中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2351-2360 DOI: 10.7536/PC220404 Previous Articles   Next Articles

• Review •

Bioinspired Photo/(Electro)-Catalytic NADH Regeneration

Gang Lin1, Yuanyuan Zhang1,2, Jian Liu1,2()   

  1. 1 College of Materials Science and Engineering, Qingdao University of Science and Technology,Qingdao 266042, China
    2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute,Qingdao 266101, China
  • Received: Revised: Online: Published:
  • Contact: Jian Liu
  • About author:
    These authors contributed equally to this work
  • Supported by:
    Shandong Province Natural Science Major Basic Research Project(ZR2019ZD47)
Richhtml ( 32 ) PDF ( 539 ) Cited
Export

EndNote

Ris

BibTeX

Coenzyme NADH-dependent oxidoreductases are widely used in the fields of fine chemical synthesis and chiral drug development. As a reducing equivalent, NADH plays a key role in oxidoreductase catalysis. In view of the stoichiometric consumption and high cost of NADH, the search for green, feasible and efficient coenzyme regeneration strategies is an important but challenging task. In recent years, photo/(electro)-catalytic method for NADH regeneration has received extensive attention. In this paper, starting from the Z-scheme reaction that simulates natural photosynthesis, based on the photo-induced electron transfer and hole capture in the process of photo/(electro)-catalytic coenzyme regeneration, some recent works related to NADH regeneration are reviewed. The review is expected to provide ideas for further design of efficient coenzyme regeneration system. In addition, the research progress on NADH-dependent photo-enzyme synergistic catalysis in recent years is also briefly introduced, and an outlook is tentatively attempted about the challenges of the biomimetic photocatalytic coenzyme regeneration system and the future developments of photo-enzyme coupling system.

Contents

1 Introduction

2 Photoinduced electron transfer

2.1 Indirect electron transfer

2.2 Direct electron transfer

3 Hole trapping

3.1 Electron donor

3.2 Photoelectrochemistry

4 Coenzyme-dependent photo-enzyme coupling

5 Conclusion and outlook

Fig. 1 (a) Schematic diagram of photosynthesis; (b) Schematic diagram of biomimetic photocatalytic coenzyme regeneration system
Fig. 2 Schematic diagram of the energy level structure of common semiconductor photocatalysts
Fig. 3 Possible pathways of electron flow and hole utilization during artificial photosynthesis
Fig. 4 The changing process of electron mediator in indirect electron transfer
Fig. 5 Integrated indirect electron transfer process
Fig. 6 Direct electron transfer process: π-π stacking interaction
Fig. 7 Photoelectric synergistic process: (a) Photocathode and photoanode coupling system; (b) cascade of system of photoanode and perovskite photovoltaic device
Fig. 8 Light-enzyme coupled integrated confinement system: (a) chloroplast-like structure; (b) enzyme-like structure
[1]
Kiwi J. J. Photochem., 1981, 16(2): 193.

doi: 10.1016/0047-2670(81)80029-9
[2]
Ruppert R, Herrmann S, Steckhan E. Tetrahedron Lett., 1987, 28(52): 6583.

doi: 10.1016/S0040-4039(00)96919-3
[3]
Poizat M, Arends I W C E, Hollmann F. J. Mol. Catal. B Enzym., 2010, 63(3-4): 149.

doi: 10.1016/j.molcatb.2010.01.006
[4]
Steckhan E. Electroenzymatic Synthesis. In Electrochemistry V, Steckhan, E., Ed. Springer-Verlag Berlin Heidelberg: Top. Curr. Chem., 1994, 170, 83.
[5]
Goren Z, Lapidot N, Willner I. J. Mol. Catal., 1988, 47(1): 21.

doi: 10.1016/0304-5102(88)85069-7
[6]
Mandler D, Willner I. J. Chem. Soc., Chem. Commun., 1986, (11): 851.
[7]
Wienkamp R, Steckhan E. Angew. Chem. Int. Ed., 1983, 22(6): 497.
[8]
Steckhan E, Herrmann S, Ruppert R, Dietz E, Frede M, Spika E. Organometallics, 1991, 10(5): 1568.

doi: 10.1021/om00051a056
[9]
Jiang Z Y, Lü C, Wu H. Ind. Eng. Chem. Res., 2005, 44(12): 4165.

doi: 10.1021/ie049155w
[10]
Liu J, Antonietti M. Energy Environ. Sci., 2013, 6(5): 1486.

