中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2404-2412 DOI: 10.7536/PC210103 Previous Articles   

• Review •

Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide

Hanqiang Zhou1, Mingfei Yu1, Qiaoshan Chen1(), Jianchun Wang2(), Jinhong Bi1()   

  1. 1 College of Environment and Resources, Fuzhou University,Fuzhou 350108, China
    2 Fujian Longking Co. Ltd,Xiamen 361000, China
  • Received: Revised: Online: Published:
  • Contact: Qiaoshan Chen, Jianchun Wang, Jinhong Bi
  • Supported by:
    the National Natural Science Foundation of China(5167204); the Natural Science Foundation of Fujian Province(2019J01648)
Richhtml ( 28 ) PDF ( 337 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalytic technology has shown great potential for purification of low-concentration nitric oxide (NO) pollution due to its energy-saving property, high efficiency, and limited secondary pollution. Among various semiconductors, bismuth oxyiodide (BiOI) photocatalyst has drawn considerable attention in recent years due to the superior photocatalytic activity and stability, since its narrow band gap and specific layered structure is in favor of visible light absorption and electron-hole pairs separation. Hence, we overview the latest research progress in the photocatalytic purification of NO by BiOI and introduce the influence of crystalline morphology and facets on its photocatalytic performance. The modification and activity enhancement mechanism of BiOI is emphatically expounded, for example, surface modification, ion doping and heterostructure construction. The future prospects and challenges in this research spot are put forward for the sake of providing theoretical reference and technical support for the design of highly active BiOI and the efficient purification of low concentration NO.

Contents

1 Introduction

2 Reaction mechanism and pathway of photocatalytic purification of NO

3 Controlled synthesis of bismuth oxyiodide

3.1 Morphological control

3.2 Crystal plane control

4 Surface modification and ion doping of bismuth oxyiodide

5 Construction of bismuth oxyiodide heterojunction

5.1 Bismuth oxyiodide/semiconductor heterojunction

5.2 Bismuth oxyiodide/insulator heterojunction

5.3 Ternary heterojunction

6 Conclusion and outlook

Fig.1 Numbers of annually published articles on photocatalytic NO purification in recent ten years (Source: Web of Science)
Fig.2 (a)Crystal structure of BiOI and (b) the schematic illustration of photocatalytic purification of NO based upon BiOI under visible light
Fig.3 (a~c)SEM images of as-synthesized BiOI spheres and (d~f) plates[37]. Copyright 2019, IOP Publishing Ltd
Table 1 Removal efficiency of NO by surface modification and ion-doped modification of BiOI
Fig.4 Schematic illustration of the photo-oxidative removal of NO by 3%Zn-BiOI in the dark and under visible light irradiation[42]. Copyright 2019, American Chemical Society
Fig.5 Schematic representation of NO photooxidation mechanism on the surface of Bi2WO6/BiOI vertical heterostructure[54]. Copyright 2019, Wiley
Table 2 Removal efficiency for NO by BiOI heterojunction
Fig.6 The side view of the (001) plane of BiOI and the (010) plane of BiOIO3 (a) and the schematic diagram of BiOI grown on the (010) facets of BiOIO3 (b)[56]. Copyright 2015, Royal Society of Chemistry
Fig.7 Schematic diagram for the separation and transfer of photogenerated carriers and the photocatalytic process over the insulator-semiconductor heterojunction[60]. Copyright 2018, Royal Society of Chemistry
[1]
Amoatey P, Omidvarborna H, Baawain M S, Al-Mamun A. Process. Saf. Environ. Prot., 2019, 123: 215.

doi: 10.1016/j.psep.2019.01.014
[2]
Koolen C D, Rothenberg G. ChemSusChem, 2019, 12(1): 164.

doi: 10.1002/cssc.v12.1
[3]
U. S.Environmental Protection Agency. EPA History: Clean Air Act Amendments of 1990, (2018-08-08). [2020-11-20].
[4]
UNECE. The Eutrophication and Ground-level Ozone. Document ECE/EB. AIR, United nations Economic Commission for Europe. New York and Geneva, (2001-08-07). [1999 Protocol to Abate Acidification, 2020-11-20].
[5]
The State Council. Circular of the State Council on printing and distributing the "Thirteenth Five-Year Plan" for ecological environmental protection, (2016-12-05). [2020-11-20].
[6]
Li L Z, Fu Z Q, He K B, Tan Y F, Feng Q, Wu J. Strateg. Study CAE, 2019, 21(4): 82.
( 李林子, 傅泽强, 贺克斌, 谭玉菲, 封强, 吴佳. 中国工程科学, 2019, 21(4): 82.)
[7]
Pandey R A, Chandrashekhar B. Crit. Rev. Environ. Sci. Technol., 2014, 44(1): 34.

