中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 992-1010 DOI: 10.7536/PC210109 Previous Articles   

• Review •

Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water

Fei Wu1, Wei Ren1, Cheng Cheng1, Yan Wang2, Heng Lin1(), Hui Zhang1()   

  1. 1 Key Laboratory of Hubei Biomass-Resource Chemistry and Environmental Biotechnology, Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University,Wuhan 430079, China
    2 Department of Environmental Science and Engineering, Anhui Science and Technology University,Fengyang 233100, China
  • Received: Revised: Online: Published:
  • Contact: Heng Lin, Hui Zhang
  • Supported by:
    National Natural Science Foundation of China(21806125); Postdoctoral Science Foundation of China(2016M602365); Fundamental Research Funds for Central Universities of China (awarded at Wuhan University); Natural Science Foundation of Anhui Province(1808085MB49)
Richhtml ( 59 ) PDF ( 847 ) Cited
Export

EndNote

Ris

BibTeX

Carbonaceous materials with superior catalytic activity, which could avoid drawbacks of heavy metal ion leaching for metal-based catalysts, are widely used in advanced oxidation processes (AOPs). Biochar, a carbon-rich material produced by pyrolysis of biomass under oxygen limited condition, is low-cost, widely available, and environmentally friendly. Biochar has been utilized to activate peroxides such as hydrogen peroxide, peroxymonosulfate and peroxydisulfate for the degradation of pollutants in water. In this paper, precursors and preparation methods of biochar as well as their influence on catalytic activity of biochar are discussed. The activation mechanisms of peroxides by biochar and the effects of water matrices on the degradation of pollutants are summarized. The progress in the modification of biochar is reviewed. The reusability of biochar is elucidated and the regeneration methods of biochar are provided. In the end, the problems and the prospects of the biochar-based AOPs are put forward.

