中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2334-2347 DOI: 10.7536/PC201111 Previous Articles   Next Articles

• Review •

Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide

Hongfei Bi1, Jinsong Liu1(), Zhengying Wu2, He Suo1, Xueliang Lv1, Yunlong Fu1   

  1. 1 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics,Nanjing 211106, China
    2 Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology,Suzhou 215009, China
  • Received: Revised: Online: Published:
  • Contact: Jinsong Liu
  • Supported by:
    Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies (No. EEST2020-1)、the Science and Technology Development Project of Suzhou(SYG201818); Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment(XTCXSZ2020-1)
Richhtml ( 75 ) PDF ( 1147 ) Cited
Export

EndNote

Ris

BibTeX

With rapid development of social economy, shortage of energy and destruction of ecology have gradually aroused people’s strong concern. In recent years, finding the suitable solution has become the focus of attention. As a green environmental protection technology, photocatalysis has become a research hotspot to deal with energy and environmental issues because of its high efficiency and low cost. In many photocatalytic materials, ternary sulfide Indium Zinc Sulfide (ZnIn2S4) has shown great potential due to visible-light-responding characteristics, simple preparation and excellent stability. However, high carrier recombination rate of the ZnIn2S4 limits its photocatalytic activity. In recent years, many studies on modifying ZnIn2S4 have been reported. Here, different modification researches are introduced in detail including synthesis of ZnIn2S4 monomer, construction of semiconductor compounds, noble metal deposition, carbon element modification, and ion doping. Then, their photocatalytic properties and corresponding mechanisms including hydrogen evolution, degradation of organic pollutants, reduction of hexavalent chromium and CO2, and organic synthesis are systematically summarized. Finally, development direction and prospect of ZnIn2S4 are put forward for more extensive and in-depth research on photocatalytic properties and application in practical production as soon as possible.