doi: 10.1080/10643389.2012.710430
[8]
Gholami F, Tomas M, Gholami Z, Vakili M. Sci. Total. Environ., 2020, 714: 136712.

doi: 10.1016/j.scitotenv.2020.136712
[9]
Liu Y, Zhao J, Lee J M. ChemCatChem, 2018, 10(7): 1499.

doi: 10.1002/cctc.v10.7
[10]
Lasek J, Yu Y H, Wu J C S. J. Photochem. Photobiol. C: Photochem. Rev., 2013, 14: 29.

doi: 10.1016/j.jphotochemrev.2012.08.002
[11]
Nguyen V H, Nguyen B S, Huang C W, Le T T, Nguyen C C, Nhi Le T T, Heo D, Ly Q V, Trinh Q T, Shokouhimehr M, Xia C L, Lam S S, Vo D V N, Kim S Y, Le Q V. J. Clean. Prod., 2020, 270: 121912.

doi: 10.1016/j.jclepro.2020.121912
[12]
Hu Z, Li K N, Wu X F, Wang N, Li X F, Li Q, Li L, Lv K. Appl. Catal. B: Environ., 2019, 256: 117860.

doi: 10.1016/j.apcatb.2019.117860
[13]
Shang H, Li M Q, Li H, Huang S, Mao C L, Ai Z H, Zhang L Z. Environ. Sci. Technol., 2019, 53(11): 6444.

doi: 10.1021/acs.est.8b07322 pmid: 31050293
[14]
Dong G H, Yang L P, Wang F, Zang L, Wang C Y. ACS Catal., 2016, 6(10): 6511.

doi: 10.1021/acscatal.6b01657
[15]
Ai Z H, Lee S, Huang Y, Ho W, Zhang L Z. J. Hazard. Mater., 2010, 179(1/3): 141.

doi: 10.1016/j.jhazmat.2010.02.071
[16]
Chen M J, Huang Y, Lee S C. Chin. J. Catal., 2017, 38(2): 348.
[17]
Ding X, Ho W, Shang J, Zhang L Z. Appl. Catal. B: Environ., 2016, 182: 316.

doi: 10.1016/j.apcatb.2015.09.046
[18]
Ai Z H, Ho W, Lee S, Zhang L Z. Environ. Sci. Technol., 2009, 43(11): 4143.

doi: 10.1021/es9004366
[19]
Dong G H, Ho W, Zhang L Z. Appl. Catal. B: Environ., 2015, 168/169: 490.

doi: 10.1016/j.apcatb.2015.01.014
[20]
Cheng H F, Huang B B, Dai Y. Nanoscale, 2014, 6(4): 2009.

doi: 10.1039/c3nr05529a
[21]
He R A, Cao S W, Yu J G. Mater. China, 2017, 36(1): 17.
( 赫荣安, 曹少文, 余家国. 中国材料进展, 2017, 36(1): 17.)
[22]
Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P. Adv. Colloid Interface Sci., 2018, 254: 76.

doi: 10.1016/j.cis.2018.03.004
[23]
Guo Y, Shi W X, Zhu Y F, Xu Y P, Cui F Y. Appl. Catal. B: Environ., 2020, 262: 118262..

doi: 10.1016/j.apcatb.2019.118262
[24]
Mera A C, Martínez-de la Cruz A, PÉrez-Tijerina E, MelÉndrez M F, ValdÉs H. Mater. Sci. Semicond. Process., 2018, 88: 20.

doi: 10.1016/j.mssp.2018.04.045
[25]
Reyna-Cavazos K A, Cruz A M D, Longoria Rodríguez F E, LÓpez-Cuellar E. Res. Chem. Intermed., 2020, 46(1): 923.

doi: 10.1007/s11164-019-03998-8
[26]
Nosaka Y, Nosaka A Y. Chem. Rev., 2017, 117(17): 11302.