Contents

1 Introduction

2 Biomass precursors

2.1 Lignocellulosic biomass precursors

2.2 Non-lignocellulosic biomass precursors

2.3 Effects of biomass precursors on catalytic performance of biochar

3 Preparation methods of biochar

4 Activating mechanism of peroxides by biochar

4.1 Radical mechanism

4.2 Non-radical mechanism

5 Effects of water matrices

5.1 Effect of pH

5.2 Effects of anions and NOM

6 Modification of biochar

6.1 Acid/base modification

6.2 Graphitizing modification

6.3 Doping modification

7 Reusability and regeneration of biochar

7.1 Change of physical properties

7.2 Change of chemical properties

7.3 Regeneration methods

8 Conclusion and prospection

Table 1 The degradation of organic pollutants by peroxides activated via biochar produced from different precursors
Biomass Oxidant Preparation Mechanism Active sites Reactive species Reaction condition Performance ref
Lignocellulose
biomass
Wheat; straw;
hardwood
H2O2 Pyrolysis Radical Ash (Fe、Cu、Mn、Ni、Mo);
—OH;
—COOH
·OH (main), HO2·、·O2- Catalyst = 1 g/L
H2O2 = 5 mM
1-Methyl-1-cyclohexanecarboxylic acid = 500 mg/L
pH = 7
99% mineralization of
1-Methyl-1-cyclohexanecarboxylic acid in 4 h
52
Valorized
Olive Stones
PDS Pyrolysis Radical N/A ·OH (main), ·SO4- both in solution and in the vicinity of BC surface Catalyst = 200 mg/L
PDS = 1000 mg/L
Sulfamethoxazole = 500 μg/L
Inherent pH
70% degradation of
sulfamethoxazole in 75 min
16
Corn stalk PDS Pyrolysis Nonradical Oxygen-containing functional groups ·OH, ·SO4- mainly on the
surface or boundary layer of BC
Catalyst = 0.8 g/L
PDS/norfloxacin = 120/1
Norfloxacin = 10 mg/L
Initial pH = 6.5
94% degradation of
norfloxacin in 300 min
53
Sunflower PDS Pyrolysis Radical Defects ·OH, ·SO4- Catalyst = 5 g/L
PDS = 10 mM
p-Nitrophenol = 0.72 mM
Initial pH = 2.58
Temperature = 60 ℃
86% degradation of
p-nitrophenol in 180 min
54
Sawdust PDS Pyrolysis Radical —OH
π-π*
Surface-bound ·OH, ·SO4-
(main);
·OH, ·SO4- in solution
Catalyst = 0.5 g/L
PDS = 10 mM
Clofibric acid = 1 g/L
Initial pH = 4
98% degradation of
clofibric acid in 60 min
55
Wood PDS Pyrolysis Nonradical —OH
π-π*
Surface-bounded ·OH, ·SO4-
(main)
Catalyst = 0.5 g/L
PDS = 10 mM
AO7 = 20 mg/L
Initial pH = 6
99% degradation of AO7 in 14 min 56
Rice straw PDS Pyrolysis Nonradical N/A Holes Catalyst = 0.6 g/L
PDS = 90 mg/L
Aniline = 10 mg/L
Initial pH = 3
94% degradation of aniline in 80 min 57
Sawdust PDS Pyrolysis Radical
and
Nonradical
N/A Holes,
·SO4-,·OH
Catalyst = 1.5 g/L
PDS = 9 mM
AO7 = 50 mg/L
90% degradation of AO7 in 180 min 58
Biomass Oxidant Preparation Mechanism Active sites Reactive species Reaction condition Performance ref
Pine
needle
PMS Pyrolysis Radical Defects ·OH(main),· SO4- Catalyst = 1 g/L
PMS = 8 mM
1,4-dioxane = 20 μmol/L
Initial pH = 6.5
84%degradation of
1,4-dioxane in 180 min
59
Sludge
Sludge H2O2 Pyrolysis Radical sp2C, C=O,
pyridonic N and pyridinic N of PFRs
·OH Catalyst = 0.4 g/L
H2O2 = 1 mM
Ciprofloxacin = 10 mg/L
pH = 7
93% degradation of
ciprofloxacin in 24 h
60
Sludge PDS Pyrolysis Nonradical N/A Electron transfer pathway Catalyst = 0.5 g/L
PDS = 10 mM
Sulfathiazole = 20 mg/L
pH = 6
100% removal of
sulfathiazole in 90 min
37
Sludge PMS Pyrolysis Radical
and
Nonradical
Fe(Ⅱ);
C=O;
defects
·OH, ·SO4-,1O2 Catalyst = 1 g/L
PMS = 0.8 mM
triclosan = 0.034 mM
Initial pH = 7.2
99% degradation of
triclosan in 240 min
61
Sludge PMS Hydrothermal coupled Pyrolysis Nonradical C=O 1O2 Catalyst = 0.4 g/L;
PMS = 0.4 g/L
sulfamethoxazole
= 0.01 g/L
100% degradation of
sulfamethoxazole in 15 min
22
Sludge PMS Pyrolysis Nonradical C=O 1O2 Catalyst = 0.5 g/L;
PMS = 1 mM
Bisphenol A = 1 g/L
pH = 6
~80% mineralization of bisphenol A in 30 min 23
Food waste
Shrimp shell PDS Pyrolysis Radical
and
Nonradical
sp2C Electron transfer pathway
(main),
·O2-
Catalyst = 0.2 g/L
PDS= 0.5 g/L
2,4-Dichlorophenol = 100 mg/L
Initial pH = 5.82
76% mineralization of 2,4-dichlorophenol in 120 min 27
Swine bone PDS Pyrolysis Radical
and
Nonradical
C=O for 1O2;
—OH for radicals
·OH (main),1O2, ·O2-, SO 4 · -
Electron transfer pathway
Catalyst = 0.2 g/L
PDS= 2 g/L
2,4-Dichlorophenol = 20 mg/L
100% degradation of 2,4-dichlorophenol in 120 min 62
Swine bone PDS Pyrolysis Radical
and
Nonradical
—OH, —COOH for
·SO4-,·OH;
Defects, inorganic
component for 1O2, ·O2-;
C=O for ·OH, electron
transfer process
·SO4-,·OH,1O2, ·O2-,
Electron transfer process
Catalyst = 0.1 g/L
PDS = 1 g/L
Acetaminophen = 20 mg/L
100% degradation of
acetaminophen in 120 min
62
Biomass Oxidant Preparation Mechanism Active sites Reactive species Reaction condition Performance ref
Food
waste
digestate
PMS Pyrolysis Radical
and
Nonradical
sp2C;
graphitic N;
pyridinium N;
C=O
1O2, ·O2-,·OH, ·SO4- Catalyst = 0.5 g/L;
PMS= 1 mM
Reactive brilliant red X-3B = 1 g/L
Initial pH = 3.78
>99%degradation of
X-3B in 1 min
24
Egg shell PDS Pyrolysis Radical
and
Nonradical
Defects and oxygen functional groups 1O2, ·O2-,·OH, ·SO4-,
Electron transfer pathway
Catalyst = 0.167 g/L
PDS= 1 g/L
2,4-dichlorophenol= 100 mg/L
90% removal of 2,4-Dichlorophenol in 2 h 25
Manure
Swine manure H2O2 Pyrolysis Radical PFRs ·OH(main), ·O2- Catalyst = 0.5 g/L
H2O2 = 10 mM
Sulfamethazine = 35.9 μmol/L
pH = 7.4
> 85% degradation of
sulfamethazine in 30 min
27
Pig manure H2O2 Pyrolysis Radical PFRs ·OH Catalyst = 0.5 g/L
H2O2 = 5 mM
Tetracycline = 67.5 μmol/L
pH = 7.4
Nearly 100% degradation of tetracycline in 240 min 28
Alage
Enteromorpha PDS Pyrolysis Radical
and
Nonradical
graphitic N 1O2, ·O2-, Electron transfer
pathway
Catalyst = 0.05 g/L
PDS = 4 mM
Sulfamethoxazole = 5 mg/L
>95% degradation of
sulfamethoxazole in 90 min
31
Spirulina residue PDS Pyrolysis Nonradical Positively charged O near N-dopants Electron transfer pathway Catalyst = 0.5 g/L
PDS = 6 mM
Sulfamethoxazole = 20 mg/L
100% degradation of
sulfamethoxazole in 45 min
63
Yeast
Yeast cell (dry weight) PMS Cacination in
molten salt
Radical
and
Nonradical
C=O for 1O2;
sp2C, graphitic N and
pyridinic N for ·OH,
·SO4-
1O2(main),·OH, ·SO4- Catalyst = 0.4 g/L
PMS = 0.4 g/L
Bisphenol A = 20 mg/L
pH = 7
100% degradation of
bisphenol A in 6 min
33
Yeast extract PMS Pyrolysis Radical
and
Nonradical
N/A 1O2, ·O2-,·OH, ·SO4-,
Electron transfer pathway
Catalyst = 0.05 g/L
PMS= 5.7 mM
p-Hydroxybenzoic acid = 10 ppm
pH = 4.5
Nearly 100% degradation of p-hydroxybenzoic acid in 90 min 32
Fig. 1 The summary of the mechanism of peroxides activation by biochar
Fig. 2 The scheme for the formation of PFRs and the mechanism of peroxides activation by PFRs[50,73,81]
Fig. 3 The mechanism of PFRs activating O2 to produce ·OH[79]
Fig. 4 The scheme for preparation of graphitized biochar via NaCl/KCl molten salt (taking yeast as biomass) and graphitized biochar activating PMS for the degradation of Bisphenol A[33]
Fig. 5 The scheme for preparation of N-doped biochar via one-pot synthesis (taking urea as nitrogen source and wood residue as biomass)[72]
[1]
Bai X L, Acharya K. Environ. Pollut., 2019, 247: 534.

