中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1331-1343 DOI: 10.7536/PC201236 Previous Articles   Next Articles

• Review •

Structural Defects Regulation of Bismuth Molybdate Photocatalyst

Yifan Zhao1, Qiyun Mao1, Xiaoya Zhai1, Guoying Zhang1,2,3()   

  1. 1 Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University,Tianjin 300387, China
    2 Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University,Jinan 250014, China
    3 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Contact: Guoying Zhang
  • Supported by:
    Open Foundation of Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University(2018KLMNP05); Open Foundation of Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); College of Chemistry, Nankai University and the Postgraduate and Doctoral Innovation Project of Tianjin(2020YJSS049)
Richhtml ( 64 ) PDF ( 947 ) Cited
Export

EndNote

Ris

BibTeX

As a novel type of Bi(Ⅲ)-based semiconductor photocatalyst, bismuth molybdate(Bi2MoO6) possesses the advantages of layered structure, low cost, cleanness and efficiency, narrow band gap and visible light response, etc. Resultantly, it exhibits widely potential applications in various photocatalytic areas such as degradation of water pollutants, air purification, antibacterial, water splitting, carbon dioxide reduction and nitrogen fixation. However, there are still two main bottleneck problems which would restrict the practical applications of Bi2MoO6 and needs to be addressed urgently. One is the low absorption efficiency for solar energy and the other is the fast recombination rate of photogenerated electron-hole pairs. Introduction and regulation of structure defects in Bi2MoO6 have been proved to be effective strategies to resolve the above problems. In the paper, the research progress of Bi2MoO6 defect engineering in recent years is comprehensively reviewed, including elemental doping, oxygen vacancy, synergistic effects, etc. The different methods to construct defects in Bi2MoO6 and the corresponding photocatalytic properties are extensively summarized. Also, the structure-activity relationship and action mechanism of the structural defects in different research fields are in-depth discussed and concluded. Finally, the present shortcomings of defective Bi2MoO6 photocatalyst are analyzed and the development direction and prospects in future are prospected.

Contents

1 Introduction

2 Elemental doping defect of bismuth molybdate

2.1 Rare earth ion doping

2.2 Transition metal ion doping

2.3 Non-metal ion doping

2.4 Ion co-doping strategy

3 Oxygen vacancy defect of bismuth molybdate

3.1 Ion doping associated oxygen vacancy

3.2 Individual oxygen vacancy

3.3 Oxygen vacancy synergy

4 Conclusion and outlook

Fig. 1 (a) Aurivillius structure of BMO[24];(b) Complete and partial DOS diagram of BMO[26]. Copyright 2020, Elsevier; Copyright 2012, Elsevier
Fig. 2 (a) The visible light photocatalytic efficiency of La-BMO for RhB degradation,(b) transition from rod-like to lamellar structure[46];(c) changes in the electronic structure of Sm-BMO with doping content[51]. Copyright 2018, Springer Nature; Copyright 2016, American Chemical Society.
Table 1 Summary of transition metal ions doped BMO
Fig. 3 (a) Comparison of NH3 production capacity,(b) energy band structure change and(c,d) relative work function diagrams of BMO and 0.5% Fe-BMO, respectively[60]. Copyright 2019, Elsevier
Fig. 4 (a) Density of states and(b) EIS Nyquist curves of BOC and Br-BOC[19]; ESR peaks of(c) ·O2-and(d) ·OH in C-BMO[69]. Copyright 2019, Elsevier; Copyright 2017, Wiley
Fig. 5 (a) Schematic diagram of compensated distribution of 4f electrons of Tb/Eu, Dy/Sm and Er/Nd[83];(b) photocatalytic degradation mechanism over Gd/Er/Lu triple-doped BMO[84]. Copyright 2017, Elsevier; Copyright 2019, Elsevier
Fig. 6 (a) Illustration of the possible formation process of crystal defects in Ce-doped BMO structure,(b) the ESR signal of Ce-Vo-defects in Ce-doped BMO structure,(c) visible light photocatalytic degradation of methyl paraoxon, and(d) photocatalytic disinfection efficiency of staphylococcus aureus[99]. Copyright 2016, American Chemical Society
Table 2 Summary of the construction and application of individual Vo-BMO system
Fig. 7 (a) Diagram of hierarchical Vo-BMO architectures,(b) in situ FTIR spectra of Vo-rich BMO before and after benzyl alcohol adsorption[101],(c) EPR spectra of Vo-BMO ultrathin nanosheets and bulk BMO,(d) atomic resolution STEMI-ADF images[111]. Copyright 2019, Elsevier; Copyright 2019, Elsevier
Fig. 8 (a) UV-vis diffuse reflectance spectra, and(b) transient photocurrent response of BMO-based samples[104];(c) HRTEM image and(d) schematic diagram of photocatalytic degradation mechanism for organic pollutants of Fe(Ⅲ)-Vo-BMO[105]. Copyright 2018, Elsevier; Copyright 2019, Elsevier
[1]
Ahmad H, Kamarudin S K, Minggu L J, Kassim M. Renew. Sustain. Energy Rev., 2015, 43: 599.