Contents

1 Introduction

1.1 Photocatalytic technology

1.2 Preparation of indium zinc sulfide

2 Synthesis and modification of indium zinc sulfide

2.1 Synthesis of indium zinc sulfide monomer

2.2 Semiconductor compounds construction

2.3 Nobel metal deposition

2.4 Carbon element modification

2.5 Ion doping

3 Application of indium zinc sulfide in the field of photocatalysis

3.1 Photocatalytic hydrogen evolution

3.2 Photocatalytic degradation of organic pollutants

3.3 Application of indium zinc sulfide in other fields

3.4 Stability of indium zinc sulfide

4 Conclusion and outlook

Fig.1 (a) Schematic illustration of the principle of semi-conductor photocatalysis[7], crystal structures of (b) hexagonal[8] and (c) cubic ZnIn2S4[9], energy band structure of (d) hexagonal and (e) cubic ZnIn2S4[10]
Fig.2 (a) Schematic illustration of the growth mechanism for ZnIn2S4 nanotubes and nanoribbons[8], (b) Schematic illustration of the growth mechanism of ZnIn2S4 microsphere and nanowires obtained in the presence of CTAB and PEG-6000[8]
Fig.3 (a) Schematic of the preparation for In2O3 nanocube/ZnIn2S4 nanosheet and In2O3 nanocube/ZnIn2S4 nanoparticle, SEM images of (b) In2O3 nanocube/ZnIn2S4 nanosheet and (c) In2O3 nanocube/ZnIn2S4 nanoparticle[37]
Fig.4 (a) Illustration of multiple light reflections in different structure[35], (b) Schematic of the preparation for TiO2@ZnIn2S4 hollow structure[84], (c) TEM image of TiO2@ZnIn2S4 hollow structure[84]
Fig.5 TEM images of (a) Au-Pd/ZnIn2S4 and (b) CQDs/ZnIn2S4[98,100]
Table 1 Examples of hydrogen production performance by different ZnIn2S4-based photocatalysts
Photocatalyst Hydrogen production rate Lighting conditions Sacrificial reagents ref
ZnIn2S4 ultra-thin nanosheet 1.94 mmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 16
ZnIn2S4 ultra-thin nanosheet with sulfur vacancies 13.478 mmol/g/h 500 W Xenon lamp, λ≥400 nm TEOA 15
MoS2/ZnIn2S4 4287.5 μmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 54
MoS2/ZnIn2S4 2512.5 μmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 53
MoS2/ZnIn2S4 8898 μmol/g/h 300 W Xenon lamp, λ≥400 nm TEOA 86
WS2/ZnIn2S4 293.3 μmol/g/h 150 W Xenon lamp, λ≥400 nm NaS2/Na2SO3 34
WS2/ZnIn2S4 2.55 mmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 62
WS2/ZnIn2S4 199.1 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 61
NiS/ZnIn2S4 3.3 mmol/g/h 320 W Xenon lamp, λ≥420 nm Lactic acid 57
NiS/ZnIn2S4 2094 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 56
AgIn5S8/ZnIn2S4 949 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 65
g-C3N4/ZnIn2S4 7740 μmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 69
Au/thiol-UiO66/ZnIn2S4 3916 μmol/g/h 300 W Xenon lamp, λ: 420~780 nm NaS2/Na2SO3 73
ZnIn2S4/NH2-MIL-125(Ti) 2204.2 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 76
TiO2/ZnIn2S4 hollow structure 1129.5 μmol/g/h 300 W Xenon lamp, visible light Lactic acid 84
Co9S8/ZnIn2S4 hollow structure 6250 μmol/g/h 300 W Xenon lamp, λ≥400 nm TEOA 64
2D/2D MoS2/ZnIn2S4 4.974 mmol/g/h 300 W Xenon lamp, visible light Lactic acid 55
2D/2D CuInS2/ZnIn2S4 3430.2 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 66
MoS2/CQDs/ZnIn2S4 3 mmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 113
NiS/CQDs/ZnIn2S4 568 μmol/g/h 300 W Xenon lamp, λ≥420 nm TEOA 114
WO3/ZnIn2S4 2202.9 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 42
Cu3P/ZnIn2S4 2561.1 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 80
RGO/ZnIn2S4 1210 μmol/g/h 350 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 103
RGO/ZnIn2S4 817 μmol/g/h 300 W Xenon lamp, λ≥420 nm Lactic acid 104
Ca-Doped ZnIn2S4 692 μmol/g/h 300 W Xenon lamp, λ≥430 nm NaS2/Na2SO3 107
Cu-Doped ZnIn2S4 757.5 μmol/g/h 300 W Xenon lamp, λ≥430 nm NaS2/Na2SO3 110
Oxygen-Doped ZnIn2S4 2120 μmol/g/h 300 W Xenon lamp, λ≥420 nm NaS2/Na2SO3 112
Fig.6 (a) Photocatalytic H2 evolution mechanism of the MoS2/ZnIn2S4[54], (b) Photocatalytic H2 evolution performance of the MoS2/ZnIn2S4[53], (c) Photocatalytic H2 evolution mechanism of 2D/2D CuInS2/ZnIn2S4[66], (d) Photocatalytic H2 evolution mechanism of the NiS/CQDs/ZnIn2S4[114]
Fig.7 (a) An illustration of a Z-scheme photocatalytic system[41], (b) Photocatalytic H2 evolution performance and cycling measurement of the O-doped ZnIn2S4[112]
Table 2 Examples of degradation performance by different ZnIn2S4-based photocatalysts
Photocatalyst Organic Pollutants Degradation efficiency Lighting conditions ref
g-C3N4/ZnIn2S4 (20 mg) MO (50 mL, 10 mg/L) 95.3% (120 min) 500 W Xenon lamp, λ≥420 nm 70
g-C3N4/ZnIn2S4 (20 mg) Phenol (50 mL, 10 mg/L) 72.3% (240 min) 500 W Xenon lamp, λ≥420 nm 70
g-C3N4/ZnIn2S4 (50 mg) TC (100 mL, 20 mg/L) 100% (120 min) 300 W Xenon lamp, λ≥400 nm 71
BiPO4/ZnIn2S4 (15 mg) TC (50 mL, 40 mg/L) 84% (90 min) 300 W Xenon lamp, visible light 119
MoS2/ZnIn2S4 (10 mg) MO (10 mL, 20 mg/L) 90% (60 min) 300 W Xenon lamp, λ≥400 nm 51
TiO2/ZnIn2S4 film (2*2 cm2) MB (5 mL, 3 mg/L) 91% (4 h) 100 W Incandescent lamp 120
CdIn2S4/ZnIn2S4 (40 mg) MO (80 mL, 10 mg/L) 99.7% (90 min) 500 W Halogen lamp, λ≥420 nm 89
CdIn2S4/ZnIn2S4 (40 mg) RhB (80 mL, 10 mg/L) 100% (70 min) 500 W Halogen lamp, λ≥420 nm 89
TiO2/ZnIn2S4 (30 mg) Carbamazepine (400 mL, 100 mg/L) 100% (4 h) Sunlight, λ≥400 nm 38
In2O3/ZnIn2S4 (25 mg) 2,4-dichlorophenol (50 mL, 20 mg/L) 95.8% (120 min) 300 W Xenon lamp, λ≥420 nm 37
MIL-88A(Fe)@ZnIn2S4 (mg) SMZ (40 mL, 20 mg/L) 99.6% (60 min) 500 W Xenon lamp 74
TiO2/ZnIn2S4 hollow structure (20 mg) LEV (80 mL, 10 mg/L) 81.07% (4 h) 250 W Xenon lamp, λ≥400 nm 85
TiO2/ZnIn2S4 hollow structure (20 mg) TC (80 mL, 10 mg/L) 82.74% (90 min) 250 W Xenon lamp, λ≥400 nm 85
TiO2/ZnIn2S4 hollow structure (20 mg) RhB (80 mL, 20 mg/L) 98.41% (60 min) 250 W Xenon lamp, λ≥400 nm 85
2D/2D BiOCl/ZnIn2S4 (200 mg) Phenol (200 mL, 20 mg/L) 77.4% (6 h) 300 W Xenon lamp, λ≥400 nm 81
2D/2D g-C3N4/ZnIn2S4 (20 mg) TC (50 mL, 50 mg/L) 85% (120 min) 500 W Xenon lamp, λ≥420 nm 82
CQDs/BiOCl/ZnIn2S4 (50 mg) TC (100 mL, 10 mg/L) 83.7% (2 h) 300 W Xenon lamp, λ≥400 nm 121
AgPO4/g-C3N4/ZnIn2S4 (50 mg) TC (100 mL, 20 mg/L) 83% (60 min) 300 W Xenon lamp, λ≥400 nm 122
WO2.72/ZnIn2S4 (30 mg) TC (30 mL, 50 mg/L) 97.3% (60 min) 300 W Xenon lamp, λ≥400 nm 123
Bi2S3/ZnIn2S4 (50 mg) MB (100 mL, 40 mg/L) 95.4% (150 min) 30 W Xenon lamp, visible light 63
Au-MoS2/ZnIn2S4 (10 mg) Phenol (10 mL, 20 mg/L) 84% (60 min) Sunlight 87
Bi2WO6/ZnIn2S4 (100 mg) MTZ (500 mL, 10 mg/L) 56% (250 min) 500 W Halogen lamp 45
MO3/ZnIn2S4 (200 mg) MO (200 mL, 30 mg/L) 98% (100 min) 500 W Halogen lamp, λ≥420 nm 48
MO3/ZnIn2S4 (200 mg) RhB (200 mL, 10 mg/L) 99% (80 min) 500 W Halogen lamp, λ≥420 nm 48
BiVO4/ZnIn2S4 (20 mg) MO (100 mL, 15 mg/L) 86% (240 min) 300 W LED lamp, visible light 44
CQDs/ZnIn2S4 (50 mg) MO (100 mL, 10 mg/L) 100% (40 min) 300 W Xenon lamp, λ≥420 nm 101
CQDs/ZnIn2S4 (20 mg) TC (80 mL, 10 mg/L) 85.07% (90 min) 250 W Xenon lamp, λ≥420 nm 100
Sm-Doped ZnIn2S4 (50 mg) RhB (50 mL, 20 mg/L) 100% (90 min) 400 W Xenon lamp, λ≥420 nm 106
Fig.8 (a) Photocatalytic degradation mechanism of the CQDs/BiOCl/ZnIn2S4[121], (b) Trapping experiment of active species during the photocatalytic degradation of nitenpyram over WO3/ZnIn2S4[127], (c) Mechanism of the enhanced photocatalytic activity of WO3/ZnIn2S4[127], (d) Mechanism of the enhanced photocatalytic activity of CQDs/ZnIn2S4[100]
Fig.9 (a) Mechanism of the enhanced photocatalytic activity of Au-MoS2/ZnIn2S4[87], (b) Mechanism of the enhanced photocatalytic activity of Sm-ZnIn2S4 for degradation of RhB[106]
Fig.10 (a) UV-vis absorption spectra of Cr(Ⅵ) solution treated with ZnIn2S4/CdS[59], (b) Comparison of the photocatalytic CO2 reduction performance of different CeO2/ZnIn2S4 samples for CH3OH production[47]
Fig.11 (a) Cycling performance of photocatalytic hydrogen evolution over Ni2P/ZnIn2S4[78], (b) Cycling performance of photocatalytic degradation of TC over ZnIn2S4 and WO2.72/ZnIn2S4[123]
[1]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0
[2]
Carey J H, Oliver B G. Nature, 1976, 259(5544): 554.