doi: 10.1016/j.envpol.2019.01.075
[2]
Wang J L, Wang S Z. J. Environ. Manag., 2016, 182: 620.

doi: 10.1016/j.jenvman.2016.07.049
[3]
Cui M H, Gao L, Lee H S, Wang A J. Bioresour. Technol., 2020, 297: 122420.

doi: 10.1016/j.biortech.2019.122420
[4]
Xiao S, Cheng M, Zhong H, Liu Z F, Liu Y, Yang X, Liang Q H. Chem. Eng. J., 2020, 384: 123265.

doi: 10.1016/j.cej.2019.123265
[5]
Li J, Pan L J, Yu G W, Xie S Y, Li C X, Lai D G, Li Z W, You F T, Wang Y. Sci. Total. Environ., 2019, 654: 1284.

doi: 10.1016/j.scitotenv.2018.11.013
[6]
Li J, Zhu K M, Li R M, Fan X H, Lin H, Zhang H. Chemosphere, 2020, 259: 127400.

doi: 10.1016/j.chemosphere.2020.127400
[7]
Yu J F, Tang L, Pang Y, Zeng G M, Wang J J, Deng Y C, Liu Y N, Feng H P, Chen S, Ren X Y. Chem. Eng. J., 2019, 364: 146.

doi: 10.1016/j.cej.2019.01.163
[8]
Xie R J, Cao J P, Xie X W, Lei D X, Guo K H, Liu H, Zeng Y X, Huang H B. Chem. Eng. J., 2020, 401: 126077.

doi: 10.1016/j.cej.2020.126077
[9]
Rahdar S, Igwegbe C A, Ghasemi M, Ahmadi S. MethodsX, 2019, 6: 492.

doi: 10.1016/j.mex.2019.02.033
[10]
Yang S Y, Wang P, Yang X, Shan L, Zhang W Y, Shao X T, Niu R. J. Hazard. Mater., 2010, 179(1-3): 552.

doi: 10.1016/j.jhazmat.2010.01.059
[11]
Xiong L L, Ren W, Lin H, Zhang H. J. Hazard. Mater., 2021, 403: 123874.

doi: 10.1016/j.jhazmat.2020.123874
[12]
Tan W H, Ren W, Wang C J, Fan Y R, Deng B, Lin H, Zhang H. Chem. Eng. J., 2020, 394: 124864.

doi: 10.1016/j.cej.2020.124864
[13]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13): 3705.

pmid: 15296324
[14]
Liu F, Zhou H Y, Pan Z C, Liu Y, Yao G, Guo Y, Lai B. J. Hazard. Mater., 2020, 400: 123322.

doi: 10.1016/j.jhazmat.2020.123322
[15]
Fu H C, Ma S L, Zhao P, Xu S J, Zhan S H. Chem. Eng. J., 2019, 360: 157.

doi: 10.1016/j.cej.2018.11.207
[16]
Magioglou E, Frontistis Z, Vakros J, Manariotis I, Mantzavinos D. Catalysts, 2019, 9(5): 419.

doi: 10.3390/catal9050419
[17]
Mian M M, Liu G J, Zhou H H. Sci. Total. Environ., 2020, 744: 140862.