doi: 10.1016/j.rser.2014.10.101
[2]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76.

doi: 10.1038/nmat2317
[3]
Song J. ACS Energy Lett., 2019, 4(6): 1443.

doi: 10.1021/acsenergylett.9b01134
[4]
Mamaghani A H, Haghighat F, Lee C S. Appl. Catal. B: Environ., 2017, 203: 247.

doi: 10.1016/j.apcatb.2016.10.037
[5]
Wang B Y, Zhang G Y, Cui G W, Xu Y Y, Liu Y, Xing C Y. Inorg. Chem. Front., 2019, 6(1): 209.

doi: 10.1039/C8QI01025K
[6]
Zhao N, Kong L G, Dong Y M, Wang G L, Wu X M, Jiang P P. ACS Appl. Mater. Interfaces, 2018, 10(11): 9522.

doi: 10.1021/acsami.8b01590
[7]
Zhang H Z, Dong Y M, Zhao S, Wang G L, Jiang P P, Zhong J, Zhu Y F. Appl. Catal. B: Environ., 2020, 261: 118233.
[8]
Wang C C, Wang X, Liu W. Chem. Eng. J., 2020, 391: 123601.
[9]
Dash D, Panda N R, Sahu D. Appl. Surf. Sci., 2019, 494: 666.

doi: 10.1016/j.apsusc.2019.07.089
[10]
Wang J P, Song Y N, Hu J, Li Y, Wang Z Y, Yang P, Wang G, Ma Q, Che Q D, Dai Y, Huang B B. Appl. Catal. B: Environ., 2019, 251: 94.

doi: 10.1016/j.apcatb.2019.03.049
[11]
Feng Y, Wu Q S, Zhang G Y, Sun Y Q. Prog. Chem., 2012, 24(11): 2124.
(冯妍, 吴青松, 张国英, 孙亚秋. 化学进展, 2012, 24(11): 2124.)
[12]
Wu Q S, Cui Y, Yang L M, Zhang G Y, Gao D Z. Sep. Purif. Technol., 2015, 142: 168.

doi: 10.1016/j.seppur.2014.12.039
[13]
Cui Y, Yang L M, Zhang G Y, Feng Y. Catal. Commun., 2015, 59: 83.

doi: 10.1016/j.catcom.2014.10.001
[14]
Zhang Z, Zhou C T, Yang S J. Prog. Chem., 2020, 32(9): 1427.

doi: 10.7536/PC200526
(张志, 邹晨涛, 杨水金. 化学进展, 2020, 32(9): 1427.)

