中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 1035-1046 DOI: 10.7536/PC171106 Previous Articles   

• Review •

Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems

Shufen Fan3, Jia Xin1,2,3*, Jingyi Huang3, Weili Rong3, Xilai Zheng1,2,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51408571).
PDF ( 614 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the zero-valent iron(ZVI)-based chemical reduction technology has been applied for the in-situ groundwater remediation because of its high efficiency and low cost. However, the technology still faces up some bottleneck restrictions in engineering applications considering the complex groundwater constituents. ZVI, as a highly reactive electron donor, not only reacts with the target contaminants, but also reacts with other co-existing oxidants(O2, H+, NO3-, etc.) in the groundwater, which would negatively impact the remediation efficiency and increase the cost of remediation. In addition, electron competition usually occurs among the contaminants of the same or different categories, consequently resulting in a lower removal efficiency in a multi-solute system than in a single-solute system. Therefore, in this paper, the electron transfer process and the electron competition mechanism among different oxides in ZVI-based groundwater remediation systems are reviewed, including ZVI corrosion and electron transfer, the concept of ZVI reduction selectivity and its quantification methods, the electron competition among various coexisting oxides in groundwater, and the influence factors and enhancement methods of electron efficiency. Finally, the future development direction of the technology is forecast, so as to provide reference for future engineering application of in situ chemical remediation of groundwater.
Contents
1 Introduction
2 Zero-valent iron corrosion and electron-transfer process
2.1 Zero-valent iron corrosion
2.2 Effects of corrosion on the electron-transfer process
3 “Electron selectivity” and “electron efficiency” of ZVI
3.1 Conceptulization and quantification of electron selectivity
3.2 Calculation of “electron efficiency”
4 Electron competition of coexisting oxides
4.1 DO
4.2 H2O or H+
4.3 NO3-
4.4 Heavy metals
4.5 Organic pollutants
5 Influence factors for “electron efficiency”
5.1 The relative proportions of the reducing agent and the oxidant
5.2 pH
5.3 Other factors
6 Technical methods to improve the “electron efficiency”
6.1 “Sulfidation”
6.2 “Magnetization” or “pre-magnetization”
6.3 Zero-valent iron/Fe(Ⅱ)
7 Conclusion and outlook

CLC Number: 

