFall A S, Richards-Henderson N K, Anastasio C. Environ. Sci. Technol., 2014, 48(12): 7010.

doi: 10.1021/es501011w
[59]
Zhong L J, Liu X L, Hu X, Chen Y J, Wang H W, Lian H Z. J. Hazard. Mater., 2020, 381: 121202.

doi: 10.1016/j.jhazmat.2019.121202
[60]
Colombo C, Monhemius A J, Plant J A. Ecotoxicol. Environ. Saf., 2008, 71(3): 722.

doi: 10.1016/j.ecoenv.2007.11.011
[61]
Wiseman C L S, Zereini F. Atmos. Environ., 2014, 89: 282.

doi: 10.1016/j.atmosenv.2014.02.055
[62]
Verma V, Fang T, Xu L, Peltier R E, Russell A G, Ng N L, Weber R J. Environ. Sci. Technol., 2015, 49(7): 4646.

doi: 10.1021/es505577w
[63]
Verma V, Fang T, Guo H, King L, Bates J T, Peltier R E, Edgerton E, Russell A G, Weber R J. Atmos. Chem. Phys., 2014, 14(23): 12915.

doi: 10.5194/acp-14-12915-2014
[64]
Bates J T, Weber R J, Abrams J, Verma V, Fang T, Klein M, Strickland M J, Sarnat S E, Chang H H, Mulholland J A, Tolbert P E, Russell A G. Environ. Sci. Technol., 2015, 49(22): 13605.

doi: 10.1021/acs.est.5b02967
[65]
Fang T, Guo H Y, Zeng L H, Verma V, Nenes A, Weber R J. Environ. Sci. Technol., 2017, 51(5): 2611.

doi: 10.1021/acs.est.6b06151
[66]
Costa D L, Dreher K L. Environ. Heal. Perspect., 1997, 105: 1053.
[67]
Sun Y Y, Hu X, Wu J C, Lian H Z, Chen Y J. Sci. Total. Environ., 2014, 493: 487.

doi: 10.1016/j.scitotenv.2014.06.017
[68]
Wang J W, Wan Y J, Cheng L, Xia W, Li Y Y, Xu S Q. Atmos. Pollut. Res., 2020, 11(4): 785.

doi: 10.1016/j.apr.2020.01.006
[69]
Gleyzes C, Tellier S, Astruc M. Trac Trends Anal. Chem., 2002, 21(6/7): 451.

doi: 10.1016/S0165-9936(02)00603-9
[70]
Jin J W, Li Y N, Zhang J Y, Wu S C, Cao Y C, Liang P, Zhang J, Wong M H, Wang M Y, Shan S D, Christie P. J. Hazard. Mater., 2016, 320: 417.

doi: 10.1016/j.jhazmat.2016.08.050
[71]
Yuan C G, Liu S T, Yin L Q. Fresenius. Environ. Bull., 2010, 19 (5): 871.
[72]
Yuan C G, Jiang W P, Zhu T, Yuan B, Song X W. Spectrosc. Spectr. Anal., 2014, 34(8): 2259.
(苑春刚, 江万平, 祝涛, 袁博, 宋小卫. 光谱学与光谱分析, 2014, 34(8): 2259.).
[73]
He K Q, Yuan C G, Shi M D, Jiang Y H, Yu S J. RSC Adv., 2020, 10(16): 9226.

doi: 10.1039/C9RA08481A
[74]
Tessier A, Campbell P G C, Bisson M. Anal. Chem., 1979, 51(7): 844.

doi: 10.1021/ac50043a017
[75]
Quevauviller P, Ure A, Muntau H, Griepink B. Int. J. Environ. Anal. Chem., 1993, 51(1/4): 129.

doi: 10.1080/03067319308027618
[76]
Sahuquillo A, López-Sánchez J F, Rubio R, Rauret G, Thomas R P, Davidson C M, Ure A M. Anal. Chimica Acta, 1999, 382(3): 317.

doi: 10.1016/S0003-2670(98)00754-5
[77]
Obiols J, Devesa R, Sol A. Toxicol. Environ. Chem., 1986, 13(1/2): 121.
[78]
Rauret G, Rubio R, López-Sánchez J F. Int. J. Environ. Anal. Chem., 1989, 36(2): 69.

doi: 10.1080/03067318908026859
[79]
J. Serb. Chem. Soc., 1992, 57 (10): 697.
[80]
Lucho-Constantino C A, Álvarez-Suárez M, Beltrán-Hernández R I, Prieto-García F, Poggi-Varaldo H M. Environ. Int., 2005, 31(3): 313.