doi: 10.1038/259554a0
[3]
Frank S N, Bard A J. Cheminform, 1977, 8: 303.
[4]
Xi Q Y, Liu J S, Wu Z Y, Bi H F, Li Z Q, Zhu K J, Zhuang J J, Chen J X, Lu S L, Huang Y F, Qian G M. Appl. Surf. Sci., 2019, 480: 427.

doi: 10.1016/j.apsusc.2019.03.009
[5]
Sheng B B, Liu J S, Li Z Q, Wang M H, Zhu K J, Qiu J H, Wang J. Mater. Lett., 2015, 144: 153.

doi: 10.1016/j.matlet.2015.01.056
[6]
Liu W W, Qiao L L, Zhu A Q, Liu Y, Pan J. Appl. Surf. Sci., 2017, 426: 897.

doi: 10.1016/j.apsusc.2017.07.225
[7]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.v29.20
[8]
Gou X L, Cheng F Y, Shi Y H, Zhang L, Peng S J, Chen J, Shen P W. J. Am. Chem. Soc., 2006, 128(22): 7222.

doi: 10.1021/ja0580845
[9]
Hu X L, Yu J C, Gong J M, Li Q. Cryst. Growth Des., 2007, 7(12): 2444.

doi: 10.1021/cg060767o
[10]
Pan Y, Yuan X Z, Jiang L B, Yu H B, Zhang J, Wang H, Guan R P, Zeng G M. Chem. Eng. J., 2018, 354: 407.

