中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2138-2149 DOI: 10.7536/PC201219 Previous Articles   Next Articles

• Review •

Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation

Yong Feng1,2(), Yu Li1,2, Guangguo Ying1,2   

  1. 1 SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University,Guangzhou 510006, China
    2 School of Environment, South China Normal University, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: Yong Feng
  • Supported by:
    National Natural Science Foundation of China(42077340); National Natural Science Foundation of China(52000080); Guangdong Basic and Applied Basic Research Foundation(2019A1515110988)
Richhtml ( 44 ) PDF ( 647 ) Cited
Export

EndNote

Ris

BibTeX

Advanced oxidation processes based on persulfate activation have attracted increasing attention in the field of environmental remediation. However, the ubiquitous presence of radical scavengers in the environment limits the practical application of this technology. The latest publications show that the persulfate, under the activation of certain catalysts, can oxidize contaminants through the non-radical mechanism of electron transfer, and the catalyst mainly serves as an electron shuttle. This technology is not easily affected by common anions, such as chloride ions and bicarbonate ions, and natural organic matters and has high selectivity for the oxidation of target contaminants. Meanwhile, this technology may degrade pollutants without the need of direct contact between oxidants and pollutants, thereby avoiding the generation of toxic halogenated products due to the direct interaction between halogen ions and persulfate. This review mainly summarizes the types of common electron shuttles, the characterization methods of electron transfer processes, and the effects of common water components. Finally, the problems and application potential of this technology are proposed.

Contents:

1 Introduction

2 Mechanism and categories of interfacial electron transfer oxidation

2.1 Development and mechanism of interfacial electron transfer

2.2 Types of electron shuttles

2.3 Advantages and disadvantages of different electron shuttles

3 Identification of electron transfer mechanism

3.1 Radical measurements

3.2 Involvement of nonradical species

3.3 Electrochemical tests

3.4 Decomposition of persulfates

3.5 Theoretical calculation

4 Influencing factors of interfacial electron transfer

4.1 Factors influencing the catalytic reactivity

4.2 Factors influencing the adsorption reactivity

5 Effects of common water components

5.1 Chloride ions

5.2 Carbonate and bicarbonate ions

5.3 Natural organic matters

5.4 Treatment of wastewate by electron transfer

6 Applications of interfacial electron transfer

7 Conclusions and outlook

Table 1 Physicochemical properties of persulfates
Fig. 1 The development and mechanism of degradation of organic contaminants by catalyzed persulfates via interfacial electron transfer
Table 2 Oxidative removal of organic contaminants by activated persulfates via electron-transfer mechanism
Fig. 2 Identification of electron transfer mechanism during the activation of persulfate
Fig. 3 Effects of common water components on the advanced oxidation processes
Table 3 Effects of common water components on the degradation of organic contaminants via electron-transfer mechanism
Table 4 Treatment of synthetic/practical wastewater by electron transfer-mediated technologies
Fig. 4 Galvanic cell oxidation device based on(a) CNT membrane and(b) salt bridge
[1]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.

pmid: 14594393
[2]
Zhou Z, Liu X T, Sun K, Lin C Y, Ma J, He M C, Ouyang W. Chem. Eng. J., 2019, 372: 836.

doi: 10.1016/j.cej.2019.04.213
[3]
Long A H, Lei Y, Zhang H. Prog. Chem., 2014, 26(5): 898.
(龙安华, 雷洋, 张晖. 化学进展, 2014, 26(5): 898).
[4]
Hu P, Long M. Appl. Catal. B., 2016, 181: 103.
[5]
Buxton G V, Greenstock C L, Helman W P, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(2): 513.

doi: 10.1063/1.555805
[6]
Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(3): 1027.

doi: 10.1063/1.555808
[7]
Wojnárovits L, Takács E. Chemosphere, 2019, 220: 1014.

