中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2386-2404 DOI: 10.7536/PC220301 Previous Articles   Next Articles

• Review •

The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase

Zitong Zhao1, Zhenzhen Zhang1, Zhihong Liang1,2()   

  1. 1 College of Food Science and Nutritional Engineering, China Agricultural University,Beijing 100083,China
    2 Food Quality and Safety Beijing Laboratory,Beijing 100083,China
  • Received: Revised: Online: Published:
  • Contact: Zhihong Liang
  • Supported by:
    National Natural Science Foundation of China(32172170); Shandong Natural Science Foundation(ZR202102260301)
Richhtml ( 32 ) PDF ( 561 ) Cited
Export

EndNote

Ris

BibTeX

Small peptides are the ideal material to construct artificial enzymes due to their advantages of high similarity to natural enzymes and controllable structure. Small peptides have more simple structures which makes them convenient for rational design. Meanwhile, the diversity of amino acids arrangement, self-assembly characteristics of the sequence, the stability of the nanostructure, and good biocompatibility make it possible to construct high-efficiency catalytic active peptide-based artificial enzymes with broad application prospects. There are many advantages to using peptide-based materials for rationally designing active sites to construct artificial enzymes. (1) The amino acid sequences can be derived directly from the active sites in the natural enzyme, therefore preserving the function of enzymes but reducing much of the complexity that is inherent to nature enzymes; (2) Various active sites with specific structures and functions can be embedded in the peptide sequence, which is convenient for the artificial rational design of the artificial enzymes. (3) Peptides have good biocompatibility and hydrolysis reaction under mild conditions. According to the different catalytic degradation of the chemical bond, the peptide-based artificial hydrolases are mainly divided into the following categories: catalytic ester bond degradation peptide-based artificial enzyme, catalytic peptide bond degradation peptide-based artificial enzyme, catalytic glycosidic bond degradation peptide-based artificial enzyme. Therefore, this review mainly summarizes the peptide-based artificial hydrolase from activity origin, construction methods, microstructure, catalytic reaction type, catalytic influencing factors, activity improvement methods, activity mechanism, and future application. To promote the designing of peptide-based artificial enzymes with more efficient catalytic activity, accelerate the development and practical application of peptide-based artificial hydrolase.

Contents

1 Introduction

2 Activity origin of peptide-based artificial hydrolase

3 Catalytic reaction type of peptide-based artificial hydrolase

3.1 Catalytic ester bond hydrolysis

3.2 Catalytic peptide bond hydrolysis

3.3 Catalytic glycosidic bond hydrolysis

4 Activity improvement of peptide-based artificial hydrolase

5 Research progress in the application of peptide-based artificial hydrolase

6 Conclusion and prospects

Fig. 1 (A) Nucleophilic attack on the peptide bond by the catalytic triad. The nucleophile-bearing residue is shown in red; the red dot indicates the nucleophilic atom. The histidine and acidic residues are shown in blue and green, respectively. (B) The bonds are cleaved by various classes of enzymes. Arrows indicate the sites of nucleophilic attack[26]
Fig. 2 Peptide structures. (A) Primary structure; (B) secondary structures; (C) higher-order self-assembled nanostructures; (D) model for the progressive transitions observed for Aβ(16~22)
Fig. 3 principle and process of the construction of peptide-based artificial enzymes
Table 1 Ester bond hydrolase activity reported for peptide-based artificial enzymes
Table 2 peptide bond hydrolase activity reported for peptide-based artificial enzymes
Table 3 Glycosidic bond hydrolase activity reported for peptide-based artificial enzymes
Fig. 4 Peptide-bond degraded peptide-based artificial enzyme[38]
Fig. 5 Structure and catalytic mechanism of ester bond degradation peptide-based artificial enzyme with zinc ion binding ability[39]
Fig. 6 Histidine gold nanowire[40]
Fig. 7 The structure, catalytic process and catalytic rate constant of AuNP@CDs-Azo-GFGH[16]
Fig. 8 Structure and catalytic mechanism of ester bond degradation artificial enzyme composed of peptide-gold nanoparticles[43]
Fig. 9 Molecular imprinting method constructs peptide-based ester bond hydrolysis artificial enzyme[21]
Fig. 10 Catalytic process of modulating active peptide-based artificial enzyme[47]
Fig. 11 The structure and catalytic process of pH control activity adjustable peptide-based artificial enzymes[49]
Fig. 12 Single phenylalanine and zinc ions form an ester bond degradation artificial enzyme by self-assembly. (A) Natural carbonic anhydrase; (B) phenylalanine artificial enzyme catalytic process; (C) phenylalanine artificial enzyme catalytic mechanism[50]
Fig. 13 Design of a cyclic dipeptide supramolecular assembly-based nano-superstructure artificial enzyme[30]
Fig. 14 Multifunctional peptide-based artificial enzyme having peroxidase and esterase activity[52]
Fig. 15 Peptide bond hydrolysis in neutral solution
Fig. 16 Catalytic mechanism of trypsin
Fig. 17 Construction of multifunctional artificial enzyme based on small peptide and polyoxometalate and degradation of different substrates[56]
Fig. 18 MMP activation principle and JAL-TA9 degradation site[59]
Fig. 19 Estimated cleavage mechanism of aggregated Aβ42 by ANA-TA9[60]
Fig. 20 Catalytic mechanism of glycosidase
Fig. 21 Catalyzed a glycosyne bond degraded peptide-based artificial enzyme[29,70]
Fig. 22 Peptide hydrolyzed artificial enzyme in the degradation of cellulose, degradation plasticizer, treatment in AD[29,34,61,72]
Fig. 23 Removal of OTA by microbial source small molecular substances
[1]
Eisenmesser E Z, Bosco D A, Akke M, Kern D. Science, 2002, 295(5559): 1520.

