中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1323-1330 DOI: 10.7536/PC200743 Previous Articles   Next Articles

• Review •

Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil

Xiaoping Chen, Qiaoshan Chen(), Jinhong Bi()   

  1. College of Environment and Resources, Fuzhou University,Fuzhou 350108, China
  • Received: Revised: Online: Published:
  • Contact: Qiaoshan Chen, Jinhong Bi
  • Supported by:
    National Natural Science Foundation of China(51672047); Natural Science Foundation of Fujian Province(2019J01648); Foundation of Fujian Educational Committee(JAT190055)
Richhtml ( 61 ) PDF ( 838 ) Cited
Export

EndNote

Ris

BibTeX

As a class of persistent organic pollutants, polycyclic aromatic hydrocarbons(PAHs) have been widely distributed in soil, which is highly stable, hydrophobic, cytotoxic and difficult to degrade. The PAHs are commonly produced from transportation, industrial production and waste incineration. In recent years, the increasingly serious pollution of PAHs in soil has become a great threat to soil ecology, food safety and public health. Hence, the treatment of PAHs contaminated soil is of great importance and urgently needed. Among numerous strategies for PAHs degradation, photocatalytic technology has attracted extensive attention due to its low energy consumption, facile operation and environmental friendliness. In this paper, the photocatalytic degradation mechanism and pathway of PAHs are overviewed, the current state of knowledge concerning photocatalytic remediation of PAHs contaminated soils is reviewed, and the impacts of different environmental factors on the degradation efficiency of photocatalysts are discussed. Furthermore, we summarize the challenges to apply photocatalytic technology in the field of PAHs contaminated soil remediation.