doi: 10.1021/acs.chemrev.7b00161
[27]
Wang H, Sun Y J, Jiang G M, Zhang Y X, Huang H W, Wu Z B, Lee S C, Dong F. Environ. Sci. Technol., 2018, 52(3): 1479.

doi: 10.1021/acs.est.7b05457
[28]
Shi X, Wang P Q, Li W, Bai Y, Xie H Q, Zhou Y, Ye L Q. Appl. Catal. B: Environ., 2019, 243: 322.

doi: 10.1016/j.apcatb.2018.10.037
[29]
Cao F, Lv X, Ren J, Miao L Q, Wang J M, Li S, Qin G W. Aust. J. Chem., 2016, 69(2): 212.

doi: 10.1071/CH15176
[30]
Lin H L, Zhou C C, Cao J, Chen S F. Chin. Sci. Bull., 2014, 59(27): 3420.

doi: 10.1007/s11434-014-0433-0
[31]
Long Y, Tan S Y, Han Q, Ai Y J, Sheng Y Q, Wang Y, Wang H B, Xie Y L, Liang Q L, Ding M Y. CrystEngComm, 2020, 22(10): 1754.

doi: 10.1039/C9CE01835B
[32]
Mera A C, Moreno Y, Pivan J Y, Peña O, Mansilla H D. J. Photochem. Photobiol. A: Chem., 2014, 289: 7.

doi: 10.1016/j.jphotochem.2014.05.015
[33]
Mi Y, Zhou M, Wen L Y, Zhao H P, Lei Y. Dalton Trans., 2014, 43(25): 9549.

doi: 10.1039/C4DT00798K
[34]
Wang X J, Li F T, Li D Y, Liu R H, Liu S. J. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2015, 193: 112.
[35]
Ren K X, Zhang K, Liu J, Luo H D, Huang Y B, Yu X B. CrystEngComm, 2012, 14(13): 4384.

doi: 10.1039/c2ce25087j
[36]
Nava Núñez M Y, Martínez-de la Cruz A, LÓpez-CuÉllar E. Res. Chem. Intermed., 2019, 45(3): 1475.

doi: 10.1007/s11164-018-3684-6
[37]
Yusoff M A M, Imam S S, Shah I, Adnan R. Mater. Res. Express, 2019, 6(8): 0850g5.

doi: 10.1088/2053-1591/ab2918
[38]
Xia J X, Yin S, Li H M, Xu H, Yan Y S, Zhang Q. Langmuir, 2011, 27(3): 1200.

doi: 10.1021/la104054r
[39]
Di J, Xia J X, Ge Y P, Xu L, Xu H, He M Q, Zhang Q, Li H M. J. Mater. Chem. A, 2014, 2(38): 15864.

doi: 10.1039/C4TA02400A
[40]
Jiang Z Y, Liang X Z, Liu Y Y, Jing T, Wang Z Y, Zhang X Y, Qin X Y, Dai Y, Huang B B. Appl. Catal. B: Environ., 2017, 211: 252.

doi: 10.1016/j.apcatb.2017.03.072
[41]
Dai W W, Zhao Z Y. Mater. Chem. Phys., 2017, 193: 164.

doi: 10.1016/j.matchemphys.2017.02.017
[42]
Rao F, Zhu G Q, Hojamberdiev M, Zhang W B, Li S P, Gao J Z, Zhang F C, Huang Y H, Huang Y. J. Phys. Chem. C, 2019, 123(26): 16268.

doi: 10.1021/acs.jpcc.9b03961
[43]
Pan M L, Zhang H J, Gao G D, Liu L, Chen W. Environ. Sci. Technol., 2015, 49(10): 6240.

doi: 10.1021/acs.est.5b00626
[44]
Sun X M, Wu J, Liu Q Z, Tian F G. Appl. Surf. Sci., 2018, 455: 864.

doi: 10.1016/j.apsusc.2018.06.049
[45]
Di J, Xia J X, Li H M, Guo S J, Dai S. Nano Energy, 2017, 41: 172.

doi: 10.1016/j.nanoen.2017.09.008
[46]
Yu C L, Cao F F, Shu Q, Bao Y L, Xie Z P, Yu J, Yang K. Acta Phys. Chimica Sin., 2012, 28(3): 647.
( 余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, 杨凯. 物理化学学报, 2012, 28(3): 647.)
[47]
Sun M L, Zhang W D, Sun Y J, Zhang Y X, Dong F. Chin. J. Catal., 2019, 40(6): 826.