pmid: 15734185
[81]
Li H Y, Shi A B, Zhang X R. J. Environ. Sci., 2015, 32: 228.

doi: 10.1016/j.jes.2014.11.014
[82]
Ranjbar Jafarabadi A, Mitra S, Raudonytė-Svirbutavičienė E,Riyahi Bakhtiari A. J. Hazard. Mater., 2020, 400: 122988.

doi: S0304-3894(20)30977-8 pmid: 32947728
[83]
Fernández A J, Ternero M, Barragán F J, Jiménez J C. Chemosphere Glob. Change Sci., 2000, 2(2): 123.

doi: 10.1016/S1465-9972(00)00002-7
[84]
Feng X D, Dang Z, Huang W L, Yang C. Int. J. Environ. Sci. Technol., 2009, 6(3): 337.

doi: 10.1007/BF03326071
[85]
Kousi P, Remoundaki E, Hatzikioseyian A, Korkovelou V, Tsezos M. Environ. Sci. Pollut. Res., 2018, 25(36): 35883.

doi: 10.1007/s11356-018-1905-6
[86]
Kodirov O, Kersten M, Shukurov N, Martín Peinado F J. Sci. Total. Environ., 2018, 622/623: 1658.

doi: 10.1016/j.scitotenv.2017.10.049
[87]
Sakan S M, Đorđević D S, Manojlović D D, Predrag P S. J. Environ. Manag., 2009, 90(11): 3382.

doi: 10.1016/j.jenvman.2009.05.013
[88]
Saleem M, Iqbal J, Akhter G, Shah M H. J. Geochem. Explor., 2018, 184: 199.

doi: 10.1016/j.gexplo.2017.11.002
[89]
Ratuzny T, Gong Z, Wilke B M. Environ. Monit. Assess., 2009, 156(1/4): 171.

doi: 10.1007/s10661-008-0473-5
[90]
Abdu N, Agbenin J O, Buerkert A. Environ. Monit. Assess., 2012, 184(4): 2057.

doi: 10.1007/s10661-011-2099-2
[91]
Chester R, Lin F J, Murphy K J T. Environ. Technol. Lett., 1989, 10(10): 887.

doi: 10.1080/09593338909384810
[92]
Koçak M, Kubilay N, Herut B, Nimmo M. J. Atmos. Chem., 2007, 56(3): 239.

doi: 10.1007/s10874-006-9053-7
[93]
Bikkes M, Polyák K, Hlavay J. J. Anal. At. Spectrom., 2001, 16(1): 74.

doi: 10.1039/B005931P
[94]
Espinosa A J F, Rodriguez M T, La Rosa F J B D, Sanchez J C J. Atmos. Environ., 2002, 36 (5): 773.

doi: 10.1016/S1352-2310(01)00534-9
[95]
Betha R, Behera S N, Balasubramanian R. Environ. Sci. Technol., 2014, 48(8): 4327.

doi: 10.1021/es405533d
[96]
Huang R J, Cheng R, Jing M, Yang L, Li Y J, Chen Q, Chen Y, Yan J, Lin C S, Wu Y F, Zhang R J, El Haddad I, Prevot A S H, O'Dowd C D, Cao J J. Environ. Sci. Technol., 2018, 52(19): 10967.

doi: 10.1021/acs.est.8b02091
[97]
Wenzel W W, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano D C. Anal. Chimica Acta, 2001, 436(2): 309.

doi: 10.1016/S0003-2670(01)00924-2
[98]
Xie J J, Yuan C G, Xie J, Niu X D, Zhang X R, Zhang K G, Xu P Y, Ma X Y, Lv X B. Environ. Pollut., 2020, 259: 113881.

doi: 10.1016/j.envpol.2019.113881
[99]
Golia E E, Tsiropoulos N G, Dimirkou A, Mitsios I. Int. J. Environ. Anal. Chem., 2007, 87(13/14): 1053.

doi: 10.1080/03067310701451012
[100]
Davidson C M, Duncan A L, Littlejohn D, Ure A M, Garden L M. Anal. Chimica Acta, 1998, 363(1): 45.

doi: 10.1016/S0003-2670(98)00057-9
[101]
Davidson C M, Thomas R P, McVey S E, Perala R, Littlejohn D, Ure A M. Anal. Chimica Acta, 1994, 291(3): 277.