doi: 10.1016/j.chemosphere.2018.12.156
[8]
Luo X, Wei X X, Chen J W, Xie Q, Yang X H, Peijnenburg W J G M. Water Res., 2019, 166: 115083.
[9]
Ye S J, Yan M, Tan X F, Liang J, Zeng G M, Wu H P, Song B, Zhou C Y, Yang Y, Wang H. Appl. Catal. B: Environ., 2019, 250: 78.

doi: 10.1016/j.apcatb.2019.03.004
[10]
Tufail A, Price W E, Hai F I. Chemosphere, 2020, 260: 127460.
[11]
Feng Y, Li H L, Lin L, Kong L J, Li X Y, Wu D L, Zhao H Y, Shih K. Chem. Eng. J., 2018, 336: 416.

doi: 10.1016/j.cej.2017.12.011
[12]
Yun E T, Lee J H, Kim J, Park H D, Lee J. Environ. Sci. Technol., 2018, 52(12): 7032.

doi: 10.1021/acs.est.8b00959
[13]
Huang K Z, Zhang H C. Environ. Sci. Technol., 2019, 53(21): 12610.

doi: 10.1021/acs.est.9b03648 pmid: 31601099
[14]
Huang K Z, Zhang H C. Sci. Total. Environ., 2020, 743: 140828.
[15]
Steele W V, Appelman E H. J. Chem. Thermodyn., 1982, 14(4): 337.

doi: 10.1016/0021-9614(82)90052-0
[16]
Bard A. Standard Potentials in Aqueous Solution. Routledge, 2017.
[17]
Benson S W. Chem. Rev., 1978, 78(1): 23.

doi: 10.1021/cr60311a003
[18]
Ball D L, Edwards J O. J. Am. Chem. Soc., 1956, 78(6): 1125.

doi: 10.1021/ja01587a011
[19]
Chen Z H, Li X C, Zhang S J, Jin J Y, Song X J, Wang X M, Tratnyek P G. Environ. Sci. Technol., 2019, 53(4): 2054.

doi: 10.1021/acs.est.8b05901
[20]
Lente G, Kalmár J, Baranyai Z, Kun A, KÉk I, Bajusz D, Takács M, Veres L, Fábián I. Inorg. Chem., 2009, 48(4): 1763.

doi: 10.1021/ic801569k
[21]
Lee J, von Gunten U, Kim J H. Environ. Sci. Technol., 2020, 54(6): 3064.

doi: 10.1021/acs.est.9b07082
[22]
Ross A B, Neta P. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. US Department of Commerce, National Bureau of Standards Washington D. C, 1979.
[23]
Gilbert B C, Stell J K. Faraday Trans., 1990, 86(19): 3261.

doi: 10.1039/ft9908603261
[24]
Ye S J, Cheng M, Zeng G M, Tan X F, Wu H P, Liang J, Shen M C, Song B, Liu J Q, Yang H L, Zhang Y F. Water Res., 2020, 179: 115876.
[25]
Hu P D, Su H R, Chen Z Y, Yu C Y, Li Q L, Zhou B X, Alvarez P J J, Long M C. Environ. Sci. Technol., 2017, 51(19): 11288.

doi: 10.1021/acs.est.7b03014
[26]
Tratnyek P G, Hoigne J. Environ. Sci. Technol., 1991, 25(9): 1596.

doi: 10.1021/es00021a011
[27]
Ren W, Xiong L L, Yuan X H, Yu Z W, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(24): 14595.

doi: 10.1021/acs.est.9b05475
[28]
Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C. Chem. Eng. J., 2015, 266: 28.

doi: 10.1016/j.cej.2014.12.065
[29]
Zhang T, Chen Y, Wang Y R, Le Roux J, Yang Y, CrouÉ J P. Environ. Sci. Technol., 2014, 48(10): 5868.

doi: 10.1021/es501218f pmid: 24779765
[30]
Duan X G, Sun H Q, Wang Y X, Kang J, Wang S B. ACS Catal., 2015, 5(2): 553.

doi: 10.1021/cs5017613
[31]
Yun E T, Yoo H Y, Bae H, Kim H I, Lee J. Environ. Sci. Technol., 2017, 51(17): 10090.