Contents

1 Introduction

2 Photocatalytic mechanism of PAHs degradation

3 Applications of photocatalysts in remediation of PAHs in soil

3.1 TiO2

3.2 Iron-based materials

3.3 g-C3N4

4 The main environmental factors affecting degradation of PAHs in soil

4.1 Light irradiation

4.2 Soil thickness

4.3 Soil moisture content

4.4 Soil pH

4.5 Solid phase of soil

5 Conclusion and outlook

Table 1 The structure and basic properties of the 16 priority PAHs
Fig. 1 Photocatalytic degradation of PAHs by TiO2
Fig. 2 Possible pathway for degradation of B[a]P by iron oxides in neutral(a); acidic(b) and basic(c) soil[21]
Table 2 Examples for remediation of PAHs in soil by photocatalysis
Catalyst PAHs studied Experimental conditions ref
anatase TiO2
0~4 wt%
PYR
40 mg/kg
5 g soil, UV irradiation(253.7 nm, 119, 238, 357 μW/cm), 25 h, Distance between light source and samples 10 cm, 25 ℃, 0~40 mg/kg humic acid, 0~30 wt% H2O2 27
rutile TiO2
0~4 wt%
PHEN, PYR
40 mg/kg
same as above 28
anatase TiO2
0.5~3 wt%
PHEN, PYR, B(a)P
40 mg/kg
5 g soil, UV irradiation(254, 310, 365 nm, 1071 μW/cm), 120 h, Distance between light source and samples 15 cm, pH 4.2, 6.8, 9.7, 30 ℃, 0~40 mg/kg humic acid 29
anatase TiO2
0.5~3 wt%
B(a)P
40 mg/kg
same as above 30
P25 TiO2
1 wt%、10 wt%、20 wt%
12 PAH
4382 ng/g
UV-A and UV-C irradiation, 24 h, pH 10.1, 18 and 30 ℃ 31
P25 TiO2
10 mg/mL
FANTH
19.4 mg/kg
200 mg soil, Xenon lamp, Extraction of FANTH from soil with 22.5 mL cyclohexane and 7.5 mL ethanol, 6 h 32
TiO2@ZnHCF
5~25 mg
ACN, PHEN, FLUO
60~300 mg/kg
solar light(463±181 W/m), 24 h, Water to soil ratio 30∶1, pH 5~9, 32.3±3.8 ℃ 33
Fe2O3
1~7 wt%
PHEN, PYR, B(a)P
40 mg/kg
5 g soil, UV irradiation(254 nm, 1071 μW/cm), 120 h, Distance between light source and samples 15 cm, pH 4.2, 6.8, 9.7, 30 ℃, 5~40 mg/kg humic acid 34
akaganeite nano-rods
0~10 wt%
PHEN
50 μg/g
2 g soil, UV irradiation(254, 365, 410 nm), 120 h, pH 4.5, 7.2, 9.2, 0~5 wt% oxalic acid 35
iron oxides
0~5 wt%
B(a)P
50 μm/g
UV irradiation(254, 365, 410 nm), 120 h, pH 5.4, 6.8, 8.1, 0~40 wt% oxalic acid 21
FeHCF
5 wt%
B(a)P, PHEN, FLUO,
CHR, ANTH
50~200 mg/g
0.5 g soil, sunlight(452±183 W/m) and UV irradiation, 48 h, pH 5.1, 6.8, 8.0, 31.1 ± 1.7 ℃ 36
KZnHCF
25 mg
B(a)P, PHEN, FLUO,
CHR, ANTH
50~200 mg/
0.5 g soil, solar light(10.04 kW/m2/day) and UV irradiation(254 nm), 48 h, pH 5.1, 6.8, 8.0 37
MMCRC
2 wt%
PHEN
200 mg/kg
15 g soil, Aged for a month, visible light, 10 h, Distance between light source and samples 15 cm, under 30 ℃, moisture content 60%~80% 38
g-C3N4
6 wt%
PHEN
200 mg/kg
visible light(15 g soil, under 30 ℃), solar light(250 g soil, 33~38 ℃), 10 h, moisture content about 60% 39
g-C3N4@Fe3O4
3 wt%
PHEN
200 mg/kg
15 g soil, Aged for 6 month, visible light, 2 h, under 30 ℃, moisture content about 50% 40
[1]
Gao P, da Silva E, Hou L, Denslow N D, Xiang P, Ma L Q. Environ. Int., 2018, 119: 466.

doi: 10.1016/j.envint.2018.07.017
[2]
Manariotis I D, Karapanagioti H K, Chrysikopoulos C V. Water Res., 2011, 45(8): 2587.

doi: 10.1016/j.watres.2011.02.009 pmid: 21414649
[3]
Idowu O, Semple K T, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Environ. Int., 2019, 123: 543.

doi: 10.1016/j.envint.2018.12.051
[4]
Kim K H, Jahan S A, Kabir E, Brown R J C. Environ. Int., 2013, 60: 71.

doi: 10.1016/j.envint.2013.07.019 pmid: 24013021
[5]
U. S. Environmental Protection Agency. Health Assessment Document for Diesel Engine Exhaust, Washington, DC: U. S. Environmental Protection Agency, 2002, Report EPA/600/8-90/057F.
[6]
The State Council. Action plan for soil pollution prevention and control,(2016-05-31). [2020-06-29]. http://www.gov.cn/zhengce/content/2016/05/31/content5078377.htm
[7]
Chen Y Y. Doctoral Dissertation of Zhejiang University, 2008.
(陈宇云. 浙江大学博士论文, 2008.).
[8]
Yao L L, Zhang C X, Li J L, Liao X P, Wang Y X. Environ. Sci., 2013, 34(4): 1553.
(姚林林, 张彩香, 李佳乐, 廖小平, 王焰新. 环境科学, 2013, 34(4): 1553.)
[9]
Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. Bulletin of the ational survey on soil pollution status,(2014-04-17). [2020-06-29]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm
[10]
Zhang P, Chen Y G. Sci. Total. Environ., 2017,(605/606): 1011.
[11]
Maliszewska-Kordybach B. Appl. Geochem., 1996, 11(1/2): 121.

doi: 10.1016/0883-2927(95)00076-3
[12]
Sanches S, Leitão C, Penetra A, Cardoso V V, Ferreira E, Benoliel M J, Crespo M T B, Pereira V J. J. Hazard. Mater., 2011, 192(3): 1458.