doi: 10.1016/0003-2670(94)80023-5
[102]
Usero J, Gamero M, Morillo J, Gracia I. Environ. Int., 1998, 24(4): 487.

doi: 10.1016/S0160-4120(98)00028-2
[103]
Xie J J, Yuan C G, Xie J, Niu X D, He A. Ecotoxicol. Environ. Saf., 2020, 192: 110249.

doi: 10.1016/j.ecoenv.2020.110249
[104]
Minatel B C, Sage A P, Anderson C, Hubaux R, Marshall E A, Lam W L, Martinez V D. Environ. Int., 2018, 112: 183.

doi: S0160-4120(17)31550-7 pmid: 29275244
[105]
Zatka V J, Warner J S, Maskery D. Environ. Sci. Technol., 1992, 26(1): 138.

doi: 10.1021/es00025a015
[106]
Vincent J H, Ramachandran G, Kerr S M. J. Environ. Monitor., 2001, 3(6): 565.

pmid: 11785627
[107]
Füchtjohann L, Jakubowski N, Gladtke D, Klockow D, Broekaert J A C. J. Environ. Monitor., 2001, 3(6): 681.

doi: 10.1039/b107010j
[108]
Liu G Y, Liu Z X, Zhang Y G, Gao P, Xu D H, Zheng S N. Environ. Chem., 2017, 36(11): 2357.
(刘广洋, 刘中笑, 张延国, 高苹, 徐东辉, 郑姝宁. 环境化学, 2017, 36(11): 2357.).
[109]
Yin Y G, Liu J F, He B, Shi J B, Jiang G B. J. Chromatogr. A, 2008, 1181(1/2): 77.

doi: 10.1016/j.chroma.2007.12.050
[110]
Wang Z H, Yin Y G, He B, Shi J B, Liu J F, Jiang G B. J. Anal. At. Spectrom., 2010, 25(6): 810.

doi: 10.1039/b924291k
[111]
Wang Y, Liu G L, Li Y B, Liu Y W, Guo Y Y, Shi J B, Hu L G, Cai Y, Yin Y G, Jiang G B. Environ. Sci. Technol. Lett., 2020, 7(7): 482.

doi: 10.1021/acs.estlett.0c00329
[112]
Mao Y X, Yin Y G, Li Y B, Liu G L, Feng X B, Jiang G B, Cai Y. Environ. Pollut., 2010, 158(11): 3378.

doi: 10.1016/j.envpol.2010.07.031
[113]
Mao Y X, Liu G L, Meichel G, Cai Y, Jiang G B. Anal. Chem., 2008, 80(18): 7163.

doi: 10.1021/ac800908b
[114]
Yin Y G, Liu Y, Liu J F, He B, Jiang G B. Anal. Methods, 2012, 4(4): 1122.

doi: 10.1039/c2ay05886c
[115]
Yuan C G, Jiang G B, He B. J. Anal. At. Spectrom., 2005, 20(2): 103.

doi: 10.1039/b416102e
[116]
Macedo S M, dos Santos D C, de Jesus R M, da Rocha G O, Ferreira S L C, de Andrade J B. Microchem. J., 2010, 96(1): 46.

doi: 10.1016/j.microc.2010.01.019
[117]
Šlejkovec Z, Salma I, van Elteren J T, Zemplén-Papp É. Fresenius' J. Anal. Chem., 2000, 366(8): 830.

doi: 10.1007/s002160051580
[118]
Farinha M M, Šlejkovec Z, Elteren J T, Wolterbeek H T, Freitas M C. J. Atmos. Chem., 2004, 49(1/3): 343.

doi: 10.1007/s10874-004-1248-1
[119]
Yang G S, Ma L L, Xu D D, Li J, He T T, Liu L Y, Jia H L, Zhang Y B, Chen Y, Chai Z F. Chemosphere, 2012, 87(8): 845.

doi: 10.1016/j.chemosphere.2012.01.023
[120]
Pantsar-Kallio M, Korpela A. Anal. Chimica Acta, 2000, 410(1/2): 65.

doi: 10.1016/S0003-2670(99)00892-2
[121]
Diaz-Bone R A, Hollmann M, Wuerfel O, Pieper D. J. Anal. At. Spectrom., 2009, 24(6): 808.

doi: 10.1039/b822968f
[122]
Yuan C G, Lu X F, Qin J, Rosen B P, Le X C. Environ. Sci. Technol., 2008, 42(9): 3201.