doi: 10.1021/acs.est.7b02519
[32]
Cheng X, Guo H G, Zhang Y L, Korshin G V, Yang B. Water Res., 2019, 157: 406.

doi: S0043-1354(19)30297-0 pmid: 30978663
[33]
Wang H Z, Guo W Q, Liu B H, Wu Q L, Luo H C, Zhao Q, Si Q S, Sseguya F, Ren N Q. Water Res., 2019, 160: 405.

doi: 10.1016/j.watres.2019.05.059
[34]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817
[35]
Ho S H, Chen Y D, Li R X, Zhang C F, Ge Y M, Cao G L, Ma M, Duan X G, Wang S B, Ren N Q. Water Res., 2019, 159: 77.

doi: 10.1016/j.watres.2019.05.008
[36]
He J, Xiao Y, Tang J C, Chen H K, Sun H W. Sci. Total. Environ., 2019, 690: 768.

doi: 10.1016/j.scitotenv.2019.07.043
[37]
Yu J F, Tang L, Pang Y, Zeng G M, Feng H P, Zou J J, Wang J J, Feng C Y, Zhu X, Ouyang X L, Tan J S. Appl. Catal. B: Environ., 2020, 260: 118160.
[38]
Chu C H, Yang J, Huang D H, Li J F, Wang A Q, Alvarez P J J, Kim J H. Environ. Sci. Technol., 2019, 53(17): 10352.

doi: 10.1021/acs.est.9b03067
[39]
Qin J X, Dai L, Shi P H, Fan J C, Min Y L, Xu Q J. J. Hazard. Mater., 2020, 398: 122808.
[40]
Tang L, Liu Y N, Wang J J, Zeng G M, Deng Y C, Dong H R, Feng H P, Wang J J, Peng B. Appl. Catal. B: Environ., 2018, 231: 1.
[41]
Feng Y, Zhang L Y, Yang Z Q, Fan Y A, Shih K, Li H L, Liu Y, Wu D L. Chem. Eng. J., 2020, 392: 123724.
[42]
Zhu S S, Jin C, Duan X G, Wang S B, Ho S H. Chem. Eng. J., 2020, 393: 124725.
[43]
van der Zee F P, Bisschops I A E, Lettinga G, Field J A. Environ. Sci. Technol., 2003, 37(2): 402.

doi: 10.1021/es025885o
[44]
Pignatello J J, Mitch W A, Xu W Q. Environ. Sci. Technol., 2017, 51(16): 8893.

doi: 10.1021/acs.est.7b01088 pmid: 28753285
[45]
Yue X H, Jin X, Gu C. Mater. Rep., 2020, 34(3): 34.
(岳先会, 金鑫, 谷成. 材料导报, 2020, 34(3): 34.)
[46]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.)

doi: 10.7536/PC170310
[47]
Lee H, Kim H I, Weon S, Choi W, Hwang Y S, Seo J, Lee C, Kim J H. Environ. Sci. Technol., 2016, 50(18): 10134.

doi: 10.1021/acs.est.6b02079
[48]
Sun Z Q, Zhao L, Liu C H, Zhen Y F, Ma J. Chem. Eng. J., 2020, 381: 122510.
[49]
Huang G X, Wang C Y, Yang C W, Guo P C, Yu H Q. Environ. Sci. Technol., 2017, 51(21): 12611.

doi: 10.1021/acs.est.7b03007
[50]
Yao Y, Cai Y, Lu F, Wei F, Wang X, Wang S. J. Hazard. Mater., 2014, 270: 61.

doi: 10.1016/j.jhazmat.2014.01.027
[51]
Saputra E, Muhammad S, Sun H Q, Ang H M, TadÉ M O, Wang S B. Environ. Sci. Technol., 2013, 47(11): 5882.

doi: 10.1021/es400878c pmid: 23651050
[52]
Huang J Z, Dai Y F, Singewald K, Liu C C, Saxena S, Zhang H C. Chem. Eng. J., 2019, 370: 906.

