中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1311-1322 DOI: 10.7536/PC200750 Previous Articles   Next Articles

• Review •

Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism

Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng()   

  1. Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: Huiping Deng
  • Supported by:
    Major Science and Technology Program for Water Pollution Control and Treatment of China(2017ZX07201003-02)
Richhtml ( 47 ) PDF ( 1079 ) Cited
Export

EndNote

Ris

BibTeX

Since the 1980s, the advanced oxidation process(AOP) in water treatment technology has been widely researched and applied. However, organic pollutants in water still plague scholars due to their wide variety and difficulty in degradation. Therefore, the mechanism of AOP needs to be clearly understood and get deeper into, which is conducive to technological application. As a typical AOP, the peroxymonosulfate & peroxydisulfate oxidation process has received a lot of attention in recent years, whereas there are still numerous disputes on the mechanism, lacking a unified understanding. The key reactive species of free radical process are generally ·OH and ·SO4-. Nonradical process contains 1O2 oxidation and peroxymonosulfate & peroxydisulfate oxidation(known as an electron transfer process), and high valence metal also participates in the oxidation process directly or indirectly. The specific mechanism of nonradical processes are still controversial, also the advantages and disadvantages. For the above reasons, this paper reviews the latest researches on the treatment of organic pollutants based on heterogeneous catalytic persulfate oxidation process in water, explains the reaction mechanism and the analysis methods, and points out the possible current research problems. Prospects for the future research direction and the application perspective of persulfate oxidation are proposed, with an emphasis on nonradical processes.

Contents

1 Introduction

2 Mechanism of singlet oxygen

2.1 Activated by ketone group

2.2 Produced by superoxide anion radical

2.3 Produced by PMS anion radical

2.4 Other ways for producing singlet oxygen

3 Mechanism of electron transfer

3.1 Catalyst-mediated electron transfer

3.2 Activated persulfate on the surface of catalyst

4 Mechanism of high valence metal

5 Analysis methods and catalyst deactivation

5.1 Analysis methods

5.2 Catalyst deactivation

6 Conclusion and outlook

Fig. 1 Number of publications on persulfate oxidation process for organic pollutants removal and nonradical mechanism on Web of Science during 2015 to 2020
Table 1 Researches on heterogeneous catalytic persulfate oxidation process
Pollutant, Concentration Catalyst, Dosage
(*0.1 g/L)
Oxidant, Dosage Degradation(%)/
Adsorption(%)
Mechanism/nonradical process proportion pH/
Reaction time(min)
Cycles/
ΔDegradation(%)
ref
Phenol, 20 ppm N-SWCNT, 1 PMS, 6.5 mM 100/- Electron transfer/key role Neutral/30 3/11 23
Sulfamethoxazole, 20 μM FeCo2S4-C3N4, 0.1 PMS, 0.15 mM 92/15 1O2/dominated 6.5/15 3/24 24
Phenol, 100 μM MnO2, 4 PDS, 4 mM 100/12 1O2/100% 6.5/180 -/- 25
Tetracycline, 35 mg/L NMC, 1 PDS, 1 mM 100/23.7 Electron transfer/key role 7/120 5/21 26
Oxytetracycline, 250 mg/L Fe/C, 5 PMS, 1 mM 100/- 1O2/partial 8.2/30 -/- 27
4-Chlorophenol, 0.1 mM Ni-NiO, 2 PDS, 0.2 mM 80/- Electron transfer/partial 7/60 3/5 28
Atrazine, 10 mg/L Titanomagnetite, 80 PDS, 5.0 mM 92/- Fe/partial 6.3/90 5/35 29
Bisphenol A, 0.09 mM Cu-rGO LDH, 2.5 PMS, 3 mM 99/- 1O2/100% Neutral/40 3/10 30
Oxytetracycline, 40 μM Co3O4-MC, 2 PMS, 0.5 mM 95/17 1O2/partial 5/12 5/4 31
2,4-Dichlorophenol, 50 μM CuFe oxide, 2 PDS, 0.2 mM 100/limited Electron transfer/100% 5.8/120 3/15 32
Sulfamethoxazole, 5 mg/L Fe3C@NCNTs, 1 PDS, 1 mM 98/48 1O2/primary Neutral/100 4/80 33
Bisphenol A, 0.1 mM NCN, 1 PMS, 2 mM 100/25 1O2/primary 6.7/2 5/0 14
Phenol, 20 mg/L PPy-T, 1 PMS, 3.25 mM 97/- Electron transfer/dominated 2.8/120 3/20 34
4-Chlorophenol, 40 ppm CuOMgO/Fe3O4, 2 PMS, 2 mM 100/10 1O2/100% Neutral/40 -/- 35
2,4-Dichlorophenol, 5 μM CuO, 2 PDS, 40 μM 100/limited Electron transfer/100% 5.8/60 -/- 17
Trichlorophenol, 0.1 mM Au/Al2O3, 2.5 PMS, 1 mM 100/limited Electron transfer/dominated 7/60 -/- 36
2,4-Dichlorophenol, 0.05 mM CNT, 1 PDS, 0.05 mM 100/25 1O2, Electron transfer/100% 6.5/30 5/50 37
2,4-Dichlorophenol, 0.03 mM Fe/S-CNTs, 1 PDS, 0.03 mM 95/40 Electron transfer/key role 7/30 4/31 38
p-Chloroaniline, 0.5 mM CuO, 5 PDS, 2.3 mM 71.5/5 Electron transfer/key role 7/350 -/- 39
2,4,6-Trichlorophenol,0.1 mM CuO/rGO, 1 PDS, 2.5 mM 80/limited Electron transfer/key role 6/180 -/- 40
Bisphenol A, 5 mg/L CuO, 1 PMS, 0.5 mM 100/5 1O2/dominated 7.2/60 5/5 41
Diclofenac, 0.01 g/L CNOMS, 1 PMS, 0.2 g/L 98/- 1O2/partial 8.3/20 4/15 42
Ciprofloxacin, 0.03 mM CuO, 5 PDS, 1 mM 100/41 Electron transfer/dominated 8/60 5/0 43
Acid Red 1, 50 μM CuO-CF, 20 PMS, 0.5 mM 100/limited 1O2/dominated 10/10 5/limited 44
Sulfonamides, 40 μM rGO, 1 PDS, 0.6 mM 100/- 1O2/100% 5/30 -/- 45
Fig. 2 Generation of1O2 by PDS catalyzed by CNTs[50]
Fig. 3 Generation of1O2 by PMS catalyzed by BQ[47]
Fig. 4 Generation of1O2 by PDS catalyzed by MnO2[24]
Fig. 5 Several ways for producing singlet oxygen
Fig. 6 Reactive Complexes formed by PS and CNTs[48]
Fig. 7 Effects of substituents on degradation mechanism of five sulfonamides[44]
[1]
Andreozzi R, Caprio V, Insola A, Marotta R. Catalysis Today, 1999, 53: 51.