doi: 10.1016/j.jhazmat.2011.06.065 pmid: 21784577
[13]
Gan S, Lau E V, Ng H K. J. Hazard. Mater., 2009, 172(2/3): 532.

doi: 10.1016/j.jhazmat.2009.07.118
[14]
Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma K D. Braz. J. Microbiol., 2015, 46(1): 7.

doi: 10.1590/S1517-838246120131354
[15]
Liu S, Meng F B, Ding Z, Chi J. Int. J. Phytoremediation, 2018, 20(13): 1317.

doi: 10.1080/15226514.2018.1488811
[16]
Wu M J, Wang H, Wu Y N, Wang W H, Zou H F. Chin. Agric. Sci. Bull., 2020, 36(5): 60.
(吴名杰, 王贺, 伍一宁, 王伟华, 邹红菲. 中国农学通报, 2020, 36(5): 60.)
[17]
Cheng M, Zeng G M, Huang D L, Lai C, Xu P, Zhang C, Liu Y. Chem. Eng. J., 2016, 284: 582.

doi: 10.1016/j.cej.2015.09.001
[18]
Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95(1): 69.

doi: 10.1021/cr00033a004
[19]
Rubio-Clemente A, Torres-Palma R A, Peñuela G A. Sci. Total. Environ., 2014, 478: 201.

doi: 10.1016/j.scitotenv.2013.12.126
[20]
Woo O T, Chung W K, Wong K H, Chow A T, Wong P K. J. Hazard. Mater., 2009, 168(2/3): 1192.

doi: 10.1016/j.jhazmat.2009.02.170
[21]
Gupta H, Gupta B. Chemosphere, 2015, 138: 924.

doi: 10.1016/j.chemosphere.2014.12.028
[22]
Wen S, Zhao J C, Sheng G Y, Fu J M, Peng P A. Chemosphere, 2003, 50(1): 111.

pmid: 12656236
[23]
Wang Y, Liu C S, Li F B, Liu C P, Liang J B. J. Hazard. Mater., 2009, 162(2/3): 716.

doi: 10.1016/j.jhazmat.2008.05.086
[24]
Kudlek E, Dudziak M. Water Sci. Technol., 2018, 77(10): 2407.

doi: 10.2166/wst.2018.192
[25]
Rani M, Rachna, Shanker U. J. Colloid Interface Sci., 2019, 555: 676.

doi: 10.1016/j.jcis.2019.08.016
[26]
Han S T, Xi H L, Shi R X, Fu X Z, Wang X X. Chin. J. Chem. Phys., 2003, 16(5): 339.
(韩世同, 习海玲, 史瑞雪, 付贤智, 王绪绪. 化学物理学报, 2003, 16(5): 339.)
[27]
Dong D B, Li P J, Li X J, Zhao Q, Zhang Y Q, Jia C Y, Li P. J. Hazard. Mater., 2010, 174(1/3): 859.

doi: 10.1016/j.jhazmat.2009.09.132
[28]
Dong D B, Li P J, Li X J, Xu C B, Gong D W, Zhang Y Q, Zhao Q, Li P. Chem. Eng. J., 2010, 158(3): 378.

doi: 10.1016/j.cej.2009.12.046
[29]
Zhang L H, Li P J, Gong Z Q, Li X M. J. Hazard. Mater., 2008, 158(2/3): 478.

doi: 10.1016/j.jhazmat.2008.01.119
[30]
Zhang L H, Li P J, Li X M, Chen Z L. J. Agro-Environ. Sci., 2009, 28(4): 649.
(张利红, 李培军, 李雪梅, 陈忠林. 农业环境科学学报, 2009, 28(4): 649.)
[31]
Eker G, Hatipoglu M. Environ. Technol., 2019, 40(28): 3793.

doi: 10.1080/09593330.2018.1491635
[32]
Rababah A, Matsuzawa S. Chemosphere, 2002, 46(1): 49.