doi: 10.1021/es702910g
[123]
Jakob R, Roth A, Haas K, Krupp E M, Raab A, Smichowski P, Gómez D, Feldmann J. J. Environ. Monit., 2010, 12(2): 409.

doi: 10.1039/B915867G
[124]
Tziaras T, Pergantis S A, Stephanou E G. Environ. Sci. Technol., 2015, 49(19): 11640.

doi: 10.1021/acs.est.5b02328
[125]
Huang M J, Chen X W, Zhao Y G, Yu Chan C E, Wang W, Wang X M, Wong M H. Environ. Pollut., 2014, 188: 37.

doi: 10.1016/j.envpol.2014.01.001
[126]
Hong S, Kwon H O, Choi S D, Lee J S, Khim J S. Mar. Pollut. Bull., 2016, 108(1/2): 155.

doi: 10.1016/j.marpolbul.2016.04.035
[127]
Tsopelas F, Tsakanika L A, Ochsenkühn-Petropoulou M. Microchem. J., 2008, 89(2): 165.

doi: 10.1016/j.microc.2008.02.003
[128]
Huang C Z, Hu B, Jiang Z C. Spectrochimica Acta B: At. Spectrosc., 2007, 62(5): 454.

doi: 10.1016/j.sab.2007.04.012
[129]
Li P, Zhang X Q, Chen Y J, Bai T Y, Lian H Z, Hu X. RSC Adv., 2014, 4(90): 49421.

doi: 10.1039/C4RA06563H
[130]
Zhao L Y, Zhu Q Y, Mao L, Chen Y J, Lian H Z, Hu X. Talanta, 2019, 192: 339.

doi: 10.1016/j.talanta.2018.09.064
[131]
Huang C Y, Beauchemin D. J. Anal. At. Spectrom., 2003, 18(8): 951.

doi: 10.1039/b303355d
[132]
Burney D, Neal C R. J. Anal. At. Spectrom., 2019, 34(9): 1856.

doi: 10.1039/C9JA00003H
[133]
Huang B L. Spectrochimica Acta B: At. Spectrosc., 2008, 63(4): 455.

doi: 10.1016/j.sab.2008.02.001
[134]
Zhu X S, Hu B, Jiang Z C, Li M F. Water Res., 2005, 39(4): 589.

doi: 10.1016/j.watres.2004.11.006
[135]
Fang G Z, Tan J, Yan X P. Anal. Chem., 2005, 77(6): 1734.

doi: 10.1021/ac048570v
[136]
Liu Y, Li Y, Yan X P. Adv. Funct. Mater., 2008, 18(10): 1536.

doi: 10.1002/adfm.v18:10
[137]
Owlad M, Aroua M K, Daud W A W, Baroutian S. Water Air Soil Pollut., 2009, 200(1/4): 59.

doi: 10.1007/s11270-008-9893-7
[138]
Wei X, Hu L L, Chen M L, Yang T, Wang J H. Anal. Chem., 2016, 88(24): 12437.

doi: 10.1021/acs.analchem.6b03810
[139]
Huang Y F, Li Y, Jiang Y, Yan X P. J. Anal. At. Spectrom., 2010, 25(9): 1467.

doi: 10.1039/c004272b
[140]
Jiang H M, Yang T, Wang Y H, Lian H Z, Hu X. Talanta, 2013, 116: 361.

doi: 10.1016/j.talanta.2013.05.008
[141]
Zhao L Y, Fei J J, Lian H Z, Mao L, Cui X B. Talanta, 2020, 212: 120799.

doi: 10.1016/j.talanta.2020.120799
[142]
Zhu Q Y, Zhao L Y, Sheng D, Chen Y J, Hu X, Lian H Z, Mao L, Cui X B. Talanta, 2019, 195: 173.

doi: 10.1016/j.talanta.2018.11.043
[143]
Zhao L Y, Fei J J, Lian H Z, Mao L, Cui X B. J. Anal. At. Spectrom., 2019, 34(8): 1693.

doi: 10.1039/C9JA00157C
[144]
Fei J J, Zhao L Y, Wu X H, Cui X B, Min H, Lian H Z, Chen Y J. Microchimica Acta, 2020, 187(6): 1.

doi: 10.1007/s00604-019-3921-8
[145]
Smichowski P. Talanta, 2008, 75(1): 2.

