中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 397-410 DOI: 10.7536/PC201221 Previous Articles   Next Articles

• Review •

Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process

Congyuan Zhao1†, Jing Zhang3†, Zheng Chen1,2,3(), Jian Li1, Lielin Shu1, Xiaoliang Ji1   

  1. 1 School of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science & Health, Wenzhou Medical University, Wenzhou 325035, China
    2 Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, China
    3 School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China
  • Received: Revised: Online: Published:
  • Contact: Zheng Chen
  • About author:
    † These authors contributed equally to this work
  • Supported by:
    National Key R&D Program of China(2017YFB0403700); Zhejiang Province Public Welfare Technology Application Research Project(LGF22E080002); General Project of Scientific Research Program of Zhejiang Education Department(Y202045506); National Natural Science Foundation of China(41807035)
Richhtml ( 25 ) PDF ( 474 ) Cited
Export

EndNote

Ris

BibTeX

The low extracellular electron transfer (EET) efficiency dominated by electro-active bacteria (EAB) in traditional bio-electrocatalytic systems (BESs) has largely restrained the applications of microbial electrocatalysis in environmental and industrial fields. To break this bottleneck, many scientists from the world attempted to develop advanced catalysts to improve the efficiency of electron transfer in BESs. It is expected that rational optimization by multi-disciplines technologies, including material science, electronic microbiology and synthetic biology, will improve the electron flux and efficiency of electron transfer. This optimization might promote the transition from traditional inorganic catalysts towards living catalytic biomaterials which promises to upgrade to be more precise, intelligent and controllable advanced materials in the future. The promotion will provide more beneficial technical support for the large scale application of advanced materials. Herein, this paper summarizes the effective constructions of several kinds of BESs (including employing graphene/microbes composited materials, in-situ semiconducting photocatalytic self-assembled biohybrids, core/shell-coated biohybrids and genetically manipulated engineering strains). In addition, the mechanisms regarding the strategies for strengthening EET are also elaborated in this paper. At last, current challenges that exist for microbes-based living biomaterials and underlying opportunities of biomaterials used in more environmental applications in the future are summarized.