doi: 10.1016/j.cej.2019.03.238
[53]
Luo H, Lin Q, Zhang X, Huang Z, Fu H, Xiao R, Liu S S. J. Hazard. Mater., 2020, 391: 123555.
[54]
Jiang T, Amadei C A, Gou N, Lin Y S, Lan J Q, Vecitis C D, Gu A Z. Environ. Sci.: Nano, 2020, 7(5): 1348.
[55]
Kobayashi N, Izumi H, Morimoto Y. J. Occup. Heal., 2017, 59(5): 394.
[56]
Xiang W, Zhang X Y, Chen J J, Zou W X, He F, Hu X, Tsang D C W, Ok Y S, Gao B. Chemosphere, 2020, 252: 126539.
[57]
He L Z, Zhong H, Liu G X, Dai Z M, Brookes P C, Xu J M. Environ. Pollut., 2019, 252: 846.

doi: 10.1016/j.envpol.2019.05.151
[58]
Li H C, Shan C, Pan B C. Environ. Sci. Technol., 2018, 52(4): 2197.

doi: 10.1021/acs.est.7b05563
[59]
Feng Y, Liao C Z, Kong L J, Wu D L, Liu Y M, Lee P H, Shih K. J. Hazard. Mater., 2018, 354: 63.

doi: 10.1016/j.jhazmat.2018.04.056
[60]
Wang L H, Xu H D, Jiang N, Wang Z M, Jiang J, Zhang T. Environ. Sci. Technol., 2020, 54(7): 4686.

doi: 10.1021/acs.est.0c00284
[61]
Feng Y, Qing W H, Kong L J, Li H L, Wu D L, Fan Y A, Lee P H, Shih K. Water Res., 2019, 149: 1.

doi: 10.1016/j.watres.2018.10.090
[62]
Feng Y, Lee P H, Wu D L, Zhou Z Y, Li H K, Shih K. J. Hazard. Mater., 2017, 331: 81.

doi: 10.1016/j.jhazmat.2017.02.029
[63]
Zong Y, Guan X H, Xu J, Feng Y, Mao Y F, Xu L Q, Chu H Q, Wu D L. Environ. Sci. Technol., 2020, 54(24): 16231.

doi: 10.1021/acs.est.0c06808
[64]
Feng Y, Lee P H, Wu D L, Shih K. Water Res., 2017, 120: 12.

doi: 10.1016/j.watres.2017.04.070
[65]
Pestovsky O, Bakac A. Inorg. Chem., 2006, 45(2): 814.

pmid: 16411719
[66]
Dong H Y, Li Y, Wang S C, Liu W F, Zhou G M, Xie Y F, Guan X H. Environ. Sci. Technol. Lett., 2020, 7(3): 219.

doi: 10.1021/acs.estlett.0c00025
[67]
Gilbert B C, Norman R O C, Sealy R C. J. Chem. Soc., Perkin Trans. 2, 1975(4): 303.
[68]
Wang Z H, Ma W H, Chen C C, Ji H W, Zhao J C. Chem. Eng. J., 2011, 170(2/3): 353.

doi: 10.1016/j.cej.2010.12.002
[69]
Gao H Y, Huang C H, Mao L, Shao B, Shao J, Yan Z Y, Tang M, Zhu B Z. Environ. Sci. Technol., 2020, 54(21): 14046.

doi: 10.1021/acs.est.0c04410
[70]
Fang G D, Dionysiou D D, Al-Abed S R, Zhou D M. Appl. Catal. B: Environ., 2013, 129: 325.

doi: 10.1016/j.apcatb.2012.09.042
[71]
Zhou Y, Jiang J, Gao Y, Ma J, Pang S Y, Li J, Lu X T, Yuan L P. Environ. Sci. Technol., 2015, 49(21): 12941.

doi: 10.1021/acs.est.5b03595
[72]
Liu C M, Diao Z H, Huo W Y, Kong L J, Du J J. Environ. Pollut., 2018, 239: 698.

doi: 10.1016/j.envpol.2018.04.084
[73]
Nieto-Juarez J I, Pierzchła K, Sienkiewicz A, Kohn T. Environ. Sci. Technol., 2010, 44(9): 3351.