doi: 10.1016/j.talanta.2007.11.005 pmid: 18371839
[146]
Najafi N M, Tavakoli H, Alizadeh R, Seidi S. Anal. Chimica Acta, 2010, 670(1/2): 18.

doi: 10.1016/j.aca.2010.04.059
[147]
Huang C Z, Hu B. J. Sep. Science, 2008, 31(4): 760.

doi: 10.1002/jssc.v31:4
[148]
Ou X X, Wang C, He M, Chen B B, Hu B. Spectrochimica Acta B: At. Spectrosc., 2020, 168: 105854.

doi: 10.1016/j.sab.2020.105854
[149]
Zhang Y, Duan J K, He M, Chen B B, Hu B. Talanta, 2013, 115: 730.

doi: 10.1016/j.talanta.2013.06.040 pmid: 24054655
[150]
Liu Y, He M, Chen B B, Hu B. Talanta, 2015, 142: 213.

doi: 10.1016/j.talanta.2015.04.050
[151]
He M, Su S W, Chen B B, Hu B. Talanta, 2020, 207: 120314.

doi: 10.1016/j.talanta.2019.120314
[152]
Jin C, Liu T, Zou Y, Zhang G L, Tan M G, Peng L, Li Y L, Lu W Z, Li Y, Xie Y N. Chin. Phys. C, 2005, 29: 89.
(金婵, 刘涛, 邹杨, 张桂林, 谈明光, 彭岚, 李玉兰, 陆文忠, 李燕, 谢亚宁. 高能物理与核物理, 2005, 29: 89.).
[153]
Wang Y S, Li A G, Zhang Y X, Xie Y N, Li D L, Li Y, Zhang G L. Chin. Sci. Bull., 2006, 51(18): 2275.

doi: 10.1007/s11434-006-2103-3
[154]
Tan M G, Zhang G L, Li X L, Zhang Y X, Yue W S, Chen J M, Wang Y S, Li A G, Li Y, Zhang Y M, Shan Z C. Anal. Chem., 2006, 78(23): 8044.

pmid: 17134138
[155]
Qi J H, Zhang M P, Feng L J, Li X G, Xie Z, Sun Z H, Hu T D. Molecules, 2003, 8(1): 31.

doi: 10.3390/80100031
[156]
Galbreath K C, Zygarlicke C J. Fuel Process. Technol., 2004, 85(6/7): 701.

doi: 10.1016/j.fuproc.2003.11.015
[157]
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Spanò N, Cappello T. Mar. Pollut. Bull., 2018, 137: 185.

doi: S0025-326X(18)30701-X pmid: 30503425
[158]
中国环境保护部. 国家质量监督检验检疫总局. 中华人民共和国国家标准-环境空气质量标准, (2012-02-29). [2020-07-30]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf.
[159]
World Health Organization Regional Office for Europe Copenhagen. Air Quality Guidelines for Europe, 2000. 1. https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf?ua=1.
[160]
EU European Parliament and the Council of the European Union. Air Quality Standards, (2012-12-31). [2020-09-30]. https://ec.europa.eu/environment/air/quality/standards.htm.
[161]
USEPA US Environmental Protection Agency. National ambient air quality criteria standards (NAAQS), (2015-10-01). [2020-07-30]. https://www.epa.gov/criteria-air-pollutants/naaqs-table (For Pb). https://scclmines.com/env/DOCS/NAAQS-2009.pdf (For As and Ni).
[162]
Rogula-Kozłowska W, Błaszczak B, Szopa S, Klejnowski K, Sówka I, Zwoździak A, Jabłońska M, Mathews B. Environ. Monit. Assess., 2013, 185(1): 581.

doi: 10.1007/s10661-012-2577-1 pmid: 22411028
[163]
Limbeck A, Wagner C, Lendl B, Mukhtar A. Anal. Chimica Acta, 2012, 750: 111.

doi: 10.1016/j.aca.2012.05.005
[164]
von Schneidemesser E, Stone E A, Quraishi T A, Shafer M M, Schauer J J. Sci. Total. Environ., 2010, 408(7): 1640.

doi: 10.1016/j.scitotenv.2009.12.022
[165]
Rashed M N. CLEAN Soil Air Water, 2008, 369(10/11): 850.
[166]
Kam W, Delfino R J, Schauer J J, Sioutas C. Environ. Sci.: Processes Impacts, 2013, 15(1): 234.
[167]
Niu J J, Rasmussen P E, Hassan N M, Vincent R. Water Air Soil Pollut., 2010, 213(1/4): 211.