Contents

1 Introduction

2 BESs constructed with EAB and inorganic/organic materials

2.1 Modified graphene improves the performance of BES

2.2 Engineering biohybrids by self-assembling with microorganism and photocatalytic semiconductors

2.3 Core/shell coated biohybrids

3 Improved performance of BES by incubating with genetically manipulated strains

3.1 Enlarged intracellular “electronic pools”

3.2 Manipulation of engineering strains by CRISPR technology

4 Conclusion and outlook

Fig. 1 Comparison of the removals of Cr(Ⅵ) resulting from the addition of HNQ-PVA-GO composite in three reaction cycles (a), the physical picture of recovered HNQ-PVA-GO after three reaction cycles (b) and schematic representation of proposed Cr(Ⅵ) reduction mechanism by S. xiamenensis in the presence of HNQ-PVA-GO composite (c)[38]. Copyright, 2019, Wiley
Fig. 2 Mechanism of enhanced bioreduction of Cr(Ⅵ) in wastewater by using living GO-S. xiamenensis composited biomaterial[41]. Copyright 2019, ACS
Fig. 3 Environmental process and application of semiconducting CdS-based photocatalysis (a)[48], a design of specific bio-system to promote intimate coupling of microbial and photoelectrochemical processes (b), the construction of biohybrids through biologically precipitating CdS nanoparticles on the surface of microbes (c)[23], and enhanced photosynthetic production of renewable fuels, pharmaceutical, value-added chemicals and biopolymer from extracellular CO2 and H2O via the Wood-Ljungdahl pathway (d)[23,25,49,50]
Table 1 Environmental applications of biohybrids by self-assembling photocatalytic semiconductor.
Application Biohybrid Illumination Remarkable results ref
Decolorization of
methyl orange
G. sulfurreducens-CdS QDs
biohybrid
LED
3.07±0.14 mW/cm2
Decolorization rate of biohybrid was 6-fold that of control group
Decolorization rate of the biohybrid was up to 100% after 3 h
57
Conversion of carbon dioxide to methane M. barkeri-CdS QDs
biohybrid
UV
1.0±0.14 mW/cm2
The generation rate of methane is 0.19 mol/h
1.5-fold of mcrA gene copies compared to that of control were increased in biohybrid
55
Denitriffication of
nitrate to generate nitrous oxide
T.denitrificans-CdS QDs
biohybrid
UV
3.07±0.14 mW/cm2
Reduction quantum efficiency of nitrate was up to 2.0%
Denitrification rate was more than 70% higher than that of control group
59
Hydrogen generation E. coli-CdS QDs biohybrid LED
2000 W/m2
>30% hydrogen production was increased than that of control group
Appreciated quantum efficiency (~9.59%) was obtained under visible light radiation
60
Hydrogen generation E. coli-CdS NPs biohybrid Xenon lamp
350 W
Hydrogen production efficiency was twice than that of control group
Hydrogen was continuously produced within 96 h under natural aerobic condition
61
Dinitrogen reduction to ammonia Nitrogenase MoFe
protein-CdS QDs biohybrid
LED
3.5 mW/cm2
Biological nitrogen fixation rate was up to 64% in biohybrids
Biological nitrogen fixation rate was up to 64% in biohybrids
62
Synthesis of acetic acid from carbon dioxide Moorella thermoacetica-
CdS NPs biohybrid
LED
405 nm
CdS nanoparticles stimulated the activity of IMPDH
Glycolysis and TCA cycle processes were activated
63
Synthesis of acetic acid from carbon dioxide Moorella thermoacetica-
CdS NPs biohybrid
Violet LED with photon flux of
5×1018 cm-2/s
More than 90% of CO2 was converted into acetic acid in biohybrids
Biohybrids exhibited nearly 10-fold quantum yields than that of averages determined for plants and algae
46
Conversion of DHS to SA Saccharomyces cerevisiae-InP biohybrid LED
5.6 mW/cm2
SA/DHS conversion rate was increased by 35-fold than control group
Nearly 24-fold of SA yield was accumulated in biohybrids than control group
58
Biological nitrogen fixation R. palustris-CdS biohybrid LED
8 mW/cm2
Photosynthetic efficiency was increased by 6.73%
Accumulated biomass was 2-fold of control group
56
Light-driven ethylene and PHB synthesis from carbon dioxide Cupriavidus
necator-CdS@ZnS QDs biohybrid
UV
365 nm
Yield C2H4 in of biohybrids was 15-fold higher than that of control group
Yield of PHB obtained from biohybrids was 1.5-fold of control group
64
Application Biohybrid Illumination Remarkable results ref
Light-driven ammonia and hydrogen synthesis from nitrogen and water Azotobacter vinelandii-CdS@ZnS biohybrid UV
400 nm
Hydrogen production was 19-fold higher than that of control group
Ammonia production was 3-fold higher than that of control group
64