doi: 10.1016/j.scitotenv.2020.140862
[18]
Hu X, Gholizadeh M. J. Energy Chem., 2019, 39: 109.

doi: 10.1016/j.jechem.2019.01.024
[19]
Li Y C, Xing B, Ding Y, Han X H, Wang S R. Bioresour. Technol., 2020, 312: 123614.

doi: 10.1016/j.biortech.2020.123614
[20]
Yin R L, Guo W Q, Wang H Z, Du J S, Wu Q L, Chang J S, Ren N Q. Chem. Eng. J., 2019, 357: 589.

doi: 10.1016/j.cej.2018.09.184
[21]
Wang J, Liao Z W, Ifthikar J, Shi L R, Du Y N, Zhu J Y, Xi S, Chen Z Q, Chen Z L. Chemosphere, 2017, 185: 754.

doi: S0045-6535(17)31136-0 pmid: 28734212
[22]
Hu W R, Tan J T, Pan G H, Chen J, Chen Y D, Xie Y, Wang Y B, Zhang Y K. Sci. Total. Environ., 2020, 728: 138853.

doi: 10.1016/j.scitotenv.2020.138853
[23]
Huang B C, Jiang J, Huang G X, Yu H Q. J. Mater. Chem. A, 2018, 6(19): 8978.

doi: 10.1039/C8TA02282H
[24]
Huang S M, Wang T, Chen K, Mei M, Liu J X, Li J P. Waste Manag., 2020, 107: 211.

doi: 10.1016/j.wasman.2020.04.009
[25]
Liu H Y, Liu Y N, Tang L, Wang J J, Yu J F, Zhang H, Yu M L, Zou J J, Xie Q Q. Sci. Total. Environ., 2020, 745: 141095.

doi: 10.1016/j.scitotenv.2020.141095
[26]
Yu J F, Tang L, Pang Y, Zeng G M, Feng H P, Zou J J, Wang J J, Feng C Y, Zhu X, Ouyang X L, Tan J S. Appl. Catal. B: Environ., 2020, 260: 118160.

doi: 10.1016/j.apcatb.2019.118160
[27]
Deng R, Luo H, Huang D L, Zhang C. Chemosphere, 2020, 255: 126975.

doi: 10.1016/j.chemosphere.2020.126975
[28]
Huang D L, Luo H, Zhang C, Zeng G M, Lai C, Cheng M, Wang R Z, Deng R, Xue W J, Gong X M, Guo X Y, Li T. Chem. Eng. J., 2019, 361: 353.

doi: 10.1016/j.cej.2018.12.098
[29]
Duan X, Chen Y Z, Yan Y Y, Feng L Y, Chen Y G, Zhou Q. Bioresour. Technol., 2019, 289: 121637.

doi: 10.1016/j.biortech.2019.121637
[30]
Ho S H, Chen Y D, Li R X, Zhang C F, Ge Y M, Cao G L, Ma M, Duan X G, Wang S B, Ren N Q. Water Res., 2019, 159: 77.

doi: 10.1016/j.watres.2019.05.008
[31]
Qi Y F, Ge B X, Zhang Y Q, Jiang B, Wang C Z, Akram M, Xu X. J. Hazard. Mater., 2020, 399: 123039.

doi: 10.1016/j.jhazmat.2020.123039
[32]
Tian W J, Lin J K, Zhang H Y, Duan X G, Sun H Q, Wang H, Wang S B. J. Hazard. Mater., 2021, 408: 124459.

doi: 10.1016/j.jhazmat.2020.124459
[33]
Xie Y, Hu W R, Wang X Q, Tong W H, Li P Y, Zhou H, Wang Y B, Zhang Y K. Environ. Pollut., 2020, 260: 114053.

doi: 10.1016/j.envpol.2020.114053
[34]
Yang J, Sophia He Q, Yang L X. Appl. Energy, 2019, 250: 926.

doi: 10.1016/j.apenergy.2019.05.033
[35]
Zhang X Y, Zhou J, Xu Z J, Zhu P R, Liu J Y. J. Hazard. Mater., 2021, 402: 123635.

doi: 10.1016/j.jhazmat.2020.123635
[36]
Jellali S, Khiari B, Usman M, Hamdi H, Charabi Y, Jeguirim M. Renew. Sustain. Energy Rev., 2021, 144: 111068.

doi: 10.1016/j.rser.2021.111068
[37]
Chen Y D, Duan X G, Zhang C F, Wang S B, Ren N Q, Ho S H. Chem. Eng. J., 2020, 384: 123244.

doi: 10.1016/j.cej.2019.123244
[38]
Dai L C, Li L, Zhu W K, Ma H Q, Huang H G, Lu Q, Yang M, Ran Y. Bioresour. Technol., 2020, 298: 122576.

doi: 10.1016/j.biortech.2019.122576
[39]
Chen B L, Zhou D D, Zhu L Z. Environ. Sci. Technol., 2008, 42(14): 5137.