doi: 10.1016/S1872-2067(18)63195-X
[48]
Xing X B, Wang X Y, Xu C C, Dong F. J. Civ. Environ. Eng., 2019, 41(6): 181.
( 幸小卜, 王鑫雅, 徐长长, 董帆. 土木与环境工程学报, 2019, 41(6): 181.)
[49]
Li Q, Gao S, Hu J, Wang H Q, Wu Z B. Catal. Sci. Technol., 2018, 8(20): 5270.

doi: 10.1039/C8CY01466C
[50]
Hojamberdiev M, Zhu G Q, Li S P, Zhang Y F, Gao J Z, Zhu R L, Zhang F C. Mater. Res. Bull., 2020, 123: 110701.

doi: 10.1016/j.materresbull.2019.110701
[51]
Zhang J Y, Zhu G Q, Li S P, Rao F, Hassan Q U, Gao J Z, Huang Y, Hojamberdiev M. ACS Appl. Mater. Interfaces, 2019, 11(41): 37822.

doi: 10.1021/acsami.9b14300
[52]
Li H Q, Cui Y M, Wu X C, Hua L, Hong W S. Acta Phys. Chim. Sin., 2012, 28: 1985.

doi: 10.3866/PKU.WHXB201205161
( 李慧泉, 崔玉民, 吴兴才, 华林, 洪文珊. 物理化学学报, 2012, 28: 1985.)
[53]
Dong F, Sun Y J, Fu M, Wu Z B, Lee S C. J. Hazard. Mater., 2012, 219/220: 26.

doi: 10.1016/j.jhazmat.2012.03.015
[54]
Wang L, Xu K, Cui W, Lv D, Wang L, Ren L, Xu X, Dong F, Dou S X, Hao W C, Du Y. Adv. Funct. Mater., 2019, 29(15): 1970100.

doi: 10.1002/adfm.v29.15
[55]
Ou M Y, Dong F, Zhang W, Wu Z B. Chem. Eng. J., 2014, 255: 650.

doi: 10.1016/j.cej.2014.06.086
[56]
Dong F, Xiong T, Sun Y J, Zhang Y X, Zhou Y. Chem. Commun., 2015, 51(39): 8249.

doi: 10.1039/C5CC01993A
[57]
Sun Y J, Xiao X, Dong X A, Dong F, Zhang W. Chin. J. Catal., 2017, 38(2): 217.

doi: 10.1016/S1872-2067(17)62753-0
[58]
Chen R M, Wang H, Wu H Z, Sheng J P, Li J Y, Cui W, Dong F. Chin. J. Catal., 2020, 41(4): 710.

doi: 10.1016/S1872-2067(19)63472-8
[59]
Gong S W, Zhu G Q, Bello I A, Rao F, Li S P, Gao J Z, Zubairu S M, Peng J H, Hojamberdiev M. J. Chem. Technol. Biotechnol., 2020, 95(6): 1705.
[60]
Wang H, Sun Y J, He W J, Zhou Y, Lee S C, Dong F. Nanoscale, 2018, 10(33): 15513.

doi: 10.1039/C8NR03845G
[61]
Wang H, Cui W, Dong X A, Li J Y, Chen Q S, Wang Z M, Sun Y J, Sheng J P, Zhou Y, Zhang Y X, Dong F. Chem. Eng. J., 2020, 390: 124609.

doi: 10.1016/j.cej.2020.124609
[62]
Shi X, Wang P Q, Wu Y J, Xing X, Bai Y. J. Mater. Sci. Mater. Electron., 2019, 30(21): 19154.

doi: 10.1007/s10854-019-02272-2
[63]
Sun Y J, Liao J Z, Dong F, Wu S J, Sun L D. Chin. J. Catal., 2019, 40(3): 362.

doi: 10.1016/S1872-2067(18)63187-0
[64]
Zhu G Q, Hojamberdiev M, Zhang S L, Din S T U, Yang W. Appl. Surf. Sci., 2019, 467/468: 968.

doi: 10.1016/j.apsusc.2018.10.246
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[11] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[14] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[15] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.