Conversion of nitrogen to ammonia-nitrogen R.palustris-CdS NPs
biohybrid
Microaerobic-light
3000 lx
The activity of cysteine desulfhydrase was not affected by nitrogenase cofactors
CdS NPs up-regulated the expression of nitrogen fixation gene (vnfG) by 2.3 times
65
Enhanced carbon dioxide reduction and organic chemical production R.palustris-CdS NPs
biohybrid
LED
8 mW/cm2
The amounts of PHB, solid biomass and carotenoids were increased by 39%, 17% and 35%, respectively
Photosynthetic efficiency was increased from 4.31% to 5.98%
66
Oxygenic photosynthesis of acetic acid from carbon dioxide TiO2-MnPc + Moorella
thermoacetica-CdS NPs
biohybrid
Xenon lamp
75 W
Coupled biohybrid system resulted in an increased production of acetic acid than that of biohybrid alone
MnPc stimulated the catalytic activity of reducing cysteine
67
Synthesis of acetic acid from carbon dioxide M. thermoacetica-CdS
biohybrid
Xenon lamp
75 W
Rate of photoelectrons transferring was positively correlated with the activity of hydrogenase
Quantum efficiency of acetic acid synthesis was positively correlated with the activity of hydrogenase within first 24 h
20
Conversion of nitrogen to ammonia-nitrogen Xanthobacter autotrophicus-CoPi biohybrid sunlight Conversion of CO2 into organic carbon was markedly increased in Calvin Cycle
Reduction of N2 into ammonia was apparently improved (>40% of reduction efficiency)
68
Synthesis of acetic acid from carbon dioxide Morella thermoacetica-MOF biohybrid Xenon lamp
75W
Microbial mortality was decreased by 20%
Time for synthesizing acetic acid was shortened by 50%
69
Denitriffication of
nitrate to generate
nitrogen
Thiobacillus denitrificans-CdS@Mn3O4 biohybrid Xenon lamp
100 mW/cm2
Nitrate reduction rate was increased by 28%
No lag period was existed in photoelectric denitrification
70
Hydrogen generation E. coli-AglnS2/In2S3
biohybrid
LED
1400 W/m2
More than 1660 μmol of hydrogen was accumulated
within 3 h quantum efficiency was reached to 3.3%
71
Fig. 4 Construction of a M. thermoacetica-MOF wrapping system: the design and synthesis of monolayer MOF (a), monolayer MOF spontaneously wraps around M. thermoacetica, allowing for elongation and separation of cells (b), MOF tightly wraps the surface of bacteria cell through multivalent coordination bonds form between the inorganic clusters of MOF and the phosphate moieties of teichoic acid on cell wall (c), and decomposition of ROS by MOF coating on cell surface (d)[76]. Copyright, 2018, PNAS
Fig. 5 Concentrations of ·OH (a), H2O2 (b), N O 3 --N (c) and N2O-N (d) in T. denitrificans-CdS@Mn3O4 under illumination. Therein, ROS from neighboring CdS nanoparticles is immediately decomposed by Mn3O4 nano-enzyme (e), and Mn3O4-CdS could act as a separating shell for T. denitrificans to prevent from the damage by ROS (f)[70]. Copyright 2020, ACS
Fig. 6 Schematic illustrations for the assembly of “S collector” (a) and “SP collector” (b) on a S. oneidensis cell are depicted. The performance of current output (c) and CV curves of MFCs that were incubated with different strains under non-turnover (d) and turnover (e) conditions are profiled. Therein, the electron transfer pathway (f) for S. oneidensis@SP cell with an electrode is proposed. In addition, the electrochemical impedance spectroscopy curves (g) and power output curves (h) of MFCs that were incubated with different strains are profiled[79]. Copyright 2020, Nature Publishing Group
Fig. 7 To improve EET rate, modular design to enhance NAD+ biosynthesis in S. oneidensis MR-1 is conducted through three modules (i.e., de novo biosynthesis, salvage biosynthesis and universal biosynthesis) (a). The voltage output (b) and lactate consumption (c) in MFCs that were incubated with different S. oneidensis recombinant strains are monitored to evaluate EET performance[82]. Copyright 2018, Nature Publishing Group
Fig. 8 An elucidation of the design to enhance EET via optimizing genetic circuit of ERB (a), a diagram of enhanced tuning electron flux of S. oneidensis MR-1 by CRISPR-ddAsCpf1-based rediverting strategy, the rate constant (c) and associated kinetic curves of MO biodegradation by S. oneidensis MR-1 that was overexpressed with fccA, dmsE and cctA (d), and the normalized reaction constant of the Cr(Ⅵ) bioreduction (e) and associated kinetic curves by S. oneidensis MR-1 that was overexpressed with dmsE (f)[90], respectively. Copyright 2020, ACS Group
[1]
Wang W K, Tang B, Liu J, Shi H J, Xu Q J, Zhao G H. Electrochimica Acta, 2019, 303: 268.