doi: 10.1021/es8002684
[40]
Kong L, Liu J, Zhou Q, Sun Z, Ma Z. Biochem. Eng. J., 2019, 152.
[41]
Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S C. Carbon, 2011, 49(3): 838.

doi: 10.1016/j.carbon.2010.10.025
[42]
Spielmeyer A. Sustain. Chem. Pharm., 2018, 9: 76.
[43]
Shen X L, Zeng J F, Zhang D L, Wang F, Li Y J, Yi W M. Sci. Total. Environ., 2020, 704: 135283.

doi: 10.1016/j.scitotenv.2019.135283
[44]
Li D C, Jiang H. Bioresour. Technol., 2017, 246: 57.

doi: 10.1016/j.biortech.2017.07.029
[45]
Rodrigues R, Santos M S, Nunes R S, Carvalho W A, Labuto G. Fuel, 2021, 299: 120923.

doi: 10.1016/j.fuel.2021.120923
[46]
Wang H Z, Guo W Q, Liu B H, Si Q S, Luo H C, Zhao Q, Ren N Q. Appl. Catal. B: Environ., 2020, 279: 119361.

doi: 10.1016/j.apcatb.2020.119361
[47]
Zhuang M H, Shan N, Wang Y C, Caro D, Fleming R M, Wang L G. Sci. Total. Environ., 2020, 722: 137693.

doi: 10.1016/j.scitotenv.2020.137693
[48]
Kieliszek M, Kot A M, Bzducha-WrÓbel A, BŁazejak S, Gientka I, Kurcz A. Fungal Biol. Rev., 2017, 31(4): 185.

doi: 10.1016/j.fbr.2017.06.001
[49]
Meng H, Nie C Y, Li W L, Duan X G, Lai B, Ao Z M, Wang S B, An T C. J. Hazard. Mater., 2020, 399: 123043.

doi: 10.1016/j.jhazmat.2020.123043
[50]
Fang G D, Liu C, Gao J, Dionysiou D D, Zhou D M. Environ. Sci. Technol., 2015, 49(9): 5645.

doi: 10.1021/es5061512
[51]
Gu L, Zhu N W, Guo H Q, Huang S Q, Lou Z Y, Yuan H P. J. Hazard. Mater., 2013, 246/247: 145.

doi: 10.1016/j.jhazmat.2012.12.012
[52]
Devi P, Dalai A K, Chaurasia S P. Chemosphere, 2020, 241: 125007.

doi: 10.1016/j.chemosphere.2019.125007
[53]
Wang B, Li Y N, Wang L. Chemosphere, 2019, 237: 124454.

doi: 10.1016/j.chemosphere.2019.124454
[54]
Sun P, Zhang K K, Gong J Y, Khan A, Zhang Y, Islama M S, Zhang Y R. Environ. Sci. Pollut. Res., 2019, 26(26): 27482.

doi: 10.1007/s11356-019-05881-w
[55]
Zhu K M, Wang X S, Geng M Z, Chen D, Lin H, Zhang H. Chem. Eng. J., 2019, 374: 1253.

doi: 10.1016/j.cej.2019.06.006
[56]
Zhu K M, Wang X S, Chen D, Ren W, Lin H, Zhang H. Chemosphere, 2019, 231: 32.

doi: 10.1016/j.chemosphere.2019.05.087
[57]
Wu Y, Guo J, Han Y J, Zhu J Y, Zhou L X, Lan Y Q. Chemosphere, 2018, 200: 373.

doi: 10.1016/j.chemosphere.2018.02.110
[58]
He J, Xiao Y, Tang J C, Chen H K, Sun H W. Sci. Total. Environ., 2019, 690: 768.

doi: 10.1016/j.scitotenv.2019.07.043
[59]
Ouyang D, Chen Y, Yan J C, Qian L B, Han L, Chen M F. Chem. Eng. J., 2019, 370: 614.

doi: 10.1016/j.cej.2019.03.235
[60]
Luo K, Yang Q, Pang Y, Wang D B, Li X, Lei M, Huang Q. Chem. Eng. J., 2019, 374: 520.

doi: 10.1016/j.cej.2019.05.204
[61]
Wang S Z, Wang J L. Chem. Eng. J., 2019, 356: 350.

doi: 10.1016/j.cej.2018.09.062
[62]
Zhou X R, Zeng Z T, Zeng G M, Lai C, Xiao R, Liu S Y, Huang D L, Qin L, Liu X G, Li B S, Yi H, Fu Y K, Li L, Zhang M M, Wang Z H. Chem. Eng. J., 2020, 401: 126127.

doi: 10.1016/j.cej.2020.126127
[63]
Ho S H, Chen Y D, Li R X, Zhang C F, Ge Y M, Cao G L, Ma M, Duan X G, Wang S B, Ren N Q. Water Res., 2019, 159: 77.