doi: 10.1016/j.cej.2018.08.028
[11]
Pouretedal H R, Norozi A, Keshavarz M H, Semnani A. J. Hazard. Mater., 2009, 1622-3: 674.
[12]
Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110(11): 6503.

doi: 10.1021/cr1001645
[13]
Ding K N, Li Y L, Chen B, Zhang Y F. J. Phys. Soc. Jpn., 2014, 83(7): 074301.

doi: 10.7566/JPSJ.83.074301
[14]
Shen S H, Zhao L, Guo L J. J. Phys. Chem. Solids, 2008, 69(10): 2426.

doi: 10.1016/j.jpcs.2008.04.035
[15]
Du C, Zhang Q, Lin Z Y, Yan B, Xia C X, Yang G W. Appl. Catal. B: Environ., 2019, 248: 193.

doi: 10.1016/j.apcatb.2019.02.027
[16]
Shi X W, Mao L, Yang P, Zheng H J, Fujitsuka M, Zhang J Y, Majima T. Appl. Catal. B: Environ., 2020, 265: 118616.

doi: 10.1016/j.apcatb.2020.118616
[17]
Thakur S, Das P, Mandal S K. ACS Appl. Nano Mater., 2020, 3(6): 5645.

doi: 10.1021/acsanm.0c00868
[18]
Fu H, Tang A W. J. Semicond., 2020, 41(9): 091706.

doi: 10.1088/1674-4926/41/9/091706
[19]
Aazam E S. J. Ind. Eng. Chem., 2014, 20(6): 4008.

doi: 10.1016/j.jiec.2013.12.104
[20]
Chen W P, Liu J D, An J J, Wang L, Zhu Y, Sillanpää M. J. Photochem. Photobiol. A-Chem., 2018, 364: 732.

doi: 10.1016/j.jphotochem.2018.07.008
[21]
Mohamed R M, Shawky A, Aljahdali M S. J. Taiwan Inst. Chem. Eng., 2016, 65: 498.

doi: 10.1016/j.jtice.2016.05.027
[22]
Liu Q, Lu H, Shi Z W, Wu F L, Guo J, Deng K M, Li L. ACS Appl. Mater. Interfaces, 2014, 6(19): 17200.

doi: 10.1021/am505015j
[23]
Peng S J, Wu Y Z, Zhu P N, Thavasi V, Ramakrishna S, Mhaisalkar S G. J. Mater. Chem., 2011, 21(39): 15718.

doi: 10.1039/c1jm12432c
[24]
Kale S B, Kalubarme R S, Mahadadalkar M A, Jadhav H S, Bhirud A P, Ambekar J D, Park C J, Kale B B. Phys. Chem. Chem. Phys., 2015, 17(47): 31850.

doi: 10.1039/C5CP05546F
[25]
Zhang B H, Wang H, Xi J J, Zhao F Q, Zeng B Z. Sens. Actuat. B: Chem., 2019, 298: 126835.

doi: 10.1016/j.snb.2019.126835
[26]
Chai B, Peng T Y, Zeng P, Zhang X H, Liu X J. J. Phys. Chem. C, 2011, 115(13): 6149.

doi: 10.1021/jp1112729
[27]
Shi L, Yin P Q, Dai Y M. Langmuir, 2013, 29(41): 12818.

doi: 10.1021/la402473k
[28]
Chen J S, Xin F, Yin X H, Xiang T, Wang Y W. RSC Adv., 2015, 5(5): 3833.

doi: 10.1039/C4RA13191F
[29]
Zhang S Q, Liu X, Liu C B, Luo S L, Liu Y T. ACS Nano, 2017, 12: 751.

doi: 10.1021/acsnano.7b07974
[30]
Wang G, Chen G, Yu Y G, Zhou X, Teng Y J. RSC Adv., 2013, 3(40): 18579.

doi: 10.1039/c3ra42245c
[31]
Sabet M, Salavati-Niasari M, Esmaeili E. J. Inorg. Organomet. Polym. Mater., 2016, 26(4): 738.

doi: 10.1007/s10904-016-0374-y
[32]
Zhong J S, Wang Q Y, Cai W. Mater. Lett., 2015, 150: 69.

doi: 10.1016/j.matlet.2015.03.006
[33]
Chumha N, Thongtem T, Thongtem S, Kittiwachana S, Kaowphong S. Appl. Surf. Sci., 2018, 447: 292.

doi: 10.1016/j.apsusc.2018.03.210
[34]
Pudkon W, Kaowphong S, Pattisson S, Miedziak P J, Bahruji H, Davies T E, Morgan D J, Hutchings G J. Catal. Sci. Technol., 2019, 9(20): 5698.

doi: 10.1039/C9CY01553A
[35]
Ding S P, Liu X F, Shi Y Q, Liu Y, Zhou T F, Guo Z P, Hu J C. ACS Appl. Mater. Interfaces, 2018, 10(21): 17911.

doi: 10.1021/acsami.8b02955
[36]
Chaudhari N S, Bhirud A P, Sonawane R S, Nikam L K, Warule S S, Rane V H, Kale B B. Green Chem., 2011, 13(9): 2500.