doi: 10.1016/j.electacta.2019.02.099
[2]
Kato S, Hashimoto K, Watanabe K. Environ. Microbiol., 2012, 14(7): 1646.

doi: 10.1111/j.1462-2920.2011.02611.x
[3]
Zhuang L, Tang J, Wang Y Q, Hu M, Zhou S G. J. Hazard. Mater., 2015, 293: 37.

doi: 10.1016/j.jhazmat.2015.03.039 pmid: 25827267
[4]
Wang J, Tian B Y, Bao Y H, Qian C, Yang Y R, Niu T Q, Xin B P. J. Hazard. Mater., 2018, 354: 250.

doi: S0304-3894(18)30348-0 pmid: 29758505
[5]
Chen Z, Wang Y P, Jiang X L, Fu D, Xia D, Wang H T, Dong G W, Li Q B. Sci. Total. Environ., 2017, 574: 1684.

doi: 10.1016/j.scitotenv.2016.09.006
[6]
Liu X B, Shi L, Gu J D. Biotechnol. Adv., 2018, 36(7): 1815.

doi: 10.1016/j.biotechadv.2018.07.001
[7]
Martinez C M, Alvarez L H. Biotechnol. Adv., 2018, 36(5): 1412.

doi: S0734-9750(18)30097-1 pmid: 29857046
[8]
van der Zee F P, Cervantes F J. Biotechnol. Adv., 2009, 27(3): 256.

doi: 10.1016/j.biotechadv.2009.01.004
[9]
Chen Z, Wang Y P, Xia D, Jiang X L, Fu D, Shen L, Wang H T, Li Q B. J. Hazard. Mater., 2016, 311: 20.

doi: 10.1016/j.jhazmat.2016.02.069
[10]
Ji X Y, Kang Y, Su Z G, Wang P, Ma G H, Zhang S P. ACS Sustainable Chem. Eng., 2018, 6(3): 3060.

doi: 10.1021/acssuschemeng.7b02902
[11]
Ren H, Tian H, Lee H S, Park T, Leung F C, Ren T L, Chae J. Nano Energy, 2015, 15: 697.

doi: 10.1016/j.nanoen.2015.05.030
[12]
Andrieux C P, Dumas-Bouchiat J M, Saveant J M. J. Electroanal. Chem. Interfacial Electrochem., 1978, 87(1): 55.

doi: 10.1016/S0022-0728(78)80379-9
[13]
Okamoto A, Hashimoto K, Nealson K H, Nakamura R. PNAS, 2013, 110(19): 7856.

doi: 10.1073/pnas.1220823110
[14]
Der B S, Machius M, Miley M J, Mills J L, Szyperski T, Kuhlman B. J. Am. Chem. Soc., 2012, 134(1): 375.

doi: 10.1021/ja208015j
[15]
Kortemme T, Morozov A V, Baker D. J. Mol. Biol., 2003, 326(4): 1239.

pmid: 12589766
[16]
Liu X B, Yu X B. ACS Energy Lett., 2020, 5(3): 867.

doi: 10.1021/acsenergylett.9b02596
[17]
Su L, Ajo-Franklin C M. Curr. Opin. Biotechnol., 2019, 57: 66.

doi: 10.1016/j.copbio.2019.01.018
[18]
Sun J S, Li G, Wang Z H. Struct. Change Econ. Dyn., 2018, 47: 57.

doi: 10.1016/j.strueco.2018.07.007
[19]
Liu M, He Y E, Zhang H F, Su H, Zhang Z W. Energy, 2020, 197: 117189.

doi: 10.1016/j.energy.2020.117189
[20]
Kornienko N, Sakimoto K K, Herlihy D M, Nguyen S C, Alivisatos A P, Harris C B, Schwartzberg A, Yang P D. PNAS, 2016, 113(42): 11750.

pmid: 27698140
[21]
Fang X, Kalathil S, Reisner E. Chem. Soc. Rev., 2020, 49(14): 4926.

doi: 10.1039/c9cs00496c pmid: 32538416
[22]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Nat. Catal., 2020, 3(3): 245.

doi: 10.1038/s41929-020-0428-y
[23]
Sahoo P C, Pant D, Kumar M, Puri S K, Ramakumar S S V. Trends Biotechnol., 2020, 38(11): 1245.

doi: 10.1016/j.tibtech.2020.03.008
[24]
Roell M S, Zurbriggen M D. Curr. Opin. Biotechnol., 2020, 61: 102.

doi: 10.1016/j.copbio.2019.10.004
[25]
Dong G W, Wang H H, Yan Z Y, Zhang J, Ji X L, Lin M Z, Dahlgren R A, Shang X, Zhang M H, Chen Z. Sci. Total. Environ., 2020, 740: 140080.

doi: 10.1016/j.scitotenv.2020.140080
[26]
Wei W, Sun P, Li Z, Song K, Su W, Wang B, Liu Y, Zhao J. Sci. Adv., 2018, 4(2): 1.
[27]
Sakimoto K K, Kornienko N, Yang P D. Acc. Chem. Res., 2017, 50(3): 476.

doi: 10.1021/acs.accounts.6b00483
[28]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[29]
Partoens B, Peeters F M. Phys. Rev. B, 2006, 74(7): 075404.

doi: 10.1103/PhysRevB.74.075404
[30]
Wang J F, Yang S L, Guo D Y, Yu P, Li D, Ye J S, Mao L Q. Electrochem. Commun., 2009, 11(10): 1892.