doi: 10.1016/j.watres.2019.05.008
[64]
Cha J S, Park S H, Jung S C, Ryu C, Jeon J K, Shin M C, Park Y K. J. Ind. Eng. Chem., 2016, 40: 1.
[65]
Huang D L, Wang Y, Zhang C, Zeng G M, Lai C, Wan J, Qin L, Zeng Y L. RSC Adv., 2016, 6(77): 73186.

doi: 10.1039/C6RA11850J
[66]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817
[67]
Sun C, Chen T, Huang Q X, Zhan M X, Li X D, Yan J H. Chem. Eng. J., 2020, 380: 122519.

doi: 10.1016/j.cej.2019.122519
[68]
Huang D L, Zhang G X, Yi J, Cheng M, Lai C, Xu P, Zhang C, Liu Y, Zhou C Y, Xue W J, Wang R Z, Li Z H, Chen S. Chemosphere, 2021, 263: 127672.

doi: 10.1016/j.chemosphere.2020.127672
[69]
Anipsitakis G P, Dionysiou D D, Gonzalez M A. Environ. Sci. Technol., 2006, 40(3): 1000.

pmid: 16509349
[70]
Antoniou M G, de la Cruz A A, Dionysiou D D. Appl. Catal. B: Environ., 2010, 96(3/4): 290.

doi: 10.1016/j.apcatb.2010.02.013
[71]
Long A H, Zhang H, Lei Y. Sep. Purif. Technol., 2013, 118: 612.

doi: 10.1016/j.seppur.2013.08.001
[72]
Liang J, Xu X Y, Qamar Zaman W, Hu X F, Zhao L, Qiu H, Cao X D. Chem. Eng. J., 2019, 375: 121908.

doi: 10.1016/j.cej.2019.121908
[73]
Fang G D, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D M. Environ. Sci. Technol., 2014, 48(3): 1902.

doi: 10.1021/es4048126
[74]
Wang H Z, Guo W Q, Liu B H, Wu Q L, Luo H C, Zhao Q, Si Q S, Sseguya F, Ren N Q. Water Res., 2019, 160: 405.

doi: 10.1016/j.watres.2019.05.059
[75]
Gu L, Zhu N W, Zhou P. Bioresour. Technol., 2012, 118: 638.

doi: 10.1016/j.biortech.2012.05.102
[76]
Luo R, Li M Q, Wang C H, Zhang M, Nasir Khan M A, Sun X Y, Shen J Y, Han W Q, Wang L J, Li J S. Water Res., 2019, 148: 416.

doi: 10.1016/j.watres.2018.10.087
[77]
Sun H W, Peng X X, Zhang S P, Liu S W, Xiong Y, Tian S H, Fang J Y. Bioresour. Technol., 2017, 241: 244.

doi: 10.1016/j.biortech.2017.05.102
[78]
Zaeni J R J, Lim J W, Wang Z H, Ding D H, Chua Y S, Ng S L, Oh W D. Sep. Purif. Technol., 2020, 241: 116702.

doi: 10.1016/j.seppur.2020.116702
[79]
Fang G D, Zhu C Y, Dionysiou D D, Gao J, Zhou D M. Bioresour. Technol., 2015, 176: 210.

doi: 10.1016/j.biortech.2014.11.032
[80]
Yang J, Pignatello J J, Pan B, Xing B S. Environ. Sci. Technol., 2017, 51(16): 8972.

doi: 10.1021/acs.est.7b01087
[81]
Yu J N, Zhu Z L, Zhang H, Shen X L, Qiu Y L, Yin D Q, Wang S B. Chem. Eng. J., 2020, 398: 125538.

doi: 10.1016/j.cej.2020.125538
[82]
Yan J C, Han L, Gao W G, Xue S, Chen M F. Bioresour. Technol., 2015, 175: 269.

doi: 10.1016/j.biortech.2014.10.103
[83]
Jiang Y F, Yang L J, Sun T, Zhao J, Lyu Z Y, Zhuo O, Wang X Z, Wu Q, Ma J, Hu Z. ACS Catal., 2015, 5(11): 6707.

doi: 10.1021/acscatal.5b01835
[84]
Huong P T, Jitae K, Al Tahtamouni T M, le Minh Tri N, Kim H H, Cho K H, Lee C. J. Water Process. Eng., 2020, 33: 101037.

doi: 10.1016/j.jwpe.2019.101037
[85]
Oh W D, Veksha A, Chen X, Adnan R, Lim J W, Leong K H, Lim T T. Chem. Eng. J., 2019, 374: 947.

doi: 10.1016/j.cej.2019.06.001
[86]
Liu L, Li Y N, Li W, Zhong R X, Lan Y Q, Guo J. Environ. Res., 2020, 187: 109665.

doi: 10.1016/j.envres.2020.109665
[87]
Liu F, Li W W, Wu D C, Tian T, Wu J F, Dong Z M, Zhao G C. J. Colloid Interface Sci., 2020, 572: 318.

doi: 10.1016/j.jcis.2020.03.116
[88]
Ding D H, Yang S J, Qian X Y, Chen L W, Cai T M. Appl. Catal. B: Environ., 2020, 263: 118348.