doi: 10.7536/PC200526
[15]
Yu H B, Jiang L B, Wang H, Huang B B, Yuan X Z, Huang J H, Zhang J, Zeng G M. Small, 2019: 1901008.
[16]
Han D, Du M H, Dai C M, Sun D Y, Chen S Y. J. Mater. Chem. A, 2017, 5(13): 6200.

doi: 10.1039/C6TA10377D
[17]
Shi M, Li G N, Li J M, Jin X, Tao X P, Zeng B, Pidko E A, Li R G, Li C. Angew. Chem. Int. Ed., 2020, 59(16): 6590.

doi: 10.1002/anie.v59.16
[18]
Jin X L, Ye L Q, Xie H Q, Chen G. Coord. Chem. Rev., 2017, 349: 84.

doi: 10.1016/j.ccr.2017.08.010
[19]
Zhang G Y, Wang J J, Shen X Q, Wang J J, Wang B Y, Gao D Z. Appl. Surf. Sci., 2019, 470: 63.

doi: 10.1016/j.apsusc.2018.11.103
[20]
Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R. J. Am. Chem. Soc., 2016, 138(7): 2082.

doi: 10.1021/jacs.5b11191
[21]
Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J H, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Nat. Commun., 2016, 7(1): 1.
[22]
Liu Y Y, Lv P, Zhou W, Hong J W. J. Phys. Chem. C, 2020, 124(18): 9696.

doi: 10.1021/acs.jpcc.0c00321
[23]
Wu X L, Hart J N, Wen X M, Wang L, Du Y, Dou S X, Ng Y H, Amal R, Scott J. ACS Appl. Mater. Interfaces, 2018, 10(11): 9342.

doi: 10.1021/acsami.7b17856
[24]
Núñez-González R, Rangel R, Antúnez-García J, Galván D H. Solid State Commun., 2020, 318: 113978.
[25]
Shimodaira Y, Kato H, Kobayashi H, Kudo A. J. Phys. Chem. B, 2006, 110(36): 17790.
[26]
Lai K R, Wei W, Zhu Y T, Guo M, Dai Y, Huang B B. J. Solid State Chem., 2012, 187: 103.

doi: 10.1016/j.jssc.2012.01.004
[27]
Yang Z X, Shen M, Dai K, Zhang X H, Chen H. Appl. Surf. Sci., 2018, 430: 505.

doi: 10.1016/j.apsusc.2017.08.072
[28]
Bai J W, Li Y, Liu J D, Liu L. Microporous Mesoporous Mater., 2017, 240: 91.

doi: 10.1016/j.micromeso.2016.11.008
[29]
Li S G, Bai L Q, Ji N, Yu S X, Lin S, Tian N, Huang H W. J. Mater. Chem. A, 2020, 8(18): 9268.

doi: 10.1039/D0TA02102D
[30]
Tian J, Hao P, Wei N, Cui H Z, Liu H. ACS Catal., 2015, 5(8): 4530.

doi: 10.1021/acscatal.5b00560
[31]
Meng X C, Zhang Z S. J. Catal., 2016, 344: 616.

doi: 10.1016/j.jcat.2016.10.006
[32]
Zhang L W, Xu T G, Zhao X, Zhu Y F. Appl. Catal. B: Environ., 2010, 98(3/4): 138.

doi: 10.1016/j.apcatb.2010.05.022
[33]
Jia Y L, Ma Y, Tang J Z, Shi W B. Dalton Trans., 2018, 47(16): 5542.

doi: 10.1039/C8DT00061A
[34]
Ke J, Duan X G, Luo S, Zhang H Y, Sun H Q, Liu J, Tade M, Wang S B. Chem. Eng. J., 2017, 313: 1447.

doi: 10.1016/j.cej.2016.11.048
[35]
Peng Y H, Zhang Y, Tian F H, Zhang J Q, Yu J Q. Crit. Rev. Solid State Mater. Sci., 2017, 42(5): 347.