pmid: 11859194
[2]
Raveendran S, Parameswaran B, Ummalyma S B, Abraham A, Mathew A K, Madhavan A, Rebello S, Pandey A. Food Technol. Biotechnol., 2018, 56(1): 16.
[3]
Chaudhary S, Sagar S, Kumar M, Sengar R, Tomar A. SAJFTE, 2015, 1(3&4): 190.

doi: 10.46370/sajfte.2015.v01i03and04.01
[4]
Saravanan A, Kumar P S, Vo D V N, Jeevanantham S, Karishma S, Yaashikaa P R. J. Hazard. Mater., 2021, 419: 126451.

doi: 10.1016/j.jhazmat.2021.126451
[5]
Wei X L, Han P P, You C. Chin. J. Chem. Eng., 2020, 28(11): 2799.

doi: 10.1016/j.cjche.2020.05.022
[6]
Dinmukhamed T, Huang Z Y, Liu Y F, Lv X Q, Li J H, Du G C, Liu L. Syst. Microbiol. Biomanufacturing, 2021, 1(1): 15.
[7]
Makam P, Yamijala S S, Tao K, Shimon L J, Gazit E. Nat. Catal., 2019, 2(11):977.

doi: 10.1038/s41929-019-0348-x
[8]
Zozulia O, Dolan M A, Korendovych I V. Chem. Soc. Rev., 2018, 47(10): 3621.

doi: 10.1039/c8cs00080h pmid: 29594277
[9]
Castillo N E T, Melchor-Martínez E M, Sierra J S O, Ramírez-Torres N M, Sosa-Hernández J E, Iqbal H M, Parra-Saldívar R. Int. J. Biol. Macromol., 2021, 179: 80.

doi: 10.1016/j.ijbiomac.2021.03.002 pmid: 33667559
[10]
Naveen Prasad S, Bansal V, Ramanathan R. Trac Trends Anal. Chem., 2021, 144: 116429.

doi: 10.1016/j.trac.2021.116429
[11]
Huang Y Y, Ren J S, Qu X G. Chem. Rev., 2019, 119(6): 4357.

doi: 10.1021/acs.chemrev.8b00672
[12]
Nothling M D, Xiao Z Y, Bhaskaran A, Blyth M T, Bennett C W, Coote M L, Connal L A. ACS Catal., 2019, 9(1): 168.

doi: 10.1021/acscatal.8b03326
[13]
Liu S Y, Du P D, Sun H, Yu H Y, Wang Z G. ACS Catal., 2020, 10(24): 14937.

doi: 10.1021/acscatal.0c03753
[14]
Liu Q, Wan K, Shang Y, Wang Z, Ding B. Nat. Mater., 2021, 20(3): 395.

doi: 10.1038/s41563-020-00856-6
[15]
Kim M C, Lee S Y. Nanoscale, 2015, 7(40): 17063.