doi: 10.1007/s11270-010-0379-z
[168]
Cavanagh J A E, Trought K, Brown L, Duggan S. Sci. Total. Environ., 2009, 407(18): 5007.

doi: 10.1016/j.scitotenv.2009.05.020
[169]
Francová A, Chrastný V, Vítková M, Šillerová H, Komárek M. Environ. Pollut., 2020, 260: 114057.

doi: S0269-7491(19)36211-6 pmid: 32004969
[170]
Furusjö E, Sternbeck J, Cousins A P. Sci. Total. Environ., 2007, 387(1/3): 206.

doi: 10.1016/j.scitotenv.2007.07.021
[171]
Wåhlin P, Berkowicz R, Palmgren F. Atmos. Environ., 2006, 40(12): 2151.

doi: 10.1016/j.atmosenv.2005.11.049
[172]
Li H M, Wang Q G, Yang M, Li F Y, Wang J H, Sun Y X, Wang C, Wu H F, Qian X. Atmos. Res., 2016, 181: 288.

doi: 10.1016/j.atmosres.2016.07.005
[173]
Tan J H, Zhang L M, Zhou X M, Duan J C, Li Y, Hu J N, He K B. Sci. Total. Environ., 2017, 601/602: 1743.

doi: 10.1016/j.scitotenv.2017.06.050
[174]
Huang L, Bai Y H, Ma R Y, Zhuo Z M, Chen L. Environ. Sci. Pollut. Res., 2019, 26(13): 13664.

doi: 10.1007/s11356-019-05001-8
[175]
Shao L Y, Shen R R, Wang J, Wang Z S, Deng Y H, Yang S S. Sci. Sin. Terrae, 2013, 43(5): 839.
(邵龙义, 沈蓉蓉, 王静, 王志石, 邓宇华, 杨书申. 中国科学: 地球科学, 2013, 43(5): 8390).
[176]
Yu X Y, Li J J, Yang R S. J. Guizhou U. Nat. Sci, 2011, 28: 137.
(俞相阳, 李金娟, 杨荣师. 贵州大学学报(自然科学版), 2011, 28: 137.).
[177]
Gu J L, Liu L, Liu C, Liu Z H, Cong X, Zhao G. Chem. R. Appli., 2016, 28: 1136.
(顾佳丽, 刘璐, 刘畅, 刘振华, 丛俏, 赵刚. 化学研究与应用, 2016, 28: 1136.).
[178]
Zhou L, Liu G J, Shen M C, Hu R Y, Sun M, Liu Y. Environ. Pollut., 2019, 251: 839.

doi: S0269-7491(19)31216-3 pmid: 31125814
[179]
Li H M, Wang J H, Wang Q G, Qian X, Qian Y, Yang M, Li F Y, Lu H, Wang C. Atmos. Environ., 2015, 103: 339.

doi: 10.1016/j.atmosenv.2014.12.065
[180]
Fang J, Fan J M, Lin Q, Wang Y Y, He X, Shen X D, Chen D L. Atmos. Pollut. Res., 2018, 9(4): 607.

doi: 10.1016/j.apr.2017.12.009
[181]
Hsu S C, Wong G T F, Gong G C, Shiah F K, Huang Y T, Kao S J, Tsai F, Candice Lung S C, Lin F J, Lin I I, Hung C C, Tseng C M. Mar. Chem., 2010, 120(1/4): 116.

doi: 10.1016/j.marchem.2008.10.003
[182]
Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1994, 28(5): 799.

doi: 10.1021/es00054a009 pmid: 22191819
[183]
Pandey M, Pandey A K, Mishra A, Tripathi B D. Urban Clim., 2017, 19: 141.

doi: 10.1016/j.uclim.2017.01.004
[184]
Betha R, Pradani M, Lestari P, Joshi U M, Reid J S, Balasubramanian R. Atmos. Res., 2013, 122: 571.

doi: 10.1016/j.atmosres.2012.05.024
[185]
Anake W U, Benson N U, Theophilus Tenebe I, Emenike P C, E Ana G R E, Zhang S J. Hum. Ecol. Risk Assess.: Int. J., 2020, 26(1): 242.

doi: 10.1080/10807039.2018.1504672
[186]
Schleicher N J, Norra S, Chai F H, Chen Y Z, Wang S L, Cen K, Yu Y, Stüben D. Atmos. Environ., 2011, 45(39): 7248.