doi: 10.1080/10408436.2016.1200009
[36]
Lin X, Hou J, Jiang S S, Lin Z, Wang M, Che G B. RSC Adv., 2015, 5(127): 104815.
[37]
Zhao Z W, Zhang W D, Sun Y J, Yu J Y, Zhang Y X, Wang H, Dong F, Wu Z B. J. Phys. Chem. C, 2016, 120(22): 11889.
[38]
Tao R, Shao C L, Li X H, Li X W, Liu S, Yang S, Zhao C C, Liu Y C. J. Colloid Interface Sci., 2018, 529: 404.

doi: 10.1016/j.jcis.2018.06.035
[39]
Zhang J L, Liu Z D, Ma Z. ACS Omega, 2019, 4(2): 3871.

doi: 10.1021/acsomega.8b03699
[40]
Zhang Y, Zhu Y K, Yu J Q, Yang D J, Ng T W, Wong P K, Yu J C. Nanoscale, 2013, 5(14): 6307.

doi: 10.1039/c3nr01338c pmid: 23748925
[41]
Gao X, Ji X D, Nguyen T T, Gong X C, Chai R S, Guo M H. Vacuum, 2019, 164: 256.

doi: 10.1016/j.vacuum.2019.03.032
[42]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058
[43]
Luo J Y, Bai X X, Li Q, Yu X, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H, Liu H. Nano Energy, 2019, 66: 104187.
[44]
Hanselman C L, Tafen D N, Alfonso D R, Lekse J W, Matranga C, Miller D C, Gounaris C E. Comput. Chem. Eng., 2019, 126: 168.

doi: 10.1016/j.compchemeng.2019.03.033
[45]
Carey J J, Legesse M, Nolan M. J. Phys. Chem. C, 2016, 120(34): 19160.
[46]
Zhang P, Yi Y N, Yu C X, Li W, Liao P S, Tian R W, Zhou M, Zhou Y F, Li B, Fan M G, Dong L H. J. Mater. Sci.: Mater. Electron., 2018, 29(10): 8617.
[47]
Waqar M, Imran M, Adil S F, Noreen S, Latif S, Khan M, Siddiqui M R H. Materials, 2019, 13(1): 35.

doi: 10.3390/ma13010035
[48]
Yu C L, Wu Z, Liu R Y, He H B, Fan W H. J. Phys. Chem. Solids, 2016, 93: 7.

doi: 10.1016/j.jpcs.2016.02.008
[49]
Li H D, Li W J, Wang F Z, Liu X T, Ren C J, Miao X. Appl. Surf. Sci., 2018, 427: 1046.
[50]
Alemi A A, Kashfi R, Shabani B. J. Mol. Catal. A: Chem., 2014, 392: 290.

doi: 10.1016/j.molcata.2014.05.029
[51]
Kashfi-Sadabad R, Yazdani S, Alemi A, Huan T D, Ramprasad R, Pettes M T. Langmuir, 2016, 32(42): 10967.
[52]
Zhang X H, Zhang H R, Jiang H T, Yu F, Shang Z R. Catal. Lett., 2020, 150(1): 159.

doi: 10.1007/s10562-019-02924-2
[53]
Yang G, Liang Y J, Li K, Yang J, Xu R, Xie X J. Inorg. Chem. Front., 2019, 6(6): 1507.

doi: 10.1039/c9qi00302a
[54]
Zhou T F, Hu J C, Li J L. Appl. Catal. B: Environ., 2011, 110: 221.

doi: 10.1016/j.apcatb.2011.09.004
[55]
Dumrongrojthanath P, Thongtem T, Phuruangrat A, Thongtem S. Res. Chem. Intermed., 2016, 42(5): 5087.

doi: 10.1007/s11164-015-2346-1
[56]
Wang L, Wang P, Huang B B, Ma X J, Wang G, Dai Y, Zhang X Y, Qin X Y. Appl. Surf. Sci., 2017, 391: 557.

doi: 10.1016/j.apsusc.2016.06.159
[57]
Fu C X, Gong Y Y, Wu Y T, Liu J Q, Zhang Z, Li C, Niu L Y. Appl. Surf. Sci., 2016, 379: 83.