doi: 10.1039/C5NR04893A
[16]
Tan X L, Xu Y L, Lin S J, Dai G F, Zhang X J, Xia F, Dai Y. J. Catal., 2021, 402: 125.

doi: 10.1016/j.jcat.2021.08.023
[17]
Song R H, Wu X L, Xue B, Yang Y Q, Huang W M, Zeng G X, Wang J, Li W F, Cao Y, Wang W, Lu J X, Dong H. J. Am. Chem. Soc., 2019, 141(1): 223.

doi: 10.1021/jacs.8b08893
[18]
Mikolajczak D J, Koksch B. Catalysts, 2019, 9(11): 903.

doi: 10.3390/catal9110903
[19]
Song Q, Cheng Z H, Kariuki M, Hall S C L, Hill S K, Rho J Y, Perrier S. Chem. Rev., 2021, 121(22): 13936.

doi: 10.1021/acs.chemrev.0c01291
[20]
Metrano A J, Chinn A J, Shugrue C R, Stone E A, Kim B, Miller S J. Chem. Rev., 2020, 120(20): 11479.

doi: 10.1021/acs.chemrev.0c00523
[21]
Zhu M J, Wang M F, Qi W, Su R X, He Z M. J. Mater. Chem. B, 2019, 7(24): 3804.

doi: 10.1039/C9TB00408D
[22]
Hamley I W. Biomacromolecules, 2021, 22(5): 1835.

doi: 10.1021/acs.biomac.1c00240 pmid: 33843196
[23]
Rout S K, Friedmann M P, Riek R, Greenwald J. Nat. Commun., 2018, 9: 234.

doi: 10.1038/s41467-017-02742-3
[24]
Buchholz K, Kasche V, Bornscheuer U. Biocatalysts and enzyme technology, John Wiley & Sons, 2005.
[25]
Schneider F. Angew. Chem. Int. Ed. Engl., 1978, 17(8): 583.

doi: 10.1002/anie.197805831
[26]
Dodson G. Trends Biochem. Sci., 1998, 23(9): 347.

pmid: 9787641
[27]
Polgár L. Cell. Mol. Life Sci. CMLS, 2005, 62(19/20): 2161.

doi: 10.1007/s00018-005-5160-x
[28]
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn R V. Chem. Rev., 2021, 121(22): 13869.

doi: 10.1021/acs.chemrev.1c00089
[29]
He X X, Zhang F Y, Liu J F, Fang G Z, Wang S. Nanoscale, 2017, 9(45): 18066.

doi: 10.1039/C7NR06525F
[30]
Chen Y, Yang Y, Orr A A, Makam P, Redko B, Haimov E, Wang Y, Shimon L J, Rencus-Lazar S, Ju M, Tamamis P, Dong H, Gazit E. Angewandte Chemie, 2021, 60: 17164.
[31]
Der B S, Edwards D R, Kuhlman B. Biochemistry, 2012, 51(18): 3933.

doi: 10.1021/bi201881p
[32]
Huang K Y, Yu C C, Horng J C. Biomacromolecules, 2020, 21(3): 1195.

doi: 10.1021/acs.biomac.9b01620
[33]
Wang M F, Lv Y Q, Liu X J, Qi W, Su R X, He Z M. ACS Appl. Mater. Interfaces, 2016, 8(22): 14133.

doi: 10.1021/acsami.6b04670
[34]
Li X, Li J P, Hao S J, Han A L, Yang Y Y, Fang G Z, Liu J F, Wang S. J. Hazard. Mater., 2021, 403: 123873.

doi: 10.1016/j.jhazmat.2020.123873
[35]
Zaramella D, Scrimin P, Prins L J. J. Am. Chem. Soc., 2012, 134(20): 8396.

doi: 10.1021/ja302754h pmid: 22559143
[36]
Razkin J, Nilsson H, Baltzer L. J. Am. Chem. Soc., 2007, 129(47):14752.

pmid: 17985898
[37]
Hahn K W, Klis W A, Stewart J M. Science, 1990, 248(4962): 1544.

pmid: 2360048
[38]
Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129(40): 12082.

doi: 10.1021/ja075044n
[39]
Al-Garawi Z S, McIntosh B A, Neill-Hall D, Hatimy A A, Sweet S M, Bagley M C, Serpell L C. Nanoscale, 2017, 9(30): 10773.