doi: 10.1016/j.elecom.2009.08.019
[31]
Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Nat. Chem., 2010, 2(7): 581.

doi: 10.1038/nchem.686
[32]
Chen C M, Zhang Q, Yang M G, Huang C H, Yang Y G, Wang M Z. Carbon, 2012, 50(10): 3572.

doi: 10.1016/j.carbon.2012.03.029
[33]
Yin X, Qiao S, Zhou J T, Tang X. Chem. Eng. J., 2016, 283: 160.

doi: 10.1016/j.cej.2015.07.059
[34]
Zhuang L, Yuan Y, Yang G Q, Zhou S G. Electrochem. Commun., 2012, 21: 69.

doi: 10.1016/j.elecom.2012.05.010
[35]
Mi X, Huang G B, Xie W S, Wang W, Liu Y, Gao J P. Carbon, 2012, 50(13): 4856.

doi: 10.1016/j.carbon.2012.06.013
[36]
Zhou Y, Lu H, Wang J, Zhou J T, Leng X Y, Liu G F. J. Hazard. Mater., 2018, 356: 82.

doi: 10.1016/j.jhazmat.2018.05.043
[37]
Chen Z, Zhang J F, Han K Z, Yang C Y, Jiang X L, Fu D, Li Q B, Wang Y P. RSC Adv., 2017, 7(49): 31075.

doi: 10.1039/C7RA05393B
[38]
Li Y X, Luo Q L, Li H, Chen Z, Shen L, Peng Y J, Wang H T, He N, Li Q B, Wang Y P. J. Chem. Technol. Biotechnol., 2019, 94(2): 446.
[39]
Ouyang K, Xie S, Zhao Y, Wang L C, Fang Q H. Ecol. Environ. Sci., 2015, 24(1): 106.
( 欧阳科, 谢珊, 赵雅, 王雷超, 方琪惠. 生态环境学报, 2015, 24(1): 106.)
[40]
Rouhani S, Rostami A, Salimi A, Pourshiani O. Biochem. Eng. J., 2018, 133: 1.

doi: 10.1016/j.bej.2018.01.004
[41]
Luo Q, Chen Z, Li Y, Wang Y, Cai L, Wang L, Liu S, Wang Z, Peng Y, Wang Y,. ACS Sustain. Chem. Eng., 2019, 7(14): 12611.
[42]
Lu A H, Li Y, Ding H R, Wang C Q. Bull. Mineral. Petrol. Geochem., 2018, 37(1): 1.
( 鲁安怀, 李艳, 丁竑瑞, 王长秋. 矿物岩石地球化学通报, 2018, 37(1): 1.)
[43]
Chen Z, Dong G W, Chen Y B, Wang H H, Liu S R, Chen Z J, Yang C H, Shang X, Dahlgren R. Chem. Eng. J., 2019, 372: 118.

doi: 10.1016/j.cej.2019.04.130
[44]
Dong G W, Han R W, Pan Y J, Zhang C K, Liu Y, Wang H H, Ji X L, Dahlgren R A, Shang X, Chen Z, Zhang M H. J. Hazard. Mater., 2021, 401: 123362.

doi: 10.1016/j.jhazmat.2020.123362
[45]
Chen Z, Dong G W, Gong L B, Li Q B, Wang Y P. Geomicrobiol. J., 2018, 35(7): 555.

doi: 10.1080/01490451.2018.1429506
[46]
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268): 74.

doi: 10.1126/science.aad3317 pmid: 26721997
[47]
Yang X G, Li Y, Lu A H, Yan Y H, Wang C Q, Wong P K. Sol. Energy Mater. Sol. Cells, 2011, 95(7): 1915.

doi: 10.1016/j.solmat.2011.02.020
[48]
Cheng L, Xiang Q J, Liao Y L, Zhang H W. Energy Environ. Sci., 2018, 11(6): 1362.

doi: 10.1039/C7EE03640J
[49]
Sakimoto K K, Wong A B, Yang P. Science, 2016, 351(6268): 74.

doi: 10.1126/science.aad3317 pmid: 26721997
[50]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416): 813.

doi: 10.1126/science.aat9777
[51]
Chen X B, Mao S S. Chem. Rev., 2007, 107(7): 2891.