doi: 10.1016/S0920-5861(99)00102-9
[2]
Lee Y, von Gunten U. Water Res., 2010, 44(2): 555.

doi: 10.1016/j.watres.2009.11.045
[3]
Miklos D B, Remy C, Jekel M, Linden K G, Drewes J E, Hübner U. Water Res., 2018, 139: 118.

doi: S0043-1354(18)30238-0 pmid: 29631187
[4]
Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(3): 1027.

doi: 10.1063/1.555808
[5]
Liu H Z, Bruton T A, Doyle F M, Sedlak D L. Environ. Sci. Technol., 2014, 48(17): 10330.
[6]
Eberson L, Adv. Phys. Organ. Chem., 1982, 18:79.
[7]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.

pmid: 14594393
[8]
Lee J, von Gunten U, Kim J H. Environ. Sci. Technol., 2020, 54(6): 3064.

doi: 10.1021/acs.est.9b07082
[9]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334: 1502.

doi: 10.1016/j.cej.2017.11.059
[10]
Xiao R Y, Luo Z H, Wei Z S, Luo S, Spinney R, Yang W C, Dionysiou D D. Curr. Opin. Chem. Eng., 2018, 19: 51.

doi: 10.1016/j.coche.2017.12.005
[11]
Duan X G, Sun H Q, Shao Z P, Wang S B. Appl. Catal. B: Environ., 2018, 224: 973.

doi: 10.1016/j.apcatb.2017.11.051
[12]
Yun E T, Yoo H Y, Bae H, Kim H I, Lee J. Environ. Sci. Technol., 2017, 51(17): 10090.
[13]
Yun E T, Lee J H, Kim J, Park H D, Lee J. Environ. Sci. Technol., 2018, 52(12): 7032.

doi: 10.1021/acs.est.8b00959
[14]
Gao Y W, Chen Z H, Zhu Y, Li T, Hu C. Environ. Sci. Technol., 2020, 54(2): 1232.

doi: 10.1021/acs.est.9b05856
[15]
Yang Y, Banerjee G, Brudvig G W, Kim J H, Pignatello J J. Environ. Sci. Technol., 2018, 52(10): 5911.