doi: 10.1016/j.apcatb.2019.118348
[89]
Zhu S S, Jin C, Duan X G, Wang S B, Ho S H. Chem. Eng. J., 2020, 393: 124725.

doi: 10.1016/j.cej.2020.124725
[90]
Ye S J, Zeng G M, Tan X F, Wu H P, Liang J, Song B, Tang N, Zhang P, Yang Y Y, Chen Q, Li X P. Appl. Catal. B: Environ., 2020, 269: 118850.

doi: 10.1016/j.apcatb.2020.118850
[91]
Liu B H, Guo W Q, Wang H Z, Si Q S, Zhao Q, Luo H C, Ren N Q. Chem. Eng. J., 2020, 396: 125119.

doi: 10.1016/j.cej.2020.125119
[92]
Ren W, Xiong L L, Yuan X H, Yu Z W, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(24): 14595.

doi: 10.1021/acs.est.9b05475
[93]
Ren W, Xiong L L, Nie G, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(2): 1267.

doi: 10.1021/acs.est.9b06208
[94]
Zhang X C, Zhang R Y, Niu S Y, Zheng J M, Guo C F. Appl. Surf. Sci., 2019, 475: 355.

doi: 10.1016/j.apsusc.2018.12.301
[95]
Yaw C S, Tang J W, Soh A K, Chong M N. Chem. Eng. J., 2020, 380: 122501.

doi: 10.1016/j.cej.2019.122501
[96]
Babuponnusami A, Muthukumar K. J. Environ. Chem. Eng., 2014, 2(1): 557.

doi: 10.1016/j.jece.2013.10.011
[97]
Peng Y T, Tang H M, Yao B, Gao X, Yang X, Zhou Y Y. Chem. Eng. J., 2021, 414: 128800.

doi: 10.1016/j.cej.2021.128800
[98]
Huang W Q, Xiao S, Zhong H, Yan M, Yang X. Chem. Eng. J., 2021, 418: 129297.

doi: 10.1016/j.cej.2021.129297
[99]
Xu Y, Lin Z Y, Zhang H. Chem. Eng. J., 2016, 285: 392.

doi: 10.1016/j.cej.2015.09.091
[100]
Huang J Z, Zhang H C. Environ. Int., 2019, 133: 105141.

doi: 10.1016/j.envint.2019.105141
[101]
Sun P Z, Li Y X, Meng T, Zhang R C, Song M, Ren J. Water Res., 2018, 147: 91.

doi: 10.1016/j.watres.2018.09.051
[102]
Ren W, Zhou P, Nie G, Cheng C, Duan X, Zhang H, Wang S. Water Res., 2020, 186: 116361.

doi: 10.1016/j.watres.2020.116361
[103]
Wang Y B, Liu M, Zhao X, Cao D, Guo T, Yang B. Carbon, 2018, 135: 238.

doi: 10.1016/j.carbon.2018.01.106
[104]
Guan C T, Jiang J, Luo C W, Pang S Y, Yang Y, Wang Z, Ma J, Yu J, Zhao X. Chem. Eng. J., 2018, 337: 40.

doi: 10.1016/j.cej.2017.12.083
[105]
Li F Y, Xie Y, Wang Y, Fan X J, Cai Y B, Mei Y Y. Environ. Pollut. Bioavailab., 2019, 31(1): 32.

doi: 10.1080/26395940.2019.1578185
[106]
Yu Y, Huang F, Liu X Y, Song C J, Xu Y H, Zhang Y J. Sci. Total. Environ., 2019, 654: 942.

doi: 10.1016/j.scitotenv.2018.11.156
[107]
Wang Y Y, Dong H R, Li L, Tian R, Chen J, Ning Q, Wang B, Tang L, Zeng G M. Bioresour. Technol., 2019, 291: 121840.

doi: 10.1016/j.biortech.2019.121840
[108]
Mian M M, Liu G J. Chem. Eng. J., 2020, 392: 123681.

doi: 10.1016/j.cej.2019.123681
[109]
Sun B T, Skyllas-Kazacos M. Electrochimica Acta, 1992, 37(13): 2459.

doi: 10.1016/0013-4686(92)87084-D
[110]
Hsiao M C, Liao S H, Yen M Y, Teng C C, Lee S H, Pu N W, Wang chung-an, Sung Y, Ger M D, Ma C C M, Hsiao M H. J. Mater. Chem., 2010, 20(39): 8496.

doi: 10.1039/c0jm01679a
[111]
Ping Y J, Yang S J, Han J Z, Li X, Zhang H L, Xiong B Y, Fang P F, He C Q. Electrochimica Acta, 2021, 380: 138237.

doi: 10.1016/j.electacta.2021.138237
[112]
Mian M M, Liu G J. RSC Adv., 2018, 8(26): 14237.

doi: 10.1039/C8RA02258E
[113]
Sevilla M, Sanchís C, ValdÉs-Solís T, MorallÓn E, Fuertes A B. J. Phys. Chem. C, 2007, 111(27): 9749.