doi: 10.1016/j.apsusc.2016.03.192
[58]
Dutta D P, Ballal A, Chopade S, Kumar A. J. Photochem. Photobiol. A: Chem., 2017, 346: 105.

doi: 10.1016/j.jphotochem.2017.05.044
[59]
Zhang X B, Zhang L, Hu J S, Huang X H. RSC Adv., 2016, 6(38): 32349.
[60]
Meng Q Q, Lv C, Sun J X, Hong W Z, Xing W N, Qiang L S, Chen G, Jin X L. Appl. Catal. B: Environ., 2019, 256: 117781.
[61]
Chakraborty M, Ghosh S, Mahalingam V. Sustain. Energy Fuels, 2020, 4(3): 1507.

doi: 10.1039/C9SE00796B
[62]
Phuruangrat A, Dumrongrojthanath P, Thongtem S, Thongtem T. Mater. Lett., 2017, 194: 114.

doi: 10.1016/j.matlet.2017.02.026
[63]
Wang J, Sun Y G, Wang Z M, Wu C C, Rao P H. Russ. J. Phys. Chem., 2019, 93(4): 736.

doi: 10.1134/S0036024419040307
[64]
Meng X C, Zhang Z S. Appl. Surf. Sci., 2017, 392: 169.

doi: 10.1016/j.apsusc.2016.08.113
[65]
Ding X, Ho W, Shang J, Zhang L Z. Appl. Catal. B: Environ., 2016, 182: 316.

doi: 10.1016/j.apcatb.2015.09.046
[66]
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.

pmid: 11452117
[67]
Dong G H, Zhao K, Zhang L Z. Chem. Commun., 2012, 48(49): 6178.

doi: 10.1039/c2cc32181e
[68]
Chang D W, Baek J B. Chem. Asian J., 2016, 11(8): 1125.

doi: 10.1002/asia.201501328
[69]
Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. Adv. Funct. Mater., 2017, 27(47): 1703923.
[70]
Xing Y X, Gao X C, Ji G F, Liu Z L, Du C F. Appl. Surf. Sci., 2019, 465: 369.

doi: 10.1016/j.apsusc.2018.09.200
[71]
Wang M, Han J, Guo P Y, Sun M Z, Zhang Y, Tong Z, You M Y, Lv C. J. Phys. Chem. Solids, 2018, 113: 86.

doi: 10.1016/j.jpcs.2017.10.019
[72]
Zhong Y, He Z T, Chen D M, Hao D, Hao W C. Appl. Surf. Sci., 2019, 467/468: 740.

doi: 10.1016/j.apsusc.2018.10.185
[73]
Khazaee Z, Mahjoub A R, Cheshme Khavar A H, Srivastava V, Sillanpää M. J. Photochem. Photobiol. A: Chem., 2019, 379: 130.

doi: 10.1016/j.jphotochem.2019.04.046
[74]
Khazaee Z, Khavar A H C, Mahjoub A R, Motaee A, Srivastava V, Sillanpää M. Sol. Energy, 2020, 196: 567.

doi: 10.1016/j.solener.2019.12.061
[75]
Phuruangrat A, Dumrongrojthanath P, Kuntalue B, Thongtem S, Thongtem T. Mater. Lett., 2017, 196: 256.

doi: 10.1016/j.matlet.2017.03.073
[76]
Liu Z, Liu X Q, Yu C L, Wei L F, Ji H B. Sep. Purif. Technol., 2020, 247: 116951.
[77]
Chen S G, Li Y H, Wu Z X, Wu B X, Li H B, Li F J. J. Solid State Chem., 2017, 249: 124.

doi: 10.1016/j.jssc.2017.02.027
[78]
Huo W C, Xu W N, Cao T, Guo Z Y, Liu X Y, Ge G X, Li N, Lan T, Yao H C, Zhang Y X, Dong F. J. Colloid Interface Sci., 2019, 557: 816.