[1] 李同燕(Li T Y), 胡伟武(Hu W W), 李文奇(Li W Q), 冯传平(Feng C P). 中国环境科学学会学术年度会议(Academic Annual Meeting of China Institute of Environmental Sciences,2014. 4104.
[2] 蓝俊康(Lan J K). 地质灾害与环境保护(J. Geol. Hazar. Environ.Prot.), 2001,(02):40.
[3] 张妍(Zhang Y), 李发东(Li F D), 欧阳竹(Ouyang Z),赵广帅(Zhao G S), 李静(Li J), 柳强(Liu Q). 环境科学(Chinese J. Environ. Sci.), 2013,(01):121.
[4] Namocat J A,Fang J, Barcelona M J, Quibuyen A T O, AbrajanoT A. J.Contam.Hydrol., 2003, 67(1/4):177.
[5] 郭秀红(Guo X H), 陈玺(Chen X), 黄冠星(Huang G X),孙继朝(Sun J C), 刘景涛(Liu J T), 汪珊(Wang S), 荆继红(Jing J H), 支兵发(Zhi B F), 陈慧川(Chen H C), 杜海燕(Du H Y), 何俊美(He J M), 梁向阳(Liang X Y), 刘昱(Liu Y). 环境化学(Environ. Chem.), 2006,(06):798.
[6] 唐凤琳(Tang F L). 中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2017.
[7] Wei J J, Xu X H, Liu Y, Wang D H. Water Res., 2006, 40(2):348.
[8] Wang Z H,Huang W L,Peng P A,Fennel D E.Chemosphere,2010, 78(2):147.
[9] 李雅(Li Y). 西北农林科技大学博士论文(Doctoral Dissertation of Northwest Agriculture & Forestry University), 2017.
[10] Melitas N, Chuffe-Moscoso O, Farrell J. Environ. Sci. Technol., 2001, 35(19):3948.
[11] Chen J, Al-Abed S R, Ryan J A, Li Z B. J. Hazard. Mater., 2001, 83(3):243.
[12] Elliott D W, Zhang W. Environ. Sci. Technol., 2001, 35(24):4922.
[13] Puls R W, Blowes D W, Gillham R W. J. Hazard. Mater., 1999, 68(1):109.
[14] Li S L, Wang W, Liang F P, Zhang W X. J. Hazard. Mater., 2017, 322:163.
[15] Phillips D H, Nooten T V, Bastiaens L, Russell M I, Dickson K, Plant S, Ahad J M E, Newton T, Elliot T, Kalin R M. Environ. Sci. Technol., 2010, 44(10):3861.
[16] 何江(He J). 湖南大学硕士论文(Master Dissertation of Hunan Universivity), 2015.
[17] Crane R A, Scott T B. J. Hazard. Mater., 2012, 211/212:112.
[18] Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39(5):1338.
[19] Liu Y Q, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41(22):7881.
[20] Schoftner P, Waldner G, Lottermoser W, Stöger-Pollach M, Freitag P, Reichenauer T G. Sci.Total Environ., 2015, 535:69.
[21] Liu H, Wang Q, Wang C, Li X Z. Chem. Eng. J., 2013, 215/216:90.
[22] Xin J, Tang F L, Zheng X L, Shao H B, Kolditz O, Lu X. Water Res., 2016, 100:80.
[23] Cho D, Song H, Schwartz F W, Kim B, Jeon B. Chemosphere, 2015, 125:41.
[24] Ritter K, Odziemkowski M S, Simpgraga R, Gillham R W, Irish D E. J. Contam. Hydrol., 2003, 65(1/2):121.
[25] Liang L P, Guan X H, Huang Y Y, Ma J Y, Sun X P, Qiao J L, Zhou G M. Sep. Purif. Technol., 2015, 156:1064.
[26] Guan X H, Sun YK, Qin H J, Li J X, Lo I M C, He D, Dong H R. Water Res., 2015, 75:224.
[27] Liu Y Q, Lowry G V. Environ. Sci. Technol., 2006, 40(19):6085.
[28] Xin J, Tang F L, Yan J, La C H, Zheng X L, Liu W. Sci. Total Environ., 2018, 626:638.
[29] Qin H J, Li J X, Yang H Y, Pan B K, Zhang W M, Guan X H. Environ. Sci. Technol., 2017, 51(9):5090.
[30] Berge N D, Ramsburg C A. J. Contam. Hydrol., 2010, 118(3/4):105.
[31] Suzuki T, Moribe M, Oyama Y, Niinae M. Chem. Eng. J.,2012, 183:271.
[32] Yang G C C, Lee H L. Water Res., 2005, 39(5):884.
[33] Lu Q, Jeen S, Gui L, Gillham R W. Water Res., 2017, 112:48.
[34] Su C, Puls R W. Environ. Sci. Technol., 2004, 38(9):2715.
[35] Farrell J, Kason M, Melitas N, Li T. Environ. Sci. Technol., 2000, 34:514.
[36] 李立军(Li L J), 马力(Ma L), 张晶(Zhang J), 赵彦宁(Zhao Y N), 陈初雨(Chen C Y), 王怀远(Wang H Y), 宇庆华(Yu Q H), 孙春(Sun C).地球学报(Acta Geoscientica Sinica),2014, 35(02):156.
[37] 龚琴红(Gong Q H), 熊江波(Xiong J B), 曾建玲(Zeng J L). 江西化工(J. Jiangxi Chem.), 2010, (04):45.
[38] 贺亚雪(He Y X), 代朝猛(Dai Z M), 苏益明(Su Y M),张亚雷(Zhang Y L). 水处理技术(Technol. Water Treat.), 2016, 42(02):1.
[39] Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302:437.
[40] 杜连柱(Du L Z),张兰英(Zhang L Y),王立东(Wang L D),房芳(Fang F). 环境污染与防治(Environ. Poll. Prot.), 2007,(08):578.
[41] 何小娟(He X J), 刘菲(Liu F), 黄园英(Huang Y Y), 李旭东(Li X D), 汤鸣皋(Tang M G), 何江涛(He J T). 环境科学(Chinese J. Environ. Sci.), 2003, (01):139.
[42] Deng B L, Burris D R, Campbell T J. Environ. Sci. Technol., 1999, 33(15):2651.
[43] Song H, Carraway E R. Environ. Sci. Technol., 2005, 39(16):6237.
[44] Yak H K, Lang Q, Wai C M. Environ. Sci. Technol., 2000, 34(13):2792.
[45] Lu Q, Gui L, Gillham R W. 地学前缘(Earth Science Frontiers), 2005, 12(z1):176.
[46] Agrawal A, Tratnyet P G. Environ. Sci. Technol., 1996, 30(1):153.
[47] 王薇(Wang Wei). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2008.
[48] Kim E, Kim J, Azad A, Chang Y. A. ACS Appl. Mater. Interfaces., 2011, 3(5):1457.
[49] Sai C, Rajajayavel S G. Water Res., 2015, 78:144.
[50] Su Y, Adeleye A S, Keller A A, Huang Y, Dai C, Zhou X, Zhang Y. Water Res., 2015, 74:47.
[51] Fan D, O Brien Johnson G, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2016, 50(17):9558.
[52] 梁丽萍(Liang L P), 孟旭(Meng X).绍兴文理学院学报(Asian Journal of Shaoxing College of Arts and Sciences), 2015,(04):7.
[53] 冯翩(Feng P), 周巧利(Zhou Q L), 关小红(Guan X H),周恭明(Zhou G M). 四川环境(J. Sichuan Environ.), 2014,(04):1.
[54] Kim D, Kim J, Choi W. J. Hazard. Mater., 2011, 192(2):928.
[55] Rakoczy R. Chem. Eng. Prog., 2010, 49(1):42.
[56] Li J X, Qin H J, Zhang W X, Shi Z, Zhao D Y, Guan X H. Sep. Purif. Technol., 2017, 176:40.
[57] Huang Y H, Zhang T C. Water Res., 2005, 39(9):1751.
[58] Liang J, Feng C T, Zeng G M, Gao X, Zhong M Z, Li X D, Li X, He X Y, Fang Y L. Environ. Pollut., 2017, 225:681.
[59] Tang C L, Huang Y P, Zhang Z Q, Chen J J, Zeng H, Huang Y H. Appl. Catal. B, 2016, 184:320.
[1] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[2] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[3] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[4] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[5] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[6] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[7] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[8] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[9] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[10] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[11] Yang Wu, Yu Wang, Rongliang Qiu, Xin Yang. Reductive Debromination and Advanced Oxidation of Polybrominated Diphenyl Ethers(PBDEs) Using Zero-Valent Iron(ZVI) Based Materials [J]. Progress in Chemistry, 2018, 30(4): 420-428.
[12] Yanlong Wang, Daohui Lin*. The Interaction Between Nano Zero-Valent Iron and Soil Components and Its Environmental Implication [J]. Progress in Chemistry, 2017, 29(9): 1072-1081.
[13] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[14] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[15] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.