doi: 10.1016/S0045-6535(01)00090-X
[33]
(Rachna, Rani M, Shanker U. J. Environ. Manag., 2019, 248: 109340.
[34]
Zhang L H, Jia N, Xu C B, Li X M. Adv. Mater. Res., 2011, (189/193): 420.
[35]
Gupta H. RSC Adv., 2016, 6(114): 112721.
[36]
Shanker U, Jassal V, Rani M. J. Environ. Chem. Eng., 2017, 5(4): 4108.

doi: 10.1016/j.jece.2017.07.042
[37]
Shanker U, Jassal V, Rani M. J. Environ. Manag., 2017, 204: 337.

doi: 10.1016/j.jenvman.2017.09.015
[38]
Luo Z J, Wang J, Song Y Y, Zheng X R, Qu L L, Wu Z R, Wu X Y. ACS Sustainable Chem. Eng., 2018, 6(10): 13262.
[39]
Luo Z J, Song Y Y, Wang M J, Zheng X R, Qu L L, Wang J, Wu X Y, Wu Z R. J. Photochem. Photobiol. A: Chem., 2020, 389: 112241.
[40]
Wang J, Luo Z J, Song Y Y, Zheng X R, Qu L L, Qian J C, Wu Y W, Wu X Y, Wu Z R. Chemosphere, 2019, 221: 554.

doi: 10.1016/j.chemosphere.2019.01.078
[41]
Bennedsen L R, Krischker A, Jørgensen T H, Søgaard E G. J. Hazard. Mater., 2012,(199/200): 128.
[42]
Luo Z J, Min Y H, Qu L L, Song Y Y, Hong Y X. Chemosphere, 2021, 265: 129070.
[43]
Feng J, Chen T T, Liu S N, Zhou Q H, Ren Y M, Lv Y, Fan Z J. J. Colloid Interface Sci., 2016, 479: 1.

doi: 10.1016/j.jcis.2016.06.040
[44]
Akyol A, Bayramoğlu M. J. Hazard. Mater., 2005, 124(1/3): 241.

doi: 10.1016/j.jhazmat.2005.05.006
[45]
Balmer M E, Goss K U, Schwarzenbach R P. Environ. Sci. Technol., 2000, 34(7): 1240.

doi: 10.1021/es990910k
[46]
Zhao X, Quan X, Zhao Y Z, Zhao H M, Chen S, Chen J W. J. Environ. Sci., 2004, 16(6): 938.
[47]
Graebing P, Frank M, Chib J S. J. Agric. Food Chem., 2002, 50(25): 7332.

doi: 10.1021/jf020488i
[48]
Higarashi M M, Jardim W F. Catal. Today, 2002, 76(2/4): 201.

doi: 10.1016/S0920-5861(02)00219-5
[49]
Špadina M, Gourdin-Bertin S, Dražić G, Selmani A, Dufrêche J F, Bohinc K. ACS Appl. Mater. Interfaces, 2018, 10(15): 13130.
[50]
Lemos A T, Rocha J A V, Vargas V M F. Chemosphere, 2018, 209: 666.

doi: 10.1016/j.chemosphere.2018.06.057
[51]
Wang C, Zhu L Z, Zhang C L. J. Soils Sediments, 2015, 15(5): 1139.

doi: 10.1007/s11368-015-1083-9
[52]
Huang Q D, Hong C S. Chemosphere, 2000, 41(6): 871.

pmid: 10864160
[53]
Alexander M. Environ. Sci. Technol., 2000, 34(20): 4259.

doi: 10.1021/es001069+
[54]
Zhao X, Quan X, Zhao H M, Chen S, Zhao Y Z, Chen J W. J. Photochem. Photobiol. A: Chem., 2004, 167(2/3): 177.

doi: 10.1016/j.jphotochem.2004.05.003
[55]
Thirumavalavan M, Hu Y L, Lee J F. J. Hazard. Mater., 2012,(217/218): 323.
[56]
Chen Y, Liu L, Su J, Liang J F, Wu B, Zuo J L, Zuo Y G. Chemosphere, 2017, 187: 261.

doi: 10.1016/j.chemosphere.2017.08.110
[57]
Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. J. Mater. Chem., 2012, 22(6): 2733.

doi: 10.1039/C1JM14355G
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[10] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[11] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[14] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[15] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.