doi: 10.1039/c1gc15515f
[37]
Zhu Q, Sun Y K, Xu S, Li Y L, Lin X L, Qin Y L. J. Hazard. Mater., 2020, 382: 121098.

doi: S0304-3894(19)31052-0 pmid: 31479823
[38]
Bo L L, Liu H, Han H X. J. Environ. Manag., 2019, 241: 131.

doi: 10.1016/j.jenvman.2019.03.132
[39]
Li M, Qiu J H, Yang L, Feng Y, Yao J F. Mater. Res. Bull., 2020, 122: 110671.

doi: 10.1016/j.materresbull.2019.110671
[40]
Yang G, Chen D M, Ding H, Feng J J, Zhang J Z, Zhu Y F, Hamid S, Bahnemann D W. Appl. Catal. B: Environ., 2017, 219: 611.

doi: 10.1016/j.apcatb.2017.08.016
[41]
Ding Y, Wei D Q, He R, Yuan R S, Xie T F, Li Z H. Appl. Catal. B: Environ., 2019, 258: 117948.

doi: 10.1016/j.apcatb.2019.117948
[42]
Tan P F, Zhu A Q, Qiao L L, Zeng W X, Ma Y J, Dong H G, Xie J P, Pan J. Inorg. Chem. Front., 2019, 6(4): 929.

doi: 10.1039/C8QI01359D
[43]
Wang S B, Guan B Y, Lou X W D. J. Am. Chem. Soc., 2018, 140(15): 5037.

doi: 10.1021/jacs.8b02200
[44]
Yuan D L, Sun M T, Tang S F, Zhang Y T, Wang Z T, Qi J B, Rao Y D, Zhang Q R. Chin. Chem. Lett., 2020, 31(2): 547.

doi: 10.1016/j.cclet.2019.09.051
[45]
Jo W K, Lee J Y, Natarajan T S. Phys. Chem. Chem. Phys., 2016, 18(2): 1000.

doi: 10.1039/C5CP06176H
[46]
Wan S P, Zhong Q, Ou M, Zhang S L. J. Mater. Sci., 2017, 52(19): 11453.

doi: 10.1007/s10853-017-1283-3
[47]
Yang C, Li Q, Xia Y, Lv K, Li M. Appl. Surf. Sci., 2019, 464: 388.

doi: 10.1016/j.apsusc.2018.09.099
[48]
Khan A, Danish M, Alam U, Zafar S, Muneer M. ACS Omega, 2020, 5(14): 8188.

doi: 10.1021/acsomega.0c00446
[49]
Xiao Y, Peng Z Y, Zhang W L, Jiang Y H, Ni L. Appl. Surf. Sci., 2019, 494: 519.

doi: 10.1016/j.apsusc.2019.07.175
[50]
Hao M M, Deng X Y, Xu L Z, Li Z H. Appl. Catal. B: Environ., 2019, 252: 18.

doi: 10.1016/j.apcatb.2019.04.002
[51]
Lim W Y, Hong M H, Ho G W. Dalton Trans., 2016, 45(2): 552.

doi: 10.1039/C5DT03775A
[52]
Chen G P, Ding N, Li F, Fan Y Z, Luo Y H, Li D M, Meng Q B. Appl. Catal. B: Environ., 2014, 160-161: 614.
[53]
Liu C, Chai B, Wang C L, Yan J T, Ren Z D. Int. J. Hydrog. Energy, 2018, 43(14): 6977.

doi: 10.1016/j.ijhydene.2018.02.116
[54]
Chai B, Liu C, Wang C L, Yan J T, Ren Z D. Chin. J. Catal., 2017, 38(12): 2067.

doi: 10.1016/S1872-2067(17)62981-4
[55]
Huang L X, Han B, Huang X H, Liang S J, Deng H. J. Alloy. Compd., 2019, 798: 553.

doi: 10.1016/j.jallcom.2019.05.162
[56]
Wei L, Chen Y J, Zhao J L, Li Z H. Beilstein J. Nanotechnol., 2013, 4: 949.

doi: 10.3762/bjnano.4.107
[57]
Yan A H, Shi X W, Huang F, Fujitsuka M, Majima T. Appl. Catal. B: Environ., 2019, 250: 163.

doi: 10.1016/j.apcatb.2019.02.075
[58]
Chen W, Yan R Q, Chen G H, Chen M Y, Huang G B, Liu X H. Ceram. Int., 2019, 45(2): 1803.

doi: 10.1016/j.ceramint.2018.10.067
[59]
Zhang G P, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Appl. Catal. B-Environ., 2018, 232: 164.

doi: 10.1016/j.apcatb.2018.03.017
[60]
Wang H, Ye H L, Zhang B H, Zhao F Q, Zeng B Z. J. Phys. Chem. C, 2018, 122(35): 20329.

doi: 10.1021/acs.jpcc.8b05287
[61]
Zhou J B, Chen D, Bai L Q, Qin L S, Sun X G, Huang Y X. Int. J. Hydrog. Energy, 2018, 43(39): 18261.