doi: 10.1021/es903739f pmid: 20356037
[74]
Li X N, Huang X, Xi S B, Miao S, Ding J, Cai W Z, Liu S, Yang X L, Yang H B, Gao J J, Wang J H, Huang Y Q, Zhang T, Liu B. J. Am. Chem. Soc., 2018, 140(39): 12469.

doi: 10.1021/jacs.8b05992
[75]
Sun B J, Ma W J, Wang N, Xu P, Zhang L J, Wang B N, Zhao H H, Lin K Y A, Du Y C. Environ. Sci. Technol., 2019, 53(16): 9771.

doi: 10.1021/acs.est.9b03374
[76]
Haag W R, Hoigne J. Environ. Sci. Technol., 1986, 20(4): 341.

doi: 10.1021/es00146a005 pmid: 22300204
[77]
Yang Y, Banerjee G, Brudvig G W, Kim J H, Pignatello J J. Environ. Sci. Technol., 2018, 52(10): 5911.

doi: 10.1021/acs.est.8b00735 pmid: 29664293
[78]
Thompson R C, Wieland P, Appelman E H. Inorg. Chem., 1979, 18(7): 1974.

doi: 10.1021/ic50197a051
[79]
Ding Y B, Wang X R, Fu L B, Peng X Q, Pan C, Mao Q H, Wang C J, Yan J C. Sci. Total. Environ., 2021, 765: 142794.
[80]
Yun E T, Moon G H, Lee H, Jeon T H, Lee C, Choi W, Lee J. Appl. Catal. B: Environ., 2018, 237: 432.

doi: 10.1016/j.apcatb.2018.04.067
[81]
Du X D, Zhang Y Q, Hussain I, Huang S B, Huang W L. Chem. Eng. J., 2017, 313: 1023.

doi: 10.1016/j.cej.2016.10.138
[82]
Nie C Y, Dai Z H, Liu W J, Duan X G, Wang C Y, Lai B, Ao Z M, Wang S B, An T C. Environ. Sci.: Nano, 2020, 7(7): 1899.
[83]
Duan X G, Ao Z M, Zhang H Y, Saunders M, Sun H Q, Shao Z P, Wang S B. Appl. Catal. B: Environ., 2018, 222: 176.

doi: 10.1016/j.apcatb.2017.10.007
[84]
Dai Z H, Li D D, Ao Z M, Wang S B, An T C. J. Hazard. Mater., 2021, 405: 124684.
[85]
Li J Q, Li M T, Sun H Q, Ao Z M, Wang S B, Liu S M. ACS Catal., 2020, 10(6): 3516.

doi: 10.1021/acscatal.9b05273
[86]
Han C, Duan X G, Zhang M J, Fu W Z, Duan X Z, Ma W J, Liu S M, Wang S B, Zhou X G. Carbon, 2019, 153: 73.

doi: 10.1016/j.carbon.2019.06.107
[87]
Duan X G, Ao Z M, Sun H Q, Zhou L, Wang G X, Wang S B. Chem. Commun., 2015, 51(83): 15249.

doi: 10.1039/C5CC05101K
[88]
Yang Q, Chen Y D, Duan X G, Zhou S K, Niu Y, Sun H Q, Zhi L J, Wang S B. Appl. Catal. B: Environ., 2020, 276: 119146.
[89]
Ren W, Nie G, Zhou P, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(10): 6438.

doi: 10.1021/acs.est.0c01161
[90]
Wang X B, Qin Y L, Zhu L H, Tang H Q. Environ. Sci. Technol., 2015, 49(11): 6855.

doi: 10.1021/acs.est.5b01059
[91]
Lian L S, Yao B, Hou S D, Fang J Y, Yan S W, Song W H. Environ. Sci. Technol., 2017, 51(5): 2954.

doi: 10.1021/acs.est.6b05536
[92]
Zhang W Q, Zhou S Q, Sun J L, Meng X Y, Luo J M, Zhou D D, Crittenden J. Environ. Sci. Technol., 2018, 52(13): 7380.