doi: 10.1021/acs.est.8b00735 pmid: 29664293
[16]
Ren W, Xiong L L, Nie G, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(2): 1267.

doi: 10.1021/acs.est.9b06208
[17]
Zhang T, Chen Y, Wang Y R, Le Roux J, Yang Y, CrouÉ J P. Environ. Sci. Technol., 2014, 48(10): 5868.

doi: 10.1021/es501218f pmid: 24779765
[18]
Wang Z, Jiang J, Pang S Y, Zhou Y, Guan C T, Gao Y, Li J, Yang Y, Qiu W, Jiang C C. Environ. Sci. Technol., 2018, 52(19): 11276.
[19]
Duan X G, Ao Z M, Zhou L, Sun H Q, Wang G X, Wang S B. Appl. Catal. B: Environ., 2016, 188: 98.

doi: 10.1016/j.apcatb.2016.01.059
[20]
Oh W D, Dong Z L, Lim T T. Appl. Catal. B: Environ., 2016, 194: 169.

doi: 10.1016/j.apcatb.2016.04.003
[21]
Brandt C, van Eldik R. Chem. Rev., 1995, 95(1): 119.

doi: 10.1021/cr00033a006
[22]
Oh W D, Lim T T. Chem. Eng. J., 2019, 358: 110.

doi: 10.1016/j.cej.2018.09.203
[23]
Duan X G, Sun H Q, Wang Y X, Kang J, Wang S B. ACS Catal., 2015, 5(2): 553.

doi: 10.1021/cs5017613
[24]
Li Y J, Li J, Pan Y T, Xiong Z K, Yao G, Xie R Z, Lai B. Chem. Eng. J., 2020, 384: 123361.
[25]
Zhu S S, Li X J, Kang J, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(1): 307.

doi: 10.1021/acs.est.8b04669
[26]
Feng L Y, Li X Y, Chen X T, Huang Y J, Peng K S, Huang Y X, Yan Y Y, Chen Y G. Sci. Total. Environ., 2020, 708: 135071.
[27]
Li Z, Sun Y Q, Yang Y, Han Y T, Wang T S, Chen J W, Tsang D C W. Environ. Res., 2020, 183: 109156.
[28]
Kim H H, Lee D, Choi J, Lee H, Seo J, Kim T, Lee K M, Pham A L, Lee C. J. Hazard. Mater., 2020, 388: 121767.
[29]
Lai L D, Zhou H Y, Zhang H, Ao Z M, Pan Z C, Chen Q X, Xiong Z K, Yao G, Lai B. Chem. Eng. J., 2020, 387: 124165.
[30]
Shahzad A, Ali J, Ifthikar J, Aregay G G, Zhu J Y, Chen Z L, Chen Z Q. J. Hazard. Mater., 2020, 392: 122316.
[31]
Li Z L, Wang M, Jin C Y, Kang J, Liu J, Yang H R, Zhang Y Q, Pu Q Y, Zhao Y, You M Y, Wu Z M. Chem. Eng. J., 2020, 392: 123789.
[32]
Liu J Q, Wu P X, Yang S S, Rehman S, Ahmed Z, Zhu N W, Dang Z, Liu Z H. Appl. Catal. B: Environ., 2020, 261: 118232.
[33]
Shang Y N, Chen C, Zhang P, Yue Q Y, Li Y W, Gao B Y, Xu X. Chem. Eng. J., 2019, 375: 122004.
[34]
Hu P, Su H, Chen Z, Yu C, Li Q, Zhou ,., Alvarez P J J, Long M. Environ. Sci. Technol., 2017, 51: 11288.
[35]
Jawad A, Zhan K, Wang H B, Shahzad A, Zeng Z H, Wang J, Zhou X Q, Ullah H, Chen Z L, Chen Z Q. Environ. Sci. Technol., 2020, 54(4): 2476.

doi: 10.1021/acs.est.9b04696 pmid: 31971792
[36]
Ahn Y Y, Bae H, Kim H I, Kim S H, Kim J H, Lee S G, Lee J. Appl. Catal. B: Environ., 2019, 241: 561.

doi: 10.1016/j.apcatb.2018.09.056
[37]
Cheng X, Guo H G, Zhang Y L, Korshin G V, Yang B. Water Res., 2019, 157: 406.

doi: S0043-1354(19)30297-0 pmid: 30978663
[38]
Cheng X, Guo H G, Zhang Y L, Liu Y, Liu H W, Yang Y. J. Colloid Interface Sci., 2016, 469: 277.