doi: 10.1039/c7nr02675g pmid: 28722055
[40]
Djalali R, Chen Y F, Matsui H. J. Am. Chem. Soc., 2002, 124(46): 13660.

pmid: 12431080
[41]
Sun M Z, Xu L G, Qu A H, Zhao P, Hao T T, Ma W, Hao C L, Wen X D, Colombari F M, de Moura A F, Kotov N A, Xu C L, Kuang H. Nat. Chem., 2018, 10(8): 821.

doi: 10.1038/s41557-018-0083-y
[42]
Sun Y H, Zhao C Q, Gao N, Ren J S, Qu X G. Chem. Eur. J., 2017, 23(72): 18146.

doi: 10.1002/chem.201704579
[43]
Mikolajczak D J, Heier J L, Schade B, Koksch B. Biomacromolecules, 2017, 18(11): 3557.

doi: 10.1021/acs.biomac.7b00887 pmid: 28925256
[44]
Litowski J R, Hodges R S. J. Biol. Chem., 2002, 277(40): 37272.

doi: 10.1074/jbc.M204257200
[45]
Kecili R, Say R, Ersöz A, Hür D, Denizli A. Polymer, 2012, 53(10): 1981.

doi: 10.1016/j.polymer.2012.03.021
[46]
Wulff G, Liu J Q. Acc. Chem. Res., 2012, 45(2): 239.

doi: 10.1021/ar200146m
[47]
Zhao Y N, Lei B Q, Wang M F, Wu S T, Qi W, Su R X, He Z M. J. Mater. Chem. B, 2018, 6(16): 2444.

doi: 10.1039/C8TB00448J
[48]
Singh A, Joseph J P, Gupta D, Miglani C, Mavlankar N A, Pal A. Nanoscale, 2021, 13(31): 13401.

doi: 10.1039/D1NR03655F
[49]
Zhang C Q, Shafi R, Lampel A, MacPherson D, Pappas C G, Narang V, Wang T, Maldarelli C, Ulijn R V. Angew. Chem. Int. Ed., 2017, 56(46): 14511.

doi: 10.1002/anie.201708036
[50]
Adler-Abramovich L, Vaks L, Carny O, Trudler D, Magno A, Caflisch A, Frenkel D, Gazit E. Nat. Chem. Biol., 2012, 8(8): 701.

doi: 10.1038/nchembio.1002 pmid: 22706200
[51]
Sarkhel B, Chatterjee A, Das D. J. Am. Chem. Soc., 2020, 142(9): 4098.

doi: 10.1021/jacs.9b13517
[52]
Chatterjee A, Afrose S P, Ahmed S, Venugopal A, Das D. Chem. Commun., 2020, 56(57): 7869.

doi: 10.1039/D0CC00279H
[53]
Radzicka A, Wolfenden R. J. Am. Chem. Soc., 1996, 118(26): 6105.

doi: 10.1021/ja954077c
[54]
Ho P H, Mihaylov T, Pierloot K, Parac-Vogt T N. Inorg. Chem., 2012, 51(16): 8848.

doi: 10.1021/ic300761g
[55]
Ho P H, Stroobants K, Parac-Vogt T N. Inorg. Chem., 2011, 50(23): 12025.

doi: 10.1021/ic2015034
[56]
Gao N, Dong K, Zhao A, Sun H, Ying W, Ren J, Qu X. Nano Res., 2016, 9:1079.

doi: 10.1007/s12274-016-1000-6
[57]
Ikehara K. Orig. Life Evol. Biospheres, 2014, 44(4): 299.
[58]
Oba T, Fukushima J, Maruyama M, Iwamoto R, Ikehara K. Orig. Life Evol. Biospheres, 2005, 35(5): 447.
[59]
Nakamura R, Konishi M, Taniguchi M, Hatakawa Y, Akizawa T. Preprints, 2018, 2018010106.
[60]
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Saito M, Akizawa T. Heliyon, 2019, 5(9): e02454.

doi: 10.1016/j.heliyon.2019.e02454
[61]
Hatakawa Y, Tanaka A, Furubayashi T, Nakamura R, Konishi M, Akizawa T, Sakane T. Pharmaceutics, 2021, 13(10): 1673.