doi: 10.1021/cr0500535
[52]
Ahmad Beigi A, Fatemi S, Salehi Z. J. CO2 Util., 2014, 7: 23.
[53]
Ijaz S, Ehsan M F, Ashiq M N, Karamat N, He T. Appl. Surf. Sci., 2016, 390: 550.

doi: 10.1016/j.apsusc.2016.08.098
[54]
Li X, Liu H L, Luo D L, Li J T, Huang Y, Li H L, Fang Y P, Xu Y H, Zhu L. Chem. Eng. J., 2012, 180: 151.

doi: 10.1016/j.cej.2011.11.029
[55]
Ye J, Yu J, Zhang Y Y, Chen M, Liu X, Zhou S G, He Z. Appl. Catal. B: Environ., 2019, 257: 117916.

doi: 10.1016/j.apcatb.2019.117916
[56]
Wang B, Xiao K M, Jiang Z F, Wang J F, Yu J C, Wong P K. Energy Environ. Sci., 2019, 12(7): 2185.

doi: 10.1039/C9EE00705A
[57]
Huang S F, Tang J H, Liu X, Dong G W, Zhou S G. ACS Sustainable Chem. Eng., 2019, 7(18): 15427.

doi: 10.1021/acssuschemeng.9b02870
[58]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416): 813.

doi: 10.1126/science.aat9777
[59]
Chen M, Zhou X F, Yu Y Q, Liu X, Zeng R J X, Zhou S G, He Z. Environ. Int., 2019, 127: 353.

doi: S0160-4120(19)30049-2 pmid: 30954721
[60]
Wang B, Zeng C P, Chu K H, Wu D, Yip H Y, Ye L Q, Wong P K. Adv. Energy Mater., 2017, 7(20): 1700611.

doi: 10.1002/aenm.201700611
[61]
Wei W, Sun P Q, Li Z, Song K S, Su W Y, Wang B, Liu Y Z, Zhao J. Sci. Adv., 2018, 4(2): eaap9253.

doi: 10.1126/sciadv.aap9253
[62]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352(6284): 448.

doi: 10.1126/science.aaf2091
[63]
Zhang R T, He Y, Yi J, Zhang L J, Shen C P, Liu S J, Liu L F, Liu B H, Qiao L. Chem, 2020, 6(1): 234.

doi: 10.1016/j.chempr.2019.11.002
[64]
Ding Y C, Bertram J R, Eckert C, Bommareddy R R, Patel R, Conradie A, Bryan S, Nagpal P. J. Am. Chem. Soc., 2019, 141(26): 10272.

doi: 10.1021/jacs.9b02549
[65]
Sakpirom J, Kantachote D, Siripattanakul-Ratpukdi S, McEvoy J, Khan E. Chemosphere, 2019, 223: 455.

doi: 10.1016/j.chemosphere.2019.02.051
[66]
Wang B, Jiang Z F, Yu J C, Wang J F, Wong P K. Nanoscale, 2019, 11(19): 9296.

doi: 10.1039/c9nr02896j pmid: 31049528
[67]
Sakimoto K K, Zhang S J, Yang P D. Nano Lett., 2016, 16(9): 5883.

doi: 10.1021/acs.nanolett.6b02740 pmid: 27537852
[68]
Liu C, Sakimoto K K, ColÓn B C, Silver P A, Nocera D G. PNAS, 2017, 114(25): 6450.

doi: 10.1073/pnas.1706371114
[69]
Ji Z, Zhang H, Liu H, Yaghi O M, Yang P D. PNAS, 2018, 115(42): 10582.

doi: 10.1073/pnas.1808829115
[70]
Chen X Y, Feng Q Y, Cai Q H, Huang S F, Yu Y Q, Zeng R J, Chen M, Zhou S G. Environ. Sci. Technol., 2020, 54(17): 10820.

doi: 10.1021/acs.est.0c02709
[71]
Jiang Z, Wang B, Yu J C, Wang J, Wong P K. Nano Energy, 2018, 46.
[72]
Dwyer D J, Kohanski M A, Collins J J. Curr. Opin. Microbiol., 2009, 12(5): 482.

doi: 10.1016/j.mib.2009.06.018
[73]
Seifried H E, Anderson D E, Fisher E I, Milner J A. J. Nutr. Biochem., 2007, 18(9): 567.

pmid: 17360173
[74]
Shekhah O, Liu J, Fischer R A, Wöll C. Chem. Soc. Rev., 2011, 40(2): 1081.