doi: 10.1016/j.jcis.2016.01.067
[39]
Du X D, Zhang Y Q, Hussain I, Huang S B, Huang W L. Chem. Eng. J., 2017, 313: 1023.

doi: 10.1016/j.cej.2016.10.138
[40]
Du X D, Zhang Y Q, Si F, Yao C H, Du M M, Hussain I, Kim H, Huang S B, Lin Z, Hayat W. Chem. Eng. J., 2019, 356: 178.

doi: 10.1016/j.cej.2018.08.216
[41]
Wang S X, Gao S S, Tian J Y, Wang Q, Wang T, Hao X J, Cui F Y. J. Hazard. Mater., 2020, 387: 121995.
[42]
Wu M H, Fu K, Deng H P, Shi J. Chemosphere, 2019, 219: 756.

doi: 10.1016/j.chemosphere.2018.12.030
[43]
Xing S T, Li W Q, Liu B, Wu Y S, Gao Y Z. Chem. Eng. J., 2020, 382: 122837.
[44]
Yang Z Y, Dai D J, Yao Y Y, Chen L K, Liu Q B, Luo L S. Chem. Eng. J., 2017, 322: 546.

doi: 10.1016/j.cej.2017.04.018
[45]
Yin R, Guo W, Ren N, Zeng L, Zhu M. Water Res, 2020, 171: 115374.
[46]
Kautsky H. Trans. Faraday Soc., 1939, 35: 216.

doi: 10.1039/tf9393500216
[47]
di Mascio P, Martinez G R, Miyamoto S, Ronsein G E, Medeiros M H G, Cadet J. Chem. Rev., 2019, 119(3): 2043.

doi: 10.1021/acs.chemrev.8b00554 pmid: 30721030
[48]
Zhou Y, Jiang J, Gao Y, Ma J, Pang S Y, Li J, Lu X T, Yuan L P. Environ. Sci. Technol., 2015, 49(21): 12941.
[49]
Apul O G, Karanfil T. Water Res., 2015, 68: 34.

doi: 10.1016/j.watres.2014.09.032
[50]
Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R. Chem. Rev., 2016, 116(9): 5464.

doi: 10.1021/acs.chemrev.5b00620 pmid: 27033639
[51]
Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C. Chem. Eng. J., 2015, 266: 28.

doi: 10.1016/j.cej.2014.12.065
[52]
Indrawirawan S, Sun H Q, Duan X G, Wang S B. Appl. Catal. B: Environ., 2015, 179: 352.

doi: 10.1016/j.apcatb.2015.05.049
[53]
Cheng X, Guo H G, Zhang Y L, Wu X, Liu Y. Water Res., 2017, 113: 80.

doi: S0043-1354(17)30091-X pmid: 28199865
[54]
Baptista M S, Cadet J di Mascio P, Ghogare A A, Greer A, Hamblin M R, Lorente C, Nunez S C, Ribeiro M S, Thomas A H, Vignoni M, Yoshimura T M. Photochem. Photobiol., 2017, 93(4): 912.

doi: 10.1111/php.2017.93.issue-4
[55]
Han X P, Zhang T R, Du J, Cheng F Y, Chen J. Chem. Sci., 2013, 4(1): 368.

doi: 10.1039/C2SC21475J
[56]
Feng Y, Wu D L, Deng Y, Zhang T, Shih K. Environ. Sci. Technol., 2016, 50(6): 3119.

doi: 10.1021/acs.est.5b05974
[57]
Lei Y, Chen C S, Tu Y J, Huang Y H, Zhang H. Environ. Sci. Technol., 2015, 49(11): 6838.

doi: 10.1021/acs.est.5b00623
[58]
Chen C, Liu L, Guo J, Zhou L X, Lan Y Q. Chem. Eng. J., 2019, 361: 1304.

doi: 10.1016/j.cej.2018.12.156
[59]
Li J, Ren Y, Ji F Z, Lai B. Chem. Eng. J., 2017, 324: 63.

doi: 10.1016/j.cej.2017.04.104
[60]
Zhang X L, Feng M B, Qu R J, Liu H, Wang L S, Wang Z Y. Chem. Eng. J., 2016, 301: 1.

doi: 10.1016/j.cej.2016.04.096
[61]
Shao P H, Tian J Y, Yang F, Duan X G, Gao S S, Shi W X, Luo X B, Cui F Y, Luo S L, Wang S B. Adv. Funct. Mater., 2018, 28(13): 1870081.
[62]
Wang S, Liu Y, Wang J. Environ. Sci. Technol., 2020.
[63]
Bao Y P, Oh W D, Lim T T, Wang R, Webster R D, Hu X. Water Res., 2019, 151: 64.

doi: 10.1016/j.watres.2018.12.007
[64]
Zhang C, Zeng G M, Huang D L, Lai C, Chen M, Cheng M, Tang W W, Tang L, Dong H R, Huang B B, Tan X F, Wang R Z. Chem. Eng. J., 2019, 373: 902.

doi: 10.1016/j.cej.2019.05.139
[65]
Inyang M I, Gao B, Yao Y, Xue Y W, Zimmerman A, Mosa A, Pullammanappallil P, Ok Y S, Cao X D. Crit. Rev. Environ. Sci. Technol., 2016, 46(4): 406.

doi: 10.1080/10643389.2015.1096880
[66]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817
[67]
Liang J, Liang Z B, Zou R Q, Zhao Y L. Adv. Mater., 2017, 29(30): 1701139.
[68]
Sule K, Umbsaar J, Prenner E J. Biochim. Et Biophys. Acta BBA Biomembr., 2020, 1862(8): 183250.
[69]
Bennett S W, Adeleye A, Ji Z X, Keller A A. Water Res., 2013, 47(12): 4074.

doi: 10.1016/j.watres.2012.12.039 pmid: 23591109
[70]
Ren W, Xiong L L, Yuan X H, Yu Z W, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(24): 14595.
[71]
Ren W, Nie G, Zhou P, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(10): 6438.

doi: 10.1021/acs.est.0c01161
[72]
Yu Y Q, Tan P, Huang X J, Tao J J, Liu Y Y, Zeng R J, Chen M, Zhou S G. J. Hazard. Mater., 2020, 394: 122560.
[73]
Wang L H, Xu H D, Jiang N, Wang Z M, Jiang J, Zhang T. Environ. Sci. Technol., 2020, 54(7): 4686.

doi: 10.1021/acs.est.0c00284
[74]
Chen J B, Zhou X F, Sun P Z, Zhang Y L, Huang C H. Environ. Sci. Technol., 2019, 53(20): 11774.
[75]
Ike I A, Linden K G, Orbell J D, Duke M. Chem. Eng. J., 2018, 338: 651.

doi: 10.1016/j.cej.2018.01.034
[76]
Huang Z F, Yao Y Y, Lu J T, Chen C H, Lu W Y, Huang S Q, Chen W X. J. Hazard. Mater., 2016, 301: 214.

doi: 10.1016/j.jhazmat.2015.08.063
[77]
Wang Z, Qiu W, Pang S Y, Gao Y, Zhou Y, Cao Y, Jiang J. Water Res., 2020, 172: 115504.
[78]
Yang Z Qian J, Yu A, Pan B. Proc. Natl. Acad. Sci. U.S.A, 2019, 116: 6659.

doi: 10.1073/pnas.1819382116
[79]
Sui M, Liu J, Sheng L. Appl. Catal. B: Environ., 2011.
[80]
Feng Y, Lee P H, Wu D, Shih K. Water Res., 2017, 120: 12.

doi: 10.1016/j.watres.2017.04.070
[81]
Chen C Y, Zepp R G. Environ. Sci. Technol., 2015, 49(23): 13835.
[82]
Fang G D, Gao J, Dionysiou D D, Liu C, Zhou D M. Environ. Sci. Technol., 2013, 47(9): 4605.

doi: 10.1021/es400262n
[83]
Chen H, Li C, Qu L. Carbon, 2018, 140: 41.

doi: 10.1016/j.carbon.2018.08.027
[84]
Deng Y L, Handoko A D, Du Y H, Xi S B, Yeo B S. ACS Catal., 2016, 6(4): 2473.

doi: 10.1021/acscatal.6b00205
[85]
Guan C T, Jiang J, Pang S Y, Ma J, Chen X, Lim T T. Chem. Eng. J., 2019, 378: 122147.
[86]
Zhang X F, Lin Q T, Luo H Y, Huang R L, Xiao R B, Liu Q J. Sci. Total. Environ., 2019, 655: 614.

doi: 10.1016/j.scitotenv.2018.11.281
[87]
Zheng J, Chen Z, Fang J F, Wang Z, Zuo S F. J. Rare Earths, 2020, 38(9): 933.

doi: 10.1016/j.jre.2019.06.005
[88]
Duan X G, Sun H Q, Kang J, Wang Y X, Indrawirawan S, Wang S B. ACS Catal., 2015, 5(8): 4629.

doi: 10.1021/acscatal.5b00774
[1] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[2] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[3] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[4] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[5] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[6] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[7] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[8] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[9] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[10] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[11] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[12] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[13] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[14] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[15] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.