doi: 10.1016/j.atmosenv.2011.08.067
[187]
Lyu J L, Li M, Xie J F, Di Z D, Zhao L J, Liu R Q. Environ. Sci. Technol., 2016, 39(4): 126.
(吕佳莉, 李萌, 解静芳, 邸志东, 赵丽娟, 刘瑞卿. 环境科学与技术, 2016, 39(4): 126.).
[188]
Police S, Sahu S K, Pandit G G. Atmos. Pollut. Res., 2016, 7(4): 725.

doi: 10.1016/j.apr.2016.03.007
[189]
Arhami M, Hosseini V, Zare Shahne M, Bigdeli M, Lai A, Schauer J J. Atmos. Environ., 2017, 153: 70.

doi: 10.1016/j.atmosenv.2016.12.046
[190]
Karar K, Gupta A K. Atmos. Res., 2006, 81(1): 36.
[191]
Richter P, Griño P, Ahumada I, Giordano A. Atmos. Environ., 2007, 41(32): 6729.

doi: 10.1016/j.atmosenv.2007.04.053
[192]
Tan J H, Duan J C, Ma Y L, Yang F M, Cheng Y, He K B, Yu Y C, Wang J W. Sci. Total. Environ., 2014, 493: 262.

doi: 10.1016/j.scitotenv.2014.05.147
[193]
Lee B K, Park G H. J. Hazard. Mater., 2010, 184(1/3): 406.

doi: 10.1016/j.jhazmat.2010.08.050
[194]
Tanzer-Gruener R, Li J Y, Eilenberg S R, Robinson A L, Presto A A. Environ. Sci. Technol. Lett., 2020, 7(8): 554.

doi: 10.1021/acs.estlett.0c00365
[195]
Zhuang X L, Wang Y S, He H, Liu J G, Wang X M, Zhu T Y, Ge M F, Zhou J, Tang G Q, Ma J Z. J. Environ. Sci., 2014, 26(1): 2.

doi: 10.1016/S1001-0742(13)60376-9
[196]
Zhang J K, Sun Y, Liu Z R, Ji D S, Hu B, Liu Q, Wang Y S. Atmos. Chem. Phys., 2014, 14(6): 2887.

doi: 10.5194/acp-14-2887-2014
[197]
Li R, Yang X, Fu H B, Hu Q Q, Zhang L W, Chen J M. Chemosphere, 2017, 181: 259.

doi: 10.1016/j.chemosphere.2017.03.140
[198]
Liu L, Wang Y L, Du S Y, Zhang W J, Hou L J, Vedal S, Han B, Yang W, Chen M D, Bai Z P. J. Environ. Sci., 2016, 40: 145.
[199]
Li H M, Wang Q G, Shao M, Wang J H, Wang C, Sun Y X, Qian X, Wu H F, Yang M, Li F Y. Environ. Pollut., 2016, 208: 655.

doi: 10.1016/j.envpol.2015.10.042
[200]
Kim K H, Kabir E, Kabir S. Environ. Int., 2015, 74: 136.

doi: 10.1016/j.envint.2014.10.005 pmid: 25454230
[201]
Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M. Environ. Pollut., 2018, 232: 252.

doi: 10.1016/j.envpol.2017.09.041
[202]
Kong S F, Lu B, Ji Y Q, Zhao X Y, Bai Z P, Xu Y H, Liu Y, Jiang H. J. Environ. Monit., 2012, 14(3): 791.

doi: 10.1039/c1em10555h
[203]
Ma Y D, Wang Z S, Tan Y F, Xu S, Kong S F, Wu G, Wu X F, Li H. J. Environ. Sci., 2017, 55: 339.

doi: 10.1016/j.jes.2016.05.045
[204]
Wiseman C L S. Anal. Chimica Acta, 2015, 877: 9.

doi: 10.1016/j.aca.2015.01.024
[205]
Ren H L, Yu Y X, An T C. Environ. Pollut., 2020, 265: 115070.

doi: 10.1016/j.envpol.2020.115070
[206]
Zereini F, Wiseman C L S, Püttmann W. Environ. Sci. Technol., 2012, 46(18): 10326.

doi: 10.1021/es3020887 pmid: 22913340
[207]
Puls C, Limbeck A, Hann S. Atmos. Environ., 2012, 55: 213.