doi: 10.1039/c0cs00147c pmid: 21225034
[75]
Liang K, Richardson J J, Doonan C J, Mulet X, Ju Y, Cui J W, Caruso F, Falcaro P. Angew. Chem. Int. Ed., 2017, 56(29): 8510.

doi: 10.1002/anie.201704120
[76]
Ji Z, Zhang H, Liu H, Yaghi O M, Yang P D. PNAS, 2018, 115(42): 10582.

doi: 10.1073/pnas.1808829115
[77]
Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A. Artif. Cells Nanomed. Biotechnol., 2017, 45(6): 1069.

doi: 10.1080/21691401.2017.1313268
[78]
Du Q, Li T, Li N, Wang X. Environ. Sci. Tech. Let., 2017, 48(8): 345.
[79]
Yu Y Y, Wang Y Z, Fang Z, Shi Y T, Yong Y C. Nat. Commun., 2020, 11(1): 4087.

doi: 10.1038/s41467-020-17897-9
[80]
Brutinel E D, Gralnick J A. Appl. Microbiol. Biotechnol., 2012, 93(1): 41.

doi: 10.1007/s00253-011-3653-0 pmid: 22072194
[81]
Han S, Gao X Y, Ying H J, Zhou C C. Green Chem., 2016, 18(8): 2473.

doi: 10.1039/C5GC02696B
[82]
Li F, Li Y X, Cao Y X, Wang L, Liu C G, Shi L, Song H. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[83]
Yang Y, Ding Y Z, Hu Y D, Cao B, Rice S A, Kjelleberg S, Song H. ACS Synth. Biol., 2015, 4(7): 815.

doi: 10.1021/sb500331x pmid: 25621739
[84]
Min D, Cheng L, Zhang F, Huang X N, Li D B, Liu D F, Lau T C, Mu Y, Yu H Q. Environ. Sci. Technol., 2017, 51(9): 5082.

doi: 10.1021/acs.est.6b04640 pmid: 28414427
[85]
Kouzuma A, Kasai T, Hirose A, Watanabe K. Front. Microbiol., 2015, 6: 609.
[86]
Meyer T E, Tsapin A I, Vandenberghe I, de Smet L, Frishman D, Nealson K H, Cusanovich M A, van Beeumen J J. OMICS: A J. Integr. Biol., 2004, 8(1): 57.

doi: 10.1089/153623104773547499
[87]
Beliaev A S, Klingeman D M, Klappenbach J A, Wu L, Romine M F, Tiedje J M, Nealson K H, Fredrickson J K, Zhou J. J. Bacteriol., 2005, 187(20): 7138.

pmid: 16199584
[88]
Sander J D, Joung J K. Nat. Biotechnol., 2014, 32(4): 347.

doi: 10.1038/nbt.2842
[89]
Choi P S, Meyerson M. Nat. Commun., 2014, 5(1): 1.
[90]
Li J, Tang Q, Li Y, Fan Y Y, Li F H, Wu J H, Min D, Li W W, Lam P K S, Yu H Q. Environ. Sci. Technol., 2020, 54(6): 3599.

doi: 10.1021/acs.est.9b06378
[91]
Wu J, Cheng Z H, Min D, Cheng L, He R L, Liu D F, Li W W. Environ. Sci. Technol., 2020, 54(6): 3306.

doi: 10.1021/acs.est.9b07191
[92]
Cao Y X, Li X F, Li F, Song H. ACS Synth. Biol., 2017, 6(9): 1679.

doi: 10.1021/acssynbio.6b00374
[93]
Liu Q, Zhang H X, Huang X T. FEBS J., 2020, 287(4): 626.

doi: 10.1111/febs.v287.4
[94]
Yang Y T, Chen J, Chen S S, Zhou S G. Acta Microbiol. Sin., 2020, 60(11): 2399.
( 杨钰婷, 陈瑾, 陈姗姗, 周顺桂. 微生物学报, 2020, 60(11): 2399.)
[95]
Whiteley M, Diggle S P, Greenberg E P. Nature, 2017, 551(7680): 313.
[1] Fu Jing, Wang Meng, Liu Weixi, Chen Tao. Latest Advances of Microbial Production of 2,3-Butanediol [J]. Progress in Chemistry, 2012, 24(11): 2268-2276.