doi: 10.1016/j.ijhydene.2018.08.071
[62]
Xiong M H, Chai B, Yan J T, Fan G Z, Song G S. Appl. Surf. Sci., 2020, 514: 145965.

doi: 10.1016/j.apsusc.2020.145965
[63]
Chachvalvutikul A, Pudkon W, Luangwanta T, Thongtem T, Thongtem S, Kittiwachana S, Kaowphong S. Mater. Res. Bull., 2019, 111: 53.

doi: 10.1016/j.materresbull.2018.10.034
[64]
Wang S B, Guan B Y, Wang X, Lou X W D. J. Am. Chem. Soc., 2018, 140(45): 15145.

doi: 10.1021/jacs.8b07721
[65]
Guan Z J, Xu Z Q, Li Q Y, Wang P, Li G Q, Yang J J. Appl. Catal. B: Environ., 2018, 227: 512.

doi: 10.1016/j.apcatb.2018.01.068
[66]
Guan Z J, Pan J W, Li Q Y, Li G Q, Yang J J. ACS Sustainable Chem. Eng., 2019, 7(8): 7736.

doi: 10.1021/acssuschemeng.8b06587
[67]
Xu L Z, Deng X Y, Li Z H. Appl. Catal. B: Environ., 2018, 234: 50.

doi: 10.1016/j.apcatb.2018.04.030
[68]
Pan J W, Guan Z J, Yang J J, Li Q Y. Chin. J. Catal., 2020, 41(1): 200.

doi: 10.1016/S1872-2067(19)63422-4
[69]
Ding N, Zhang L S, Zhang H Y, Shi J J, Wu H J, Luo Y H, Li D M, Meng Q B. Catal. Commun., 2017, 100: 173.

doi: 10.1016/j.catcom.2017.06.050
[70]
Liu H, Jin Z T, Xu Z Z, Zhang Z, Ao D. RSC Adv., 2015, 5(119): 97951.

doi: 10.1039/C5RA17028A
[71]
Guo F, Cai Y, Guan W S, Huang H, Liu Y. J. Phys. Chem. Solids, 2017, 110: 370.

doi: 10.1016/j.jpcs.2017.07.001
[72]
Zhou M, Wang S B, Yang P J, Luo Z S, Yuan R S, Asiri A M, Wakeel M, Wang X C. Chem. Eur. J., 2018, 24(69): 18529.

doi: 10.1002/chem.v24.69
[73]
Mao S M, Shi J W, Sun G T, Ma D D, He C, Pu Z X, Song K L, Cheng Y H. Appl. Catal. B: Environ., 2021, 282: 119550.

doi: 10.1016/j.apcatb.2020.119550
[74]
Yuan R R, Qiu J L, Yue C L, Shen C, Li D W, Zhu C Q, Liu F Q, Li A M. Chem. Eng. J., 2020, 401: 126020.

doi: 10.1016/j.cej.2020.126020
[75]
Chang H, Wu H, Yang Y T, Xie L D, Zhang Y. Int. J. Hydrog. Energy, 2020, 45: 30571.

doi: 10.1016/j.ijhydene.2020.08.115
[76]
Liu H, Zhang J, Ao D. Appl. Catal. B: Environ., 2018, 221: 433.

doi: 10.1016/j.apcatb.2017.09.043
[77]
Chen S H, Zhao X L, Xie F Z, Tang Z, Wang X F. New J. Chem., 2020, 44(18): 7350.

doi: 10.1039/D0NJ01102A
[78]
Li X L, Wang X J, Zhu J Y, Li Y P, Zhao J, Li F T. Chem. Eng. J., 2018, 353: 15.

doi: 10.1016/j.cej.2018.07.107
[79]
Zeng D Q, Xiao L, Ong W J, Wu P Y, Zheng H F, Chen Y Z, Peng D L. ChemSusChem, 2017, 10(22): 4624.

doi: 10.1002/cssc.201701345
[80]
Yang Z F, Shao L H, Wang L L, Xia X N, Liu Y T, Cheng S, Yang C, Li S J. Int. J. Hydrog. Energy, 2020, 45(28): 14334.

doi: 10.1016/j.ijhydene.2020.03.139
[81]
Guo L, Han X X, Zhang K L, Zhang Y Y, Zhao Q, Wang D J, Fu F. Catalysts, 2019, 9(9): 729.

doi: 10.3390/catal9090729
[82]
Yang H C, Cao R Y, Sun P X, Yin J M, Zhang S W, Xu X J. Appl. Catal. B: Environ., 2019, 256: 117862.

doi: 10.1016/j.apcatb.2019.117862
[83]
Qiu B C, Zhu Q H, Du M M, Fan L G, Xing M Y, Zhang J L. Angew. Chem. Int. Ed., 2017, 56(10): 2684.

doi: 10.1002/anie.201612551
[84]
Li H, Chen Z H, Zhao L, Yang G D. Rare Metals, 2019, 38: 1.

doi: 10.1007/s12598-018-1164-1
[85]
Jiang Y H, Peng Z Y, Zhang S B, Li F, Liu Z C, Zhang J M, Liu Y, Wang K. Ceram. Int., 2018, 44(6): 6115.