doi: 10.1039/c3ee40696b
[11]
Huang J H, Antonietti M, Liu J. J. Mater. Chem. A, 2014, 2(21): 7686.

doi: 10.1039/C4TA00793J
[12]
Liu J, Huang J H, Zhou H, Antonietti M. ACS Appl. Mater. Interfaces, 2014, 6(11): 8434.

doi: 10.1021/am501319v
[13]
Hildebrand F, Kohlmann C, Franz A, Lütz S. Adv. Synth. Catal., 2008, 350(6): 909.

doi: 10.1002/adsc.200700505
[14]
Canivet J, Süss-Fink G, Štěpnička P. Eur. J. Inorg. Chem., 2007, 2007(30): 4736.

doi: 10.1002/ejic.200700505
[15]
Oppelt K T, Gasiorowski J, Egbe D A M, Kollender J P, Himmelsbach M, Hassel A W, Sariciftci N S, Knör G. J. Am. Chem. Soc., 2014, 136(36): 12721.

doi: 10.1021/ja506060u
[16]
Brown K A, Wilker M B, Boehm M, Hamby H, Dukovic G, King P W. ACS Catal., 2016, 6(4): 2201.

doi: 10.1021/acscatal.5b02850
[17]
Zhang S H, Zhang Y S, Chen Y, Yang D, Li S H, Wu Y Z, Sun Y Y, Cheng Y Q, Shi J F, Jiang Z Y. ACS Catal., 2021, 11(1): 476.

doi: 10.1021/acscatal.0c04462
[18]
Cheng Y Q, Shi J F, Wu Y Z, Wang X Y, Sun Y Y, Cai Z Y, Chen Y, Jiang Z Y. Research, 2021, 2021: 8175709.
[19]
Tian Y, Zhou Y N, Zong Y C, Li J S, Yang N, Zhang M, Guo Z Q, Song H. ACS Appl. Mater. Interfaces, 2020, 12(31): 34795.

doi: 10.1021/acsami.0c06684
[20]
Wu Y Z, Shi J F, Li D L, Zhang S H, Gu B, Qiu Q, Sun Y Y, Zhang Y S, Cai Z Y, Jiang Z Y. ACS Catal., 2020, 10(5): 2894.

doi: 10.1021/acscatal.9b05240
[21]
Roy S, Jain V, Kashyap R K, Rao A, Pillai P P. ACS Catal., 2020, 10(10): 5522.

doi: 10.1021/acscatal.0c01478
[22]
Zhang Y Y, Huang X H, Li J S, Lin G, Liu W G, Chen Z P, Liu J. Chem. Res. Chin. Univ., 2020, 36(6): 1076.

doi: 10.1007/s40242-020-0293-x
[23]
Zhao Y J, Liu H, Wu C Y, Zhang Z H, Pan Q Y, Hu F, Wang R M, Li P W, Huang X W, Li Z B. Angew. Chem. Int. Ed., 2019, 58(16): 5376.

doi: 10.1002/anie.201901194
[24]
Wang Y C, Liu H, Pan Q Y, Wu C Y, Hao W B, Xu J, Chen R Z, Liu J, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2020, 142(13): 5958.

doi: 10.1021/jacs.0c00923
[25]
Xu K Q, Chatzitakis A, Backe P H, Ruan Q S, Tang J W, Rise F, Bjørås M, Norby T. Appl. Catal. B Environ., 2021, 296: 120349.

doi: 10.1016/j.apcatb.2021.120349
[26]
Prasad D R, Hoffman M Z. J. Phys. Chem., 1984, 88(23): 5660.

doi: 10.1021/j150667a041
[27]
Kim Y S, McNiven S, Ikebukuro K, Karube I. Photochem. Photobiol., 1997, 66(2): 180.

doi: 10.1111/j.1751-1097.1997.tb08640.x
[28]
Teoh W Y, Scott J A, Amal R. J. Phys. Chem. Lett., 2012, 3(5): 629.
[29]
Kinastowska K, Liu J, Tobin J M, Rakovich Y, Vilela F, Xu Z T, Bartkowiak W, Grzelczak M. Appl. Catal. B Environ., 2019, 243: 686.

doi: 10.1016/j.apcatb.2018.10.077
[30]
Hammarström L. Curr. Opin. Chem. Biol., 2003, 7: 666.