doi: 10.3390/pharmaceutics13101673
[62]
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Tanaka A, Matsuda A, Saito M, Akizawa T. Alzheimers Dement. Transl. Res. Clin. Interv., 2021, 7(1): e12146.
[63]
Nakamura R, Konishi M, Sakaguchi Y, Hatakawa Y, Tanaka A, Sakane T, Saito M, Akizawa T. J. Pharm. Pharmacol. Res., 2020, 4(2): 23.
[64]
Nakamura R, Konishi M, Taniguchi M, Hatakawa Y, Akizawa T. Peptides, 2019, 116: 71.

doi: S0196-9781(19)30030-0 pmid: 30930080
[65]
Nakamura R, Konishi M, Higashi Y, Saito M, Akizawa T. Integr. Mol. Med., 2019, 6(4): 1.
[66]
Nakamura R, Konishi M, Hatakawa Y, Saito M, Akizawa T. J. Royal. Sci., 2019, 1: 30.
[67]
Furukawa H, Kobayashi N, Itaya Y, Satsuma A, Shimizu K I. Green Chem., 2009, 11(10): 1627.

doi: 10.1039/b913737h
[68]
Shimizu K I, Furukawa H, Kobayashi N, Itaya Y, Satsuma A. Green Chem., 2009, 11(10): 1627.

doi: 10.1039/b913737h
[69]
Sugano Y, Vestergaard M C, Saito M, Tamiya E. Chem. Commun., 2011, 47(25): 7176.

doi: 10.1039/c1cc10927h
[70]
He X X, Zhang F Y, Zhang L, Zhang Q, Fang G Z, Liu J F, Wang S, Zhang S Q. J. Mater. Chem. B, 2017, 5(26): 5225.

doi: 10.1039/C7TB01426K
[71]
Baruch-Leshem A, Chevallard C, Gobeaux F, Guenoun P, Rapaport H. Colloids Surf., B, 2021, 203: 111751.
[72]
Li X, Li J P, Zhu J X, Hao S J, Fang G Z, Liu J F, Wang S. Chem. Commun., 2019, 55(89): 13458.

doi: 10.1039/C9CC06794A
[73]
Hu H N, Jia X, Wang Y P, Liang Z H. World Mycotoxin J., 2018, 11(4): 559.

doi: 10.3920/WMJ2017.2296
[74]
Peng M X, Zhao Z T, Liang Z H. Food Control, 2022, 133: 108611.

doi: 10.1016/j.foodcont.2021.108611
[75]
Zastrow M L, Peacock A F A, Stuckey J A, Pecoraro V L. Nat. Chem., 2012, 4(2): 118.

doi: 10.1038/nchem.1201
[76]
Zhang C Q, Xue X D, Luo Q, Li Y W, Yang K N, Zhuang X X, Jiang Y G, Zhang J C, Liu J Q, Zou G Z, Liang X J. ACS Nano, 2014, 8(11): 11715.

doi: 10.1021/nn5051344
[77]
Rufo C M, Moroz Y S, Moroz O V, Stöhr J, Smith T A, Hu X Z, DeGrado W F, Korendovych I V. Nat. Chem., 2014, 6(4): 303.

doi: 10.1038/nchem.1894
[78]
Huang Z P, Guan S W, Wang Y G, Shi G N, Cao L N, Gao Y Z, Dong Z Y, Xu J Y, Luo Q, Liu J Q. J. Mater. Chem. B, 2013, 1(17): 2297.

doi: 10.1039/c3tb20156b
[79]
Sugano Y, Kuittinen S, Turunen O, Pappinen A. Bioinspir. Biomim., 2019, 14(3): 036007.

doi: 10.1088/1748-3190/ab03de
[1] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[2] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[3] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[4] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[5] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[6] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[7] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[8] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[9] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[10] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[11] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[12] . Dilute Acid Hydrolysis Reaction of Biomass Hemicellulose [J]. Progress in Chemistry, 2010, 22(04): 654-662.
[13] Yang Yang Zheng Wen Cheng Dangguo Chen Fengqiu Zhan Xiaoli. The Application of in Situ FT-IR in the Research of Methane Oxidation [J]. Progress in Chemistry, 2009, 21(10): 2205-2211.
[14] Yang Zhen*. Fundamentals of Biocatalysis in Organic Solvents [J]. Progress in Chemistry, 2005, 17(05): 924-930.
[15] Dai Yan,Cheng Peng. The Research Progress of Ni-containing Enzymes and Model Compounds [J]. Progress in Chemistry, 2002, 14(01): 47-.