doi: 10.1021/jp072246x
[114]
Demir M, Kahveci Z, Aksoy B, Palapati N K R, Subramanian A, Cullinan H T, El-Kaderi H M, Harris C T, Gupta R B. Ind. Eng. Chem. Res., 2015, 54(43): 10731.

doi: 10.1021/acs.iecr.5b02614
[115]
Major I, Pin J M, Behazin E, Rodriguez-Uribe A, Misra M, Mohanty A. Green Chem., 2018, 20(10): 2269.

doi: 10.1039/C7GC03457A
[116]
Sevilla M, Fuertes A B. Chem. Phys. Lett., 2010, 4901-3: 63.
[117]
Du L, Xu W H, Liu S B, Li X, Huang D L, Tan X F, Liu Y G. J. Colloid Interface Sci., 2020, 577: 419.

doi: 10.1016/j.jcis.2020.05.096
[118]
Li Y, Ma S L, Xu S J, Fu H C, Li Z Q, Li K, Sheng K, Du J G, Lu X, Li X H, Liu S L. Chem. Eng. J., 2020, 387: 124094.

doi: 10.1016/j.cej.2020.124094
[119]
Wang G L, Chen S, Quan X, Yu H T, Zhang Y B. Carbon, 2017, 115: 730.

doi: 10.1016/j.carbon.2017.01.060
[120]
Sun H Q, Kwan C, Suvorova A, Ang H M, TadÉ M O, Wang S B. Appl. Catal. B: Environ., 2014, 154/155: 134.

doi: 10.1016/j.apcatb.2014.02.012
[121]
Xu L, Wu C X, Liu P H, Bai X, Du X Y, Jin P K, Yang L, Jin X, Shi X, Wang Y. Chem. Eng. J., 2020, 387: 124065.

doi: 10.1016/j.cej.2020.124065
[122]
Gao Y W, Zhu Y, Lyu L, Zeng Q Y, Xing X C, Hu C. Environ. Sci. Technol., 2018, 52(24): 14371.

doi: 10.1021/acs.est.8b05246
[123]
Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X, Huang S M. ACS Nano, 2012, 6(1): 205.

doi: 10.1021/nn203393d pmid: 22201338
[124]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.).

doi: 10.7536/PC170310
[125]
Oh W D, Lisak G, Webster R D, Liang Y N, Veksha A, Giannis A, Moo J G S, Lim J W, Lim T T. Appl. Catal. B: Environ., 2018, 233: 120.

doi: 10.1016/j.apcatb.2018.03.106
[126]
Zhao L, Zhao Y H, Nan H Y, Yang F, Qiu H, Xu X Y, Cao X D. J. Hazard. Mater., 2020, 382: 121033.

doi: 10.1016/j.jhazmat.2019.121033
[127]
Du J, Zhang L, Ali A, Li R H, Xiao R, Guo D, Liu X Y, Zhang Z Y, Ren C Y, Zhang Z Q. Process. Saf. Environ. Prot., 2019, 125: 260.

doi: 10.1016/j.psep.2019.03.035
[128]
Zhang P Z, Zhang X X, Li Y F, Han L J. Bioresour. Technol., 2020, 302: 122850.

doi: 10.1016/j.biortech.2020.122850
[129]
Chen X Y, Yang L, Myneni S C B, Deng Y. Chem. Eng. J., 2019, 373: 840.

doi: 10.1016/j.cej.2019.05.059
[1] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[2] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[3] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[4] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[5] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[6] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[7] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[8] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[9] Lai Lyu, Chun Hu. Heterogeneous Fenton Catalytic Water Treatment Technology and Mechanism [J]. Progress in Chemistry, 2017, 29(9): 981-999.
[10] Shiying Yang, Ao Zhang, Tengfei Ren, Yitao Zhang. Surface Mechanism of Carbon-Based Materials for Catalyzing Peroxide Degradation of Organic Pollutants in Water [J]. Progress in Chemistry, 2017, 29(5): 539-552.
[11] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[12] Wang Yanbin, Zhao Hongying, Zhao Guohua, Wang Yujing, Yang Xiuchun. Iron Compound-Based Heterogeneous Fenton Catalytic Oxidation Technology [J]. Progress in Chemistry, 2013, 25(08): 1246-1259.
[13] Pei Fei, He Yufeng, Li Xiaoxiao, Wang Rongmin*, Li Gang, Zhao Tingting. SOD Mimics Based on Macromolecules [J]. Progress in Chemistry, 2013, 25(0203): 340-349.
[14] Zhang Guofu, Wen Xin, Wang Yong, Mo Weimin, Ding Chengrong. Recent Advances in Oxidative Deoximation [J]. Progress in Chemistry, 2012, 24(0203): 361-369.
[15] Liu Chunli, Wang Luhua. Synthesis and Crystal Structure of Uranyl Complexes [J]. Progress in Chemistry, 2011, 23(7): 1372-1378.