doi: 10.1016/j.ceramint.2017.12.244
[86]
Zhang Z Z, Huang L, Zhang J J, Wang F J, Xie Y Y, Shang X T, Gu Y Y, Zhao H B, Wang X X. Appl. Catal. B: Environ., 2018, 233: 112.

doi: 10.1016/j.apcatb.2018.04.006
[87]
Swain G, Sultana S, Parida K. Inorg. Chem., 2019, 58(15): 9941.

doi: 10.1021/acs.inorgchem.9b01105
[88]
Wang X L, Li Y Y, Li Z H. Chin. J. Catal., 2021, 42(3): 409.

doi: 10.1016/S1872-2067(20)63660-9
[89]
Sun M, Zhao X, Zeng Q, Yan T, Ji P G, Wu T T, Wei D, Du B. Appl. Surf. Sci., 2017, 407: 328.

doi: 10.1016/j.apsusc.2017.02.181
[90]
Suebsom P, Phuruangrat A, Suwanboon S, Thongtem S, Thongtem T. Inorg. Chem. Commun., 2020, 119: 108120.

doi: 10.1016/j.inoche.2020.108120
[91]
Veziroglu S, Obermann A L, Ullrich M, Hussain M, Kamp M, Kienle L, Leißner T, Rubahn H G, Polonskyi O, Strunskus T, Fiutowski J, Es-Souni M, Adam J, Faupel F, Aktas O C. ACS Appl. Mater. Interfaces, 2020, 12(13): 14983.

doi: 10.1021/acsami.9b18817
[92]
Yao G Y, Liu Q L, Zhao Z Y. Prog. Chem., 2019, 31(4): 516.
( 姚国英, 刘清路, 赵宗彦. 化学进展, 2019, 31(4): 516.)

doi: 10.7536/PC180810
[93]
Wang Z P, Ye X Y, Chen L, Huang P J, Chen S. Mater. Sci. Semicond. Process, 2021, 121: 105354.

doi: 10.1016/j.mssp.2020.105354
[94]
Zhang D, Tan G Q, Wang M, Li B, Dang M Y, Ren H J, Xia A. Appl. Surf. Sci., 2020, 526: 146689.

doi: 10.1016/j.apsusc.2020.146689
[95]
Zhu T T, Ye X J, Zhang Q Q, Hui Z Z, Wang X C, Chen S F. J. Hazard. Mater., 2019, 367: 277.

doi: 10.1016/j.jhazmat.2018.12.093
[96]
Mandal S, Adhikari S, Pu S Y, Ma H, Kim D H. Appl. Surf. Sci., 2019, 498: 143840.

doi: 10.1016/j.apsusc.2019.143840
[97]
Wang B Q, Deng Z R, Fu X Z, Xu C, Li Z H. Appl. Catal. B: Environ., 2018, 237: 970.

doi: 10.1016/j.apcatb.2018.06.067
[98]
Feng C J, Yang X L, Sun Z L, Xue J, Sun L R, Wang J H, He Z L, Yu J Q. Appl. Surf. Sci., 2020, 501: 144018.

doi: 10.1016/j.apsusc.2019.144018
[99]
Lei K, Kou M P, Ma Z Y, Deng Y, Ye L Q, Kong Y. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 574: 105.

doi: 10.1016/j.colsurfa.2019.04.073
[100]
Xu H Q, Jiang Y H, Yang X Y, Li F, Li A P, Liu Y, Zhang J M, Zhou Z Z, Ni L. Mater. Res. Bull., 2018, 97: 158.

doi: 10.1016/j.materresbull.2017.09.004
[101]
Shi W L, Lv H, Yuan S L, Huang H, Liu Y, Kang Z H. Sep. Purif. Technol., 2017, 174: 282.

doi: 10.1016/j.seppur.2016.11.013
[102]
Yuan L, Yang M Q, Xu Y J. J. Mater. Chem. A, 2014, 2(35): 14401.

doi: 10.1039/C4TA02670E
[103]
Tian F, Zhu R S, Zhong J, Wang P, Ouyang F, Cao G. Int. J. Hydrog. Energy, 2016, 41(44): 20156.

doi: 10.1016/j.ijhydene.2016.08.063
[104]
Ye L, Fu J L, Xu Z, Yuan R S, Li Z H. ACS Appl. Mater. Interfaces, 2014, 6(5): 3483.

doi: 10.1021/am5004415
[105]
Zhang S Q, Wang L L, Liu C B, Luo J M, Crittenden J, Liu X, Cai T, Yuan J L, Pei Y, Liu Y T. Water Res., 2017, 121: 11.

doi: 10.1016/j.watres.2017.05.013
[106]
Tan C W, Zhu G Q, Hojamberdiev M, Lokesh K S, Luo X C, Jin L, Zhou J P, Liu P. J. Hazard. Mater., 2014, 278: 572.

doi: 10.1016/j.jhazmat.2014.06.019
[107]
Shen S H, Zhao L, Guan X J, Guo L J. J. Phys. Chem. Solids, 2012, 73(1): 79.