doi: 10.1016/j.atmosenv.2012.03.023
[208]
Tang Z J, Hu X, Qiao J Q, Lian H Z. Atmosphere, 2018, 9(9): 340.

doi: 10.3390/atmos9090340
[209]
Mbengue S, Alleman L Y, Flament P. Environ. Geochem. Heal., 2015, 37(5): 875.

doi: 10.1007/s10653-015-9756-2
[210]
Sysalová J, Száková J, Tremlová J, Kašparovská K, Kotlík B, Tlustoš P, Svoboda P. Biol. Trace Elem. Res., 2014, 161(2): 216.

doi: 10.1007/s12011-014-0101-x pmid: 25123460
[211]
Huang M J, Wang W, Chan C Y, Cheung K C, Man Y B, Wang X M, Wong M H. Sci. Total. Environ., 2014, 479/480: 117.

doi: 10.1016/j.scitotenv.2014.01.115
[212]
Wragg J, Klinck B. J. Environ. Sci. Heal. A, 2007, 42(9): 1223.

doi: 10.1080/10934520701436054
[213]
Xie S Y, Lao J Y, Wu C C, Bao L J, Zeng E Y. Environ. Int., 2018, 120: 295.

doi: 10.1016/j.envint.2018.08.015
[214]
Julien C, Esperanza P, Bruno M, Alleman L Y. J. Environ. Monit., 2011, 13(3): 621.

doi: 10.1039/c0em00439a
[215]
Li X P, Gao Y, Zhang M, Zhang Y, Zhou M, Peng L Y, He A, Zhang X, Yan X Y, Wang Y H, Yu H T. Ecotoxicol. Environ. Saf., 2020, 190: 110151.

doi: 10.1016/j.ecoenv.2019.110151
[216]
Xie J J, Yuan C G, Xie J, Shen Y W, Zha D W, Zhang K G, Zhu H T. Environ. Sci. Pollut. Res., 2019, 26(30): 30826.

doi: 10.1007/s11356-019-06176-w
[217]
Fang H D, Chen J F, Duan J M, Chen J S, Lin Q J, Chen S H. Ecology and Environmental Sciences, 2015, 24(11): 1872.
(方宏达, 陈锦芳, 段金明, 陈进生, 林清杰, 陈少华. 生态环境学报, 2015, 24(11): 1872.)
[218]
Schleicher N J, Norra S, Chai F H, Chen Y Z, Wang S L, Cen K, Yu Y, Stüben D. Atmos. Environ., 2011, 45(39): 7248.

doi: 10.1016/j.atmosenv.2011.08.067
[219]
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[1] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[2] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[3] Guanyi Chen, Kexuan Han, Caixia Liu, Zeng Dan, Duo Bu. Removing Heavy Metals from Sludge [J]. Progress in Chemistry, 2021, 33(6): 998-1009.
[4] Yuzhu Zhang, Jing Zhan, Qian S. Liu, Qunfang Zhou, Guibin Jiang. Neurotoxicity Induced by Atmospheric Fine Particulate Matters and the Underlying Molecular Mechanism [J]. Progress in Chemistry, 2021, 33(5): 713-725.
[5] Laijin Zhong, Zhijie Tang, Xin Hu, Hongzhen Lian. Advances of In Vitro Inhalation Bioaccessibility for the Contaminants in Atmospheric Particulate Matters [J]. Progress in Chemistry, 2021, 33(10): 1766-1779.
[6] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[7] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[8] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[9] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[10] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[11] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[12] Meng Depeng, Wu Juntao. Adsorption and Separation Materials Produced by Electrospinning [J]. Progress in Chemistry, 2016, 28(5): 657-664.
[13] Liu Yu, Fu Ruiqi, Lou Zimo, Fang Wenzhe, Wang Zhuoxing, Xu Xinhua. Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution [J]. Progress in Chemistry, 2015, 27(11): 1665-1678.
[14] Yin Yongguang, Li Yanbin, Ma Xu, Liu Jingfu, Jiang Guibin. Role of Natural Organic Matter in the Biogeochemical Cycle of Mercury:Binding and Molecular Transformation [J]. Progress in Chemistry, 2013, 25(12): 2169-2177.
[15] Tan Lisha, Sun Mingyang, Hu Yunjun, Cheng Lihua, Xu Xinhua. Heavy Metal Removal from Aqueous Solution by Functional Magnetic Fe3O4 Nanoparticles [J]. Progress in Chemistry, 2013, 25(12): 2147-2158.