pmid: 14644174
[31]
Youngblood W J, Lee S H A, Kobayashi Y, Hernandez-Pagan E A, Hoertz P G, Moore T A, Moore A L, Gust D, Mallouk T E. J. Am. Chem. Soc., 2009, 131(3): 926.

doi: 10.1021/ja809108y pmid: 19119815
[32]
Waki M, Shirai S, Yamanaka K I, Maegawa Y, Inagaki S. RSC Adv., 2020, 10(24): 13960.

doi: 10.1039/D0RA00895H
[33]
Kanan M W, Nocera D G. Science, 2008, 321: 1072.

doi: 10.1126/science.1162018
[34]
Tilley S, Cornuz M, Sivula K, Grätzel M. Angew. Chem. Int. Ed., 2010, 49(36): 6405.

doi: 10.1002/anie.201003110 pmid: 20665613
[35]
Cao R, Lai W Z, Du P W. Energy Environ. Sci., 2012, 5(8): 8134.

doi: 10.1039/c2ee21494f
[36]
Hull J F, Balcells D, Blakemore J D, Incarvito C D, Eisenstein O, Brudvig G W, Crabtree R H. J. Am. Chem. Soc., 2009, 131(25): 8730.

doi: 10.1021/ja901270f
[37]
Zhang L, Wang W Z, Sun S M, Jiang D, Gao E P. Appl. Catal. B Environ., 2015, 162: 470.

doi: 10.1016/j.apcatb.2014.07.024
[38]
Zhang S H, Shi J F, Sun Y Y, Wu Y Z, Zhang Y S, Cai Z Y, Chen Y X, You C, Han P P, Jiang Z Y. ACS Catal., 2019, 9(5): 3913.

doi: 10.1021/acscatal.9b00255
[39]
Ji X Y, Kang Y, Fan T J, Xiong Q Q, Zhang S P, Tao W, Zhang H. J. Mater. Chem. A, 2020, 8(1): 323.

doi: 10.1039/C9TA11167K
[40]
Ju D X, Lin G, Xiao H, Zhang Y Y, Su S G, Liu J. Sol. RRL, 2020, 4(12): 2000559.

doi: 10.1002/solr.202000559
[41]
Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W. Beilstein J. Org. Chem., 2014, 10: 2556.

doi: 10.3762/bjoc.10.267
[42]
Boecker M, Micheel M, Mengele A K, Neumann C, Herberger T, Marchesi D’Alvise T, Liu B, Undisz A, Rau S, Turchanin A, Synatschke C V, Wächtler M, Weil T. ACS Appl. Nano Mater., 2021, 4(12): 12913.

doi: 10.1021/acsanm.1c02994 pmid: 34977477
[43]
Nam D H, Kuk S K, Choe H, Lee S M, Ko J W, Son E J, Choi E G, Kim Y H, Park C B. Green Chem., 2016, 18(22): 5989.

doi: 10.1039/C6GC02110G
[44]
Kuk S K, Singh R K, Nam D H, Singh R, Lee J K, Park C B. Angew. Chem. Int. Ed., 2017, 56(14): 3827.

doi: 10.1002/anie.201611379
[45]
Nam D H, Ryu G M, Kuk S K, Da Som Choi, Son E J, Park C B. Appl. Catal. B Environ., 2016, 198: 311.

doi: 10.1016/j.apcatb.2016.05.077
[46]
Lee S H, Choi D S, Kuk S K, Park C B. Angew. Chem. Int. Ed., 2018, 57(27): 7958.

doi: 10.1002/anie.201710070
[47]
Du C, Yang X G, Mayer M T, Hoyt H, Xie J, McMahon G, Bischoping G, Wang D W. Angew. Chem. Int. Ed., 2013, 52(48): 12692.

doi: 10.1002/anie.201306263
[48]
Ahn H J, Kwak M J, Lee J S, Yoon K Y, Jang J H. J. Mater. Chem. A, 2014, 2(47): 19999.

doi: 10.1039/C4TA04890C
[49]
Lee Y W, Boonmongkolras P, Son E J, Kim J, Lee S H, Kuk S K, Ko J W, Shin B, Park C B. Nat. Commun., 2018, 9: 4208.

doi: 10.1038/s41467-018-06687-z
[50]
Wu X L, Ge J, Yang C, Hou M, Liu Z. Chem. Commun., 2015, 51(69): 13408.