doi: 10.1016/j.jcis.2019.09.089
[79]
Irfan S, Li L L, Saleemi A S, Nan C W. J. Mater. Chem. A, 2017, 5(22): 11143.
[80]
Li H L, Qiu L, Bharti B, Dai F W, Zhu M Y, Ouyang F, Lin L. Chemosphere, 2020, 249: 126135.
[81]
Ye Z Z, He H P, Jiang L. Nano Energy, 2018, 52: 527.

doi: 10.1016/j.nanoen.2018.08.001
[82]
Li H D, Li W J, Gu S N, Wang F Z, Zhou H L, Liu X T, Ren C J. RSC Adv., 2016, 6(53): 48089.
[83]
Li H D, Li W J, Wang F Z, Liu X T, Ren C J. Appl. Catal. B: Environ., 2017, 217: 378.

doi: 10.1016/j.apcatb.2017.06.015
[84]
Li H D, Li W J, Liu X T, Ren C J, Miao X, Li X Y. Appl. Surf. Sci., 2019, 463: 556.

doi: 10.1016/j.apsusc.2018.08.254
[85]
Jin S S, Hao H S, Gan Y J, Guo W H, Li H, Hu X F, Hou H M, Zhang G L, Yan S, Gao W Y, Liu G S. Mater. Chem. Phys., 2017, 199: 107.

doi: 10.1016/j.matchemphys.2017.06.053
[86]
Zhang Z W, Hao H S, Jin S S, Hou Y X, Hou H M, Zhang G L, Bi J R, Yan S, Liu G S, Gao W Y. J. Mater. Res., 2020, 35(3): 312.

doi: 10.1557/jmr.2020.4
[87]
Wang D J, Shen H D, Guo L, Wang C, Fu F, Liang Y C. RSC Adv., 2016, 6(75): 71052.
[88]
Wang J, Sun Y G, Wu C C, Cui Z, Rao P H. J. Phys. Chem. Solids, 2019, 129: 209.

doi: 10.1016/j.jpcs.2019.01.014
[89]
Chen X, Liu L, Yu P Y, Mao S S. Science, 2011, 331(6018): 746.

doi: 10.1126/science.1200448
[90]
Zhu K Y, Shi F, Zhu X F, Yang W S. Nano Energy, 2020, 73: 104761.
[91]
Ji Q Q, Bi L, Zhang J T, Cao H J, Zhao X S. Energy Environ. Sci., 2020, 13(5): 1408.

doi: 10.1039/D0EE00092B
[92]
Li L, Feng X H, Nie Y, Chen S G, Shi F, Xiong K, Ding W, Qi X Q, Hu J S, Wei Z D, Wan L J, Xia M R. ACS Catal., 2015, 5(8): 4825.

doi: 10.1021/acscatal.5b00320
[93]
Zhang H X, Zhao M, Jiang Q. Appl. Phys. Lett., 2013, 103(2): 023111.
[94]
Li J L, Zhang M, Guan Z J, Li Q Y, He C Q, Yang J J. Appl. Catal. B: Environ., 2017, 206: 300.

doi: 10.1016/j.apcatb.2017.01.025
[95]
Pan X Y, Yang M Q, Fu X Z, Zhang N, Xu Y J. Nanoscale, 2013, 5(9): 3601.

doi: 10.1039/c3nr00476g
[96]
Wang R Q, Li D Y, Wang H L, Liu C L, Xu L J. Nanomaterials, 2019, 9(9): 1341.

doi: 10.3390/nano9091341
[97]
Phuruangrat A, Ekthammathat N, Kuntalue B, Dumrongrojthanath P, Thongtem S, Thongtem T. J. Nanomater., 2014, 2014: 1.
[98]
Wang M, You M Y, Guo P Y, Tang H Y, Lv C, Zhang Y, Zhu T, Han J. J. Alloys Compd., 2017, 728: 739.