doi: 10.1016/j.jpcs.2011.09.027
[108]
Wang M, Li L H, Lu J M, Luo N C, Zhang X C, Wang F. Green Chem., 2017, 19(21): 5172.

doi: 10.1039/C7GC01728F
[109]
Yuan Y J, Chen D Q, Zhong J S, Yang L X, Zou Z G. J. Mater. Chem. A, 2017, 5: 15771.

doi: 10.1039/C7TA04410K
[110]
Shen S H, Zhao L, Zhou Z H, Guo L J. J. Phys. Chem. C, 2008, 112(41): 16148.

doi: 10.1021/jp804525q
[111]
Jing D W, Liu M C, Guo L J. Catal. Lett., 2010, 1403-4: 167.
[112]
Yang W L, Zhang L, Xie J F, Zhang X D, Liu Q H, Yao T, Wei S Q, Zhang Q, Xie Y. Angew. Chem., 2016, 128(23): 6828.

doi: 10.1002/ange.201602543
[113]
Wang B Q, Deng Z R, Fu X Z, Li Z H. J. Mater. Chem. A, 2018, 6(40): 19735.

doi: 10.1039/C8TA07797E
[114]
Wang B Q, Ding Y, Deng Z R, Li Z H. Chin. J. Catal., 2019, 40(3): 335.

doi: 10.1016/S1872-2067(18)63159-6
[115]
Zhu R S, Tian F, Yang R J, He J S, Zhong J, Chen B Y. Renew. Energy, 2019, 139: 22.

doi: 10.1016/j.renene.2019.02.049
[116]
Savić T D,., Carević M V, Mitrić M N, Kuljanin-Jakovljević J Ž, Abazović N D, ćomor M I. J. Photochem. Photobiol. A: Chem., 2020, 388: 112154.

doi: 10.1016/j.jphotochem.2019.112154
[117]
Wang A L, Chen L, Zhang J X, Sun W C, Guo P, Ren C Y. J. Mater. Sci., 2017, 52(5): 2413.

doi: 10.1007/s10853-016-0535-y
[118]
Liu T T, Wang L, Sun C X, Liu X, Miao R, Lv Y. Chem. Eng. J., 2019, 358: 1296.

doi: 10.1016/j.cej.2018.10.107
[119]
Lu C Y, Guo F, Yan Q Z, Zhang Z J, Li D, Wang L P, Zhou Y H. J. Alloy. Compd., 2019, 811: 151976.

doi: 10.1016/j.jallcom.2019.151976
[120]
Ibtissem B A, Mounir G M, Jamila B N J, Abdullah A M, Lafy A O A, Taher G, Taher, Shouwen S, Radhouane C. Appl. Surf. Sci., 2015, 351: 927.

doi: 10.1016/j.apsusc.2015.06.038
[121]
Jiang R R, Wu D H, Lu G H, Yan Z H, Liu J C. Chemosphere, 2019, 227: 82.

doi: 10.1016/j.chemosphere.2019.04.038
[122]
Guo F, Cai Y, Guan W S, Shi W D. Mater. Lett., 2017, 201: 62.

doi: 10.1016/j.matlet.2017.04.142
[123]
Chen W, Chang L, Ren S B, He Z C, Huang G B, Liu X H. J. Hazard. Mater., 2020, 384: 121308.

doi: S0304-3894(19)31262-2 pmid: 31585292
[124]
Hou Y D, Liu J S, Li Z Q, Wu Z Y, Zhu K J, Xi Q Y, Zhuang J J, Chen J X, Qian G M, Cong M Q. Mater. Lett., 2018, 218: 110.

doi: 10.1016/j.matlet.2018.01.140
[125]
Feng B, Wu Z Y, Liu J S, Zhu K J, Li Z Q, Jin X, Hou Y D, Xi Q Y, Cong M Q, Liu P C, Gu Q L. Appl. Catal. B: Environ., 2017, 206: 242.

doi: 10.1016/j.apcatb.2017.01.029
[126]
Zhuang J J, Liu J S, Wu Z Y, Li Z Q, Zhu K J, Yan K, Xu Y, Huang Y F, Lin Z X. J. Mater. Sci.: Mater. Electron., 2019, 30(12): 11368.
[127]
Tang M L, Ao Y H, Wang P F, Wang C. J. Hazard. Mater., 2020, 387: 121713.

doi: 10.1016/j.jhazmat.2019.121713
[128]
Chen W, Liu T Y, Huang T, Liu X H, Yang X J. Nanoscale, 2016, 8(6): 3711.

doi: 10.1039/c5nr07695a pmid: 26815611
[129]
Xu Y. Doctoral Dissertation of South China University of Technology,2015.(徐垚. 华南理工大学博士论文, 2015.).
[130]
Mahadik M A, Shinde P S, Cho M, Jang J S. Appl. Catal. B: Environ., 2016, 184: 337.

doi: 10.1016/j.apcatb.2015.12.001
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[6] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[7] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[10] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[11] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[12] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[13] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[14] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[15] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.