doi: 10.1039/C5CC05136C
[51]
Lian X Z, Chen Y P, Liu T F, Zhou H C. Chem. Sci., 2016, 7(12): 6969.

doi: 10.1039/C6SC01438K
[52]
Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P. Acc. Chem. Res., 2017, 50(6): 1423.

doi: 10.1021/acs.accounts.7b00090
[53]
Li P, Chen Q S, Wang T C, Vermeulen N A, Mehdi B L, Dohnalkova A, Browning N D, Shen D K, Anderson R, Gómez-Gualdrón D A, Cetin F M, Jagiello J, Asiri A M, Stoddart J F, Farha O K. Chem, 2018, 4(5): 1022.

doi: 10.1016/j.chempr.2018.03.001
[54]
Phipps J, Chen H, Donovan C, Dominguez D, Morgan S, Weidman B, Fan C G, Beyzavi H. ACS Appl. Mater. Interfaces, 2020, 12(23): 26084.

doi: 10.1021/acsami.0c06964
[55]
Sun Y Y, Shi J F, Wang Z, Wang H, Zhang S H, Wu Y Z, Wang H J, Li S H, Jiang Z Y. J. Am. Chem. Soc., 2022, 144(9): 4168.

doi: 10.1021/jacs.1c12790
[56]
Chen Y, Li P, Zhou J, Buru C T, ÐorđevićL, Li P, Zhang X, Cetin M M, Stoddart J F, Stupp S I, Wasielewski M R, Farha O K. J. Am. Chem. Soc., 2020, 142: 1768.

doi: 10.1021/jacs.9b12828
[57]
Zhao Z F, Zheng D, Guo M L, Yu J Y, Zhang S N, Zhang Z J, Chen Y. Angew. Chem. Int. Ed., 2022, 61(12): e202200261.
[58]
Zhou J H, Yu S S, Kang H L, He R, Ning Y X, Yu Y Y, Wang M, Chen B Q. Renewable Energy, 2020, 156: 107.
[59]
Zhang S H, Liu S S, Sun Y Y, Li S H, Shi J F, Jiang Z Y. Chem. Soc. Rev., 2021, 50(24): 13449.

doi: 10.1039/D1CS00392E
[60]
Burek B O, De Boer S R, Tieves F, Zhang W Y, Van Schie M, Bormann S, Alcalde M, Holtmann D, Hollmann F, Bahnemann D W, Bloh J Z. ChemCatChem, 2019, 11(13): 3093.

doi: 10.1002/cctc.201900610
[61]
Yang D, Zhang Y S, Zhang S H, Cheng Y Q, Wu Y Z, Cai Z Y, Wang X D, Shi J F, Jiang Z Y. ACS Catal., 2019, 9(12): 11492.

doi: 10.1021/acscatal.9b03462
[62]
Zhang Y Y, Kan X N, Zou Y T, Liu J. Chem. Commun., 2022, 58: 10997.

doi: 10.1039/D2CC04276B
[63]
Li A, Cao Q, Zhou G Y, Schmidt B V K J, Zhu W J, Yuan X T, Huo H L, Gong J L, Antonietti M. Angew. Chem. Int. Ed., 2019, 58(41): 14549.

doi: 10.1002/anie.201908058 pmid: 31418998
[64]
Lin G, Zhang Y Y, Hua Y T, Zhang C H, Jia C C, Ju D X, Yu C M, Li P, Liu J. Angew. Chem. Int. Ed., 2022, 61: e202206283.
[65]
Zhang Y Y, Liu J. Chem. Eur. J., 2022, 28: e202201430.
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[3] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[4] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[5] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[6] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[7] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[8] Yao Xiao, Wenjuan Hu, Yanbiao Ren, Xu Kang, Jian Liu. Bioinspired Photo/Electrocatalytic N2 Fixation [J]. Progress in Chemistry, 2018, 30(4): 325-337.
[9] Chen Zhou, Juntao Wu*. Bioinspired Micro-Nano Fibrous Adhesion Materials [J]. Progress in Chemistry, 2018, 30(12): 1863-1873.
[10] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[11] Mingxue Liu, Faqin Dong, Xiaoqin Nie, Congcong Ding, Huichao He, Gang Yang. Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism [J]. Progress in Chemistry, 2017, 29(12): 1537-1550.
[12] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[13] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[14] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[15] Liu Lei, Liu Jingang*. Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction [J]. Progress in Chemistry, 2013, 25(04): 563-576.