doi: 10.1016/j.jallcom.2017.09.066
[99]
Dai Z, Qin F, Zhao H P, Ding J, Liu Y L, Chen R. ACS Catal., 2016, 6(5): 3180.

doi: 10.1021/acscatal.6b00490
[100]
Li H D, Li W J, Gu S N, Wang F Z, Liu X T, Ren C J. Mol. Catal., 2017, 433: 301.
[101]
Jing K Q, Ma W, Ren Y H, Xiong J H, Guo B B, Song Y J, Liang S J, Wu L. Appl. Catal. B: Environ., 2019, 243: 10.

doi: 10.1016/j.apcatb.2018.10.027
[102]
Wang S Y, Ding X, Yang N, Zhan G M, Zhang X H, Dong G H, Zhang L Z, Chen H. Appl. Catal. B: Environ., 2020, 265: 118585.
[103]
Bai J W, Li X M, Hao Z W, Liu L. J. Colloid Interface Sci., 2020, 560: 510.

doi: 10.1016/j.jcis.2019.10.013
[104]
Wang D J, Shen H D, Guo L, Wang C, Fu F, Liang Y C. Appl. Surf. Sci., 2018, 436: 536.

doi: 10.1016/j.apsusc.2017.12.002
[105]
Fu F, Shen H D, Sun X, Xue W W, Shoneye A, Ma J N, Luo L, Wang D J, Wang J G, Tang J W. Appl. Catal. B: Environ., 2019, 247: 150.

doi: 10.1016/j.apcatb.2019.01.056
[106]
Shen H D, Xue W W, Fu F, Sun J F, Zhen Y Z, Wang D J, Shao B, Tang J W. Chem. Eur. J., 2018, 24(69): 18463.
[107]
Sun Y J, Wang H, Xing Q, Cui W, Li J Y, Wu S J, Sun L D. Chin. J. Catal., 2019, 40(5): 647.

doi: 10.1016/S1872-2067(19)63277-8
[108]
Guo L, Zhao Q, Shen H D, Han X X, Zhang K L, Wang D J, Fu F, Xu B. Catal. Sci. Technol., 2019, 9(12): 3193.

doi: 10.1039/c9cy00579j
[109]
Guo J H, Shi L, Zhao J Y, Wang Y, Tang K B, Zhang W Q, Xie C Z, Yuan X Y. Appl. Catal. B: Environ., 2018, 224: 692.

doi: 10.1016/j.apcatb.2017.11.030
[110]
Chen Y, Yang W Y, Gao S, Sun C X, Li Q. ACS Appl. Nano Mater., 2018, 1(7): 3565.

doi: 10.1021/acsanm.8b00719
[111]
Di J, Zhao X X, Lian C, Ji M X, Xia J X, Xiong J, Zhou W, Cao X Z, She Y B, Liu H L, Loh K P, Pennycook S J, Li H M, Liu Z. Nano Energy, 2019, 61: 54.

doi: 10.1016/j.nanoen.2019.04.029
[112]
Samadi M, Shivaee H A, Pourjavadi A, Moshfegh A Z. Appl. Catal. A: Gen., 2013, 466: 153.

doi: 10.1016/j.apcata.2013.06.024
[113]
Zhao B, Wang X, Zhang Y Z, Gao J N, Chen Z W, Lu Z Y. J. Photochem. Photobiol. A: Chem., 2019, 382: 111928.
[114]
Zhang Y F, Zhu G Q, Hojamberdiev M, Gao J Z, Hao J, Zhou J P, Liu P. Appl. Surf. Sci., 2016, 371: 231.

doi: 10.1016/j.apsusc.2016.02.210
[115]
Zhao K, Zhang Z S, Feng Y L, Lin S L, Li H, Gao X. Appl. Catal. B: Environ., 2020, 268: 118740.
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[11] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[12] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[13] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[14] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[15] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.