doi: 10.1021/acs.est.8b01662
[93]
Ya L D, Wang W L, Hu H Y, Wu Q Y, Wu Y H, Chen Z. Acta Sci. Circumstantiae, 2020, 40(11): 3868.
(牙柳丁, 王文龙, 胡洪营, 吴乾元, 巫寅虎, 陈卓. 环境科学学报, 2020, 40(11): 3868. )
[94]
Feng Y, Lee P H, Wu D L, Shih K. Environ. Sci. Technol., 2017, 51(4): 2312.

doi: 10.1021/acs.est.6b04528
[95]
Jayson G G, Parsons B J, Swallow A J. J. Chem. Soc., Faraday Trans. 1, 1973, 69: 1597.

doi: 10.1039/CT8966900001
[96]
Fortnum D H, Battaglia C J, Cohen S R, Edwards J O. J. Am. Chem. Soc., 1960, 82(4): 778.

doi: 10.1021/ja01489a004
[97]
Lane R F, Adams C D, Randtke S J, Carter R E Jr. Water Res., 2015, 79: 68.

doi: 10.1016/j.watres.2015.04.014
[98]
Amildon Ricardo I, Paiva V A B, Paniagua C E S, TrovÓ A G. Chem. Eng. J., 2018, 347: 763.

doi: 10.1016/j.cej.2018.04.169
[99]
Zuo Z H, Cai Z L, Katsumura Y, Chitose N, Muroya Y. Radiat. Phys. Chem., 1999, 55(1): 15.

doi: 10.1016/S0969-806X(98)00308-9
[100]
Canonica S, Kohn T, Mac M, Real F J, Wirz J, von Gunten U. Environ. Sci. Technol., 2005, 39(23): 9182.

pmid: 16382940
[101]
Lutze H V, Bircher S, Rapp I, Kerlin N, Bakkour R, Geisler M, von Sonntag C, Schmidt T C. Environ. Sci. Technol., 2015, 49(3): 1673.

doi: 10.1021/es503496u
[102]
Xie P C, Ma J, Liu W, Zou J, Yue S Y, Li X C, Wiesner M R, Fang J Y. Water Res., 2015, 69: 223.

doi: 10.1016/j.watres.2014.11.029
[103]
Hodges B C, Cates E L, Kim J H. Nat. Nanotechnol., 2018, 13(8): 642.

doi: 10.1038/s41565-018-0216-x
[104]
Nurmi J T, Tratnyek P G. Environ. Sci. Technol., 2002, 36(4): 617.

doi: 10.1021/es0110731
[105]
Chen R Z, Pignatello J J. Environ. Sci. Technol., 1997, 31(8): 2399.

doi: 10.1021/es9610646
[106]
Alvarez P J J, Chan C K, Elimelech M, Halas N J, Villagrán D. Nat. Nanotechnol., 2018, 13(8): 634.

doi: 10.1038/s41565-018-0203-2 pmid: 30082804
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[3] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[4] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[5] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[6] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[7] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[8] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[9] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[10] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[11] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[12] Jiang Binbo, Yuan Shiling, Chen Nan, Wang Haibo, Wang Jingdai, Huang Zhengliang. Reaction Kinetics of n-Butane Oxidation on VPO Catalyst [J]. Progress in Chemistry, 2015, 27(11): 1679-1688.
[13] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[14] Pang Yijun, Chen Xiaohui, Xu Chengzhi, Lei Yangjun, Wei Kemei. Metal Catalysts and Reaction Mechanisms in Propylene Epoxidation in Gas-Phase by Molecular Oxygen [J]. Progress in Chemistry, 2014, 26(08): 1307-1316.
[15] Yang Bo, Li Yingying, Yu Gang, Deng Shubo, Zhuo Qiongfang, Zhang Hong. Oxidative Degradation of PFOA/PFOS with Physicochemical Techniques [J]. Progress in Chemistry, 2014, 26(07): 1265-1274.