中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1187-1198 DOI: 10.7536/PC190139 Previous Articles   

Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes

Shiying Yang1,2,3,**(), Yichao Xue3, Manqian Wang3   

  1. 1. The Key Laboratory of Marine Environment & Ecology of Ministry of Education, Qingdao 266100,China
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE), Qingdao 266100,China
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Online: Published:
  • Contact: Shiying Yang
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21677135)
Richhtml ( 63 ) PDF ( 1673 ) Cited
Export

EndNote

Ris

BibTeX

Due to the presence of strong ligands such as ethylenediaminetetraacetic acid (EDTA), complexed heavy metals have high stability and complex morphology, and are difficult to be removed from wastewater by conventional water treatment methods such as adsorption, ion exchange, membrane separation, etc. Advanced oxidation technology(AOPs) is the first choice for the removal of heavy metals in complex state due to its strong oxidizing properties. It can not only decompose heavy metals, but also degrade the ligands. In the publishing research, the mechanisms of decomplexing using AOPs include the following aspects: (1) strong oxidation of free radicals, (2) gradual decarboxylation of ligands with EDTA, (3) self-catalysis of variable valence metal ions, (4) intermetallic substitution, (5) electrolysis, (6) multiple mechanisms combined, such as simultaneous decomplexation, mineralization of ligands, and recovery of heavy metals. In this review, from the perspective of different metals and ligands and their ability to complex, the research development of complexed heavy metal wastewater treatment are summarized, and the different complexation mechanisms based on AOPs are discussed. At the same time, the problems worthy of in-depth study are prospected.

Fig. 1 Web of Science data analysis of(complexed) heavy metal removal studies
Table 1 Typical case study on removing heavy metal complex based on advanced oxidation processes
Decomplexation mechanism Complex AOPs Typical condition Removal
efficiency
ref
·OH
oxidation
Cu/Ni-EDTA E-Fenton Current density=20 mA/cm2, [H2O2]0=6 mL·L-1·h-1, pH=2.0 Standard discharge 22
Ni-EDTA Fenton [H2O2]0=141 mM, [Fe2+]0=1.0 mM,[Fe3 +]0=1.0 mM, pH=3.0,
T=25~50 ℃
Ni > 92% 25
Fenton + US [H2O2]0=141 mM, [Fe2+]0=1.0 mM, pH=3.0, t=60 min Ni:95.3% 30
Advanced-Fenton [H2O2]0 =35.2 mM, [Fe0]0 =4.0 g·L-1, pH=2.5 Ni:98.4% 31
Fenton + O3 [H2O2]0=1.0 mL·L-1, [Fe2+]0=150 mg·L-1, [Fe2+]0/[H2O2]0
=1.46, [O3]0=252 mg L-1, pH=3.0
Ni:99.84%,
TOC:57.13%
78
Stepwise decarboxylation Cu-EDTA Discharge Plasma Discharge voltage=19 kV, t=60 min Cu-EDTA:99.7% 23
O3 [Fe2+]0=1.0 mM, pH=3.0, [O3]0=30 mg·min-1·L-1, [Cu2+]=
64 mg·L-1
TOC:75%~80%
Cu:90%~97%
73
Photo-electrocatalytic Current density=1.13 A/m2, pH=3.5, t=60 min Cu-EDTA:80% 80
Photo-electrocatalytic Current density=0.5 mA/cm2, Rotation speed=100 rpm, pH=3.18 Cu-EDTA:74.18% 90
Fe(Ⅲ)
displacement
Cr-organic FeS + H2O2 [H2O2]0=20 mM,[FeS]0=4.0 g·L-1,pH=3.0 Cr < 0.3 mg/L 4
Cu-EDTA Fe(Ⅲ)/UV/OH [Fe]/[Cu]=9∶1, t=6 min, pH=1.5~3.0 Cu-EDTA > 95% 10
Cu-organic Fe(Ⅲ)/UV/OH [Fe]/[Cu]=4∶1, t=10 min, pH=1.8~5.4 Cu:99.8%;TOC:30%~48% 24
Cr-organic UV/Fe(Ⅲ) [Fe3+]0=0.8 mM,pH=2.5~3.0, t=30 min Cr < 0.36 mg/L;TOC:60% 26
Self-catalytic Cu-EDTA UV/H2O2 / Cu-EDTA:82.2% 87
Photo-Fenton [AA]: [Cu-EDTA]=1,UV dose:1.25×105 J/m2 ,pH=2.0 Cu:77.6% 97
UV/Chlorine Rm ([NaClO]0 / [Cu]0)=10, pH=11.0 Cu-EDTA:~70% 98
Electrolysis Cu-EDTA Micro-electrolysis [Fe2+]=374.0 mg·L-1, pH=2.0~2.3, t=5 min Cu:100% 99
Fe:C=2, pH=3.0, t=40 min TOC:32.3%; Cu:98.2% 101
Fe:C=0.02, pH=2.0, T=25 ℃, t=60 min TOC:200 mg/L→40.66 mg/L;
Cu:60 mg/L→1.718 mg/L
102
Ni-EDTA Iron scraps packed-bed anode Current=0.5 A,pH=3,Air-purged rate=0.2 L·min-1, T=313 K,
t=30 min
TOC:95.8%
Ni:94.3%
104
Ni-ammonia Electro-oxidation Current density=32 mA/cm2, pH=9.0, T=60 ℃ Ni:99%, NH3:70% 107
Fig. 2 Enhanced self-catalytic pathway of Cu-EDTA degradation with H2O2/UV[96]
Fig. 3 Schematic diagram of the Fe(Ⅲ)/UV/OH process[24]
Fig. 4 Plausible pathways for treatment of Cr(Ⅲ)-citrate complex by pyrite/H2O2[4]
Fig. 5 Photoelectrocatalytic decomposition of copper-cyanide in the presence of EDTA/K4P2O7[90]
Fig. 6 Summary of the principle of removing complexed heavy metals based on advanced oxidation processes
[1]
Wu L, Wang H, Lan H, Liu H, Qu J . Sep. Purif. Technol., 2013,117:118.
[2]
Zhao Z, Liu Z, Wang H, Dong W, Wang W . Chemosphere, 2018,202:238. https://www.ncbi.nlm.nih.gov/pubmed/29571144

doi: 10.1016/j.chemosphere.2018.03.090 pmid: 29571144
[3]
谭竹(Tan Z) . 湖南大学硕士毕业论文( Master Dissertation of Hunan University), 2013.
[4]
Ye Y, Shan C, Zhang X, Liu H, Wang D, Lv L, Pan B . Environ. Sci. Technol., 2018,52(18):10657. https://www.ncbi.nlm.nih.gov/pubmed/30130960

doi: 10.1021/acs.est.8b01693 pmid: 30130960
[5]
Ju F, Hu Y, Cheng J . Desalination, 2011,274(1/3):130.
[6]
谢丽萍(Xie L P), 付丰连(Fu F L), 汤兵(Tang B) . 工业水处理( Industrial Water Treatment), 2012,32(8):1.
[7]
潘汉平(Pan H P) . 广东工业大学硕士毕业论文( Master Dissertation of Guangdong University of Technology), 2013.
[8]
任杰(Ren J) . 南京大学硕士毕业论文( Master Dissertation of Nanjing University), 2014.
[9]
Jiang S, Fu F, Qu J, Xiong Y . Chemosphere, 2008,73(5):785. https://www.ncbi.nlm.nih.gov/pubmed/18653210

doi: 10.1016/j.chemosphere.2008.06.010 pmid: 18653210
[10]
Shan C, Xu Z, Zhang X, Xu Y, Gao G, Pan B . Chemosphere, 2018,193:1235. https://www.ncbi.nlm.nih.gov/pubmed/29153329

doi: 10.1016/j.chemosphere.2017.10.119 pmid: 29153329
[11]
Wang Q, Chen J, Zheng A, Shi L . Chemosphere, 2019,220:1200.
[12]
曹海峰(Cao H F) . 工业水处理( Industrial Water Treatment), 2015,35(11):14.
[13]
张倩柔(Zhang Q R) . 西北农林科技大学硕士毕业论文( Master Dissertation of Northwest A&F University), 2018.
[14]
Oturan M A, Aaron J . Crit. Rev. Env. Sci. Tec., 2014,44(23):2577.
[15]
Glaze W H, Kang J, Chapin D H . Ozone-Sci. Eng., 1987,9(4):335.
[16]
Frim J A, Rathman J F, Weavers L K . Water Res., 2003,37(13):3155. https://www.ncbi.nlm.nih.gov/pubmed/14509702

doi: 10.1016/S0043-1354(03)00169-6 pmid: 14509702
[17]
Lin Q, Pan H, Yao K, Pan Y, Long W. Water Sci . Technol., 2015,72(7):1184. https://www.ncbi.nlm.nih.gov/pubmed/26398034

doi: 10.2166/wst.2015.329 pmid: 26398034
[18]
Jiraroj D, Unob F, Hagège A . Water Res., 2006,40(1):107. https://www.ncbi.nlm.nih.gov/pubmed/16364402

doi: 10.1016/j.watres.2005.10.041 pmid: 16364402
[19]
Durante C, Cuscov M, Isse A A, Sandonà G, Gennaro A . Water Res., 2011,45(5):2122. https://www.ncbi.nlm.nih.gov/pubmed/21255817

doi: 10.1016/j.watres.2010.12.022 pmid: 21255817
[20]
Pirkanniemi K, Metsarinne S, Sillanpaa M . J. Hazard. Mater., 2007,147(1/2):556.
[21]
Xu Z, Shan C, Xie B, Liu Y, Pan B . Catal. B Environ., 2017,200:439.
[22]
Zhao Z, Dong W, Wang H, Chen G, Tang J, Wu Y . J. Hazard. Mater., 2018,350:128. https://www.ncbi.nlm.nih.gov/pubmed/29466779

doi: 10.1016/j.jhazmat.2018.02.025 pmid: 29466779
[23]
Wang T, Cao Y, Qu G, Sun Q, Xia T, Guo X, Jia H, Zhu L . Environ. Sci. Technol., 2018,52(14):7884. https://www.ncbi.nlm.nih.gov/pubmed/29928796

doi: 10.1021/acs.est.8b02039 pmid: 29928796
[24]
Xu Z, Gao G, Pan B, Zhang W, Lv L . Water Res., 2015,87:378. https://www.ncbi.nlm.nih.gov/pubmed/26454633

doi: 10.1016/j.watres.2015.09.025 pmid: 26454633
[25]
Fu F L, Wang Q, Tang B . Chem. Eng. J., 2009,155(3):769.
[26]
Ye Y, Jiang Z, Xu Z, Zhang X, Wang D, Lv L, Pan B . Water Res., 2017,126:172. https://www.ncbi.nlm.nih.gov/pubmed/28946060

doi: 10.1016/j.watres.2017.09.021 pmid: 28946060
[27]
Babuponnusami A, Muthukumar K . J. Environ. Chem. Eng., 2014,2(1):557.
[28]
Zhang Y, Zhou M . J. Hazard. Mater., 2019,362:436. https://www.ncbi.nlm.nih.gov/pubmed/30261437

doi: 10.1016/j.jhazmat.2018.09.035 pmid: 30261437
[29]
Saleh R, Taufik A . Sep. Purif. Technol., 2019,210:563.
[30]
Fu F L, Tang B, Wang Q, Liu J . Environ. Chem. Lett., 2010,8(4):317.
[31]
Fu F L, Xie L, Tang B, Wang Q, Jiang S . Chem. Eng. J., 2012,189/190:283.
[32]
Moon B, Park Y, Park K . Desalination, 2011,268(1/3):249.
[33]
Mu Y, Ai Z, Zhang L . Environ. Sci. Technol., 2017,51(14):8101. https://www.ncbi.nlm.nih.gov/pubmed/28631472

doi: 10.1021/acs.est.7b01896 pmid: 28631472
[34]
Sun Y, Li J, Huang T, Guan X . Water Res., 2016,100:277. https://www.ncbi.nlm.nih.gov/pubmed/27206056

doi: 10.1016/j.watres.2016.05.031 pmid: 27206056
[35]
Nidheesh P V, Gandhimathi R . Desalination, 2012,299:1.
[36]
Brillas E, Sirés I, Oturan M A . Chem. Rev., 2009,109(12):6570. https://www.ncbi.nlm.nih.gov/pubmed/19839579

doi: 10.1021/cr900136g pmid: 19839579
[37]
Voglar D, Lestan D . Water Res., 2012,46(6):1999. https://www.ncbi.nlm.nih.gov/pubmed/22305659

doi: 10.1016/j.watres.2012.01.018 pmid: 22305659
[38]
Guan W, Zhang B, Tian S, Zhao X . Appl. Catal. B-Environ., 2018,227:252.
[39]
Litter M I . Appl. Catal. B-Environ., 1999,23:89.
[40]
De Souza W F, Guimarães I R, Oliveira L C A, Giroto A S, Guerreiro M C, Silva C L T . Appl. Catal.A-Gen., 2010,381(1/2):36.
[41]
Lan S, Ju F, Wu X . Sep. Purif. Technol., 2012,89:117.
[42]
Torres R A, Abdelmalek F, Combet E, Pétrier C, Pulgarin C . J. Hazard. Mater., 2007,146(3):546. https://www.ncbi.nlm.nih.gov/pubmed/17532122

doi: 10.1016/j.jhazmat.2007.04.056 pmid: 17532122
[43]
Yang Y, Wang P, Liu Y . J. Hazard. Mater., 2010,178(1/3):293. https://www.ncbi.nlm.nih.gov/pubmed/20185232

doi: 10.1016/j.jhazmat.2010.01.076 pmid: 20185232
[44]
Yang Y, Wang P, Shi S, Liu Y . J. Hazard. Mater., 2009,168(1):238. https://www.ncbi.nlm.nih.gov/pubmed/19272695

doi: 10.1016/j.jhazmat.2009.02.038 pmid: 19272695
[45]
Gromboni C F, Kamogawa M Y, Ferreira A G, Nóbrega J A, Nogueira A R A . APhotoch. Photobio. A, 2007,185(1):32. https://www.ncbi.nlm.nih.gov/pubmed/9713357

doi: 10.1002/(SICI)1096-9896(199805)185:1【-逻*辑*与-】lt;32::AID-PATH43【-逻*辑*与-】gt;3.0.CO;2-Q pmid: 9713357
[46]
Remya N, Lin J . Chem. Eng. J., 2011,166(3):797.
[47]
Liu Y, He X, Duan X, Fu Y, Fatta-Kassinos D, Dionysiou D D . Water Res., 2016,95:195. https://www.ncbi.nlm.nih.gov/pubmed/27131094

doi: 10.1016/j.watres.2016.03.011 pmid: 27131094
[48]
Rhoads K R, Davis A P . J. Environ. Eng., 2004,130(4):425.
[49]
Lin C, Hsu C, Wang P, Lin Y, Lo Y, Wu C . Inorg. Chem., 2014,53(10):4934. https://www.ncbi.nlm.nih.gov/pubmed/24811712

doi: 10.1021/ic4031238 pmid: 24811712
[50]
Lee S S, Bai H, Liu Z, Sun D D . Environ. Sci. Technol., 2015,49(4):2541. https://www.ncbi.nlm.nih.gov/pubmed/25590433

doi: 10.1021/es504711e pmid: 25590433
[51]
Salama P, Berk D . Ind. Eng. Chem. Res., 2005,44(18):7071.
[52]
Yang J, Davis A P . Environ. Sci. Technol., 2000,34(17):3789.
[53]
Park E, Jung J, Chung H . Chemosphere, 2006,64(3):432. https://www.ncbi.nlm.nih.gov/pubmed/16386287

doi: 10.1016/j.chemosphere.2005.11.017 pmid: 16386287
[54]
Madden T H, Datye A K, Fulton M . Environ. Sci. Technol., 1997,31(12):3475.
[55]
Sra K S, Thomson N R, Barker J F . Environ. Sci. Technol., 2010,44(8):3098. https://www.ncbi.nlm.nih.gov/pubmed/20205387

doi: 10.1021/es903480k pmid: 20205387
[56]
Liu H, Bruton T A, Doyle F M, Sedlak D L . Environ. Sci. Technol., 2014,48(17):10330. https://www.ncbi.nlm.nih.gov/pubmed/25133603

doi: 10.1021/es502056d pmid: 25133603
[57]
Lu H, Sui M, Yuan B, Wang J, Lv Y . Chem. Eng. J., 2019,357:140.
[58]
Song Y, Fang G, Zhu C, Zhu F, Wu S, Chen N, Wu T, Wang Y, Gao J, Zhou D . Chem. Eng. J., 2019,355:65.
[59]
Rao Y, Han F, Chen Q, Wang D, Xue D, Wang H, Pu S . Chemosphere, 2019,218:299. https://www.ncbi.nlm.nih.gov/pubmed/30476761

doi: 10.1016/j.chemosphere.2018.11.105 pmid: 30476761
[60]
Yang S Y, Li L, Xiao T, Zhang Y, Zheng D . Sep. Purif. Technol., 2016,160:81.
[61]
Ren T, Yang S Y, Jiang Y, Sun X, Zhang Y . Chem. Eng. J., 2018,348:350.
[62]
杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z), 王萍(Wang P), 王茂东(Wang M D) . 化学进展( Progress in Chemistry), 2008,20(9):1433.
[63]
Deng Y, Ezyske C M . Water Res., 2011,45(18):6189. https://www.ncbi.nlm.nih.gov/pubmed/21959093

doi: 10.1016/j.watres.2011.09.015 pmid: 21959093
[64]
Neppolian B, Celik E, Choi H . Environ. Sci. Technol., 2008,42(16):6179. https://www.ncbi.nlm.nih.gov/pubmed/18767684

doi: 10.1021/es800180f pmid: 18767684
[65]
Zhang R, Sun P, Boyer T H, Zhao L, Huang C . Environ. Sci. Technol., 2015,49(5):3056. https://www.ncbi.nlm.nih.gov/pubmed/25625668

doi: 10.1021/es504799n pmid: 25625668
[66]
Wang J, Wang S . Chem. Eng. J., 2018,334:1502.
[67]
Oh W, Dong Z, Lim T . Appl. Catal. B-Environ., 2016,194:169.
[68]
Matzek L W, Carter K E . Chemosphere, 2016,151:178. https://www.ncbi.nlm.nih.gov/pubmed/26938680

doi: 10.1016/j.chemosphere.2016.02.055 pmid: 26938680
[69]
Wacławek S, Lutze H V, Grübel K, Padil V V T, erník M, Dionysiou D D . Chem. Eng. J., 2017,330:44.
[70]
Devi P, Das U, Dalai A K . Sci. Total Environ., 2016,571:643. https://www.ncbi.nlm.nih.gov/pubmed/27453139

doi: 10.1016/j.scitotenv.2016.07.032 pmid: 27453139
[71]
Zeng H, Liu S, Chai B, Cao D, Wang Y, Zhao X . Environ. Sci. Technol., 2016,50(12):6459. https://www.ncbi.nlm.nih.gov/pubmed/27213917

doi: 10.1021/acs.est.6b00632 pmid: 27213917
[72]
Muñoz F, von Sonntag C . Roy. Soc. Chem., 2000,2:2029.
[73]
Huang X, Xie B, Li X, Pan B, Yuan S, Zhang Y, Shan C . Chem. Eng. J., 2016,288:562.
[74]
Huang X, Xu Y, Shan C, Li X, Zhang W, Pan B . Chem. Eng. J., 2016,299:23.
[75]
Miralles-Cuevas S, Oller I, Agüera A, Llorca M, Sánchez Pérez J A, Malato S . J. Hazard. Mater., 2017,323:442. https://www.ncbi.nlm.nih.gov/pubmed/26988902

doi: 10.1016/j.jhazmat.2016.03.013 pmid: 26988902
[76]
Pa$\acute{z}$dzior K, Wrębiak J, Klepacz-Smółka A, Gmurek M, Bilińska L, Kos L, Sójka-Ledakowicz J, Ledakowicz S . J. Environ. Manage., 2017,195:166. https://www.ncbi.nlm.nih.gov/pubmed/27397840

doi: 10.1016/j.jenvman.2016.06.055 pmid: 27397840
[77]
Van Aken P, van den Broeck R, Degrève J, Dewil R . Chem. Eng. J., 2015,280:728.
[78]
Amado-Piña D, Roa-Morales G, Barrera-Díaz C, Balderas-Hernandez P, Romero R, Martín Del Campo E, Natividad R . Fuel, 2017,198:82.
[79]
Zhao Z, Dong W, Wang H, Chen G, Wang W, Liu Z, Gao Y, Zhou B . Chemosphere, 2017,180:48. https://www.ncbi.nlm.nih.gov/pubmed/28391152

doi: 10.1016/j.chemosphere.2017.04.003 pmid: 28391152
[80]
Chaudhary A J, Donaldson J D, Grimes S M, Ul Hassan M, Spencer R J . J. Chem. Technol. Biot., 2000,75(5):353.
[81]
Zhao X, Zhang J, Qu J . Electrochim. Acta, 2015,180:129.
[82]
Christensen P A, Curtis T P, Egerton T A, Kosa S A M, Tinlin J R . Appl. Catal. B-Environ., 2003,41(4):371.
[83]
Fraga L E, Anderson M A, Beatriz M L P M, Paschoal F M M, Romão L P, Zanoni M V B . Electrochim. Acta, 2009,54(7):2069.
[84]
Marugán J, Christensen P, Egerton T, Purnama H . Appl. Catal. B-Environ., 2009,89(1/2):273.
[85]
Osugi M E, Rajeshwar K, Ferraz E R A, de Oliveira D P, Araújo  R, Zanoni M V B . Electrochim. Acta, 2009,54(7):2086.
[86]
Chai S, Zhao G, Zhang Y, Wang Y, Nong F, Li M, Li D . Environ. Sci. Technol., 2012,46(18):10182. https://www.ncbi.nlm.nih.gov/pubmed/22920667

doi: 10.1021/es3021342 pmid: 22920667
[87]
Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S . J. Hazard. Mater., 2012,211/212:30. https://www.ncbi.nlm.nih.gov/pubmed/22172459

doi: 10.1016/j.jhazmat.2011.11.069 pmid: 22172459
[88]
Zhao H, Jiang D, Zhang S, Wen W . J. Catal., 2007,250(1):102.
[89]
Xu Y, He Y, Cao X, Zhong D, Jia J . Environ. Sci. Technol., 2008,42(7):2612. https://www.ncbi.nlm.nih.gov/pubmed/18505005

doi: 10.1021/es702921h pmid: 18505005
[90]
Zhao X, Zhang J, Qiao M, Liu H, Qu J . Environ. Sci. Technol., 2015,49(7):4567. https://www.ncbi.nlm.nih.gov/pubmed/25768934

doi: 10.1021/es5062374 pmid: 25768934
[91]
Zhao X, Guo L, Hu C, Liu H, Qu J . Appl. Catal. B-Environ., 2014,144:478.
[92]
Zeng H, Tian S, Liu H, Chai B, Zhao X . Chem. Eng. J., 2016,301:371.
[93]
Zhang C, Sun Y, Yu Z, Zhang G, Feng J . Chemosphere, 2018,191:527. https://www.ncbi.nlm.nih.gov/pubmed/29059560

doi: 10.1016/j.chemosphere.2017.10.087 pmid: 29059560
[94]
Kim Y, Kim S A, Lee S B, Kim J K, Kang D . PlasmaProcess. Polym., 2005,2(3):252.
[95]
Cao Y, Qian X, Zhang Y, Qu G, Xia T, Guo X, Jia H, Wang T . Chem. Eng. J., 2019,362:487.
[96]
Lan S, Xiong Y, Tian S, Feng J, Xie T . Appl.Catal. B-Environ., 2016,183:371.
[97]
Zhang L, Wu B, Zhang G, Gan Y, Zhang S . Chem. Eng. J., 2019,358:1218.
[98]
Huang X, Wang Y, Li X, Guan D, Li Y, Zheng X, Zhao M, Shan C, Pan B . Environ. Sci. Technol., 2019,53(4):2036. https://www.ncbi.nlm.nih.gov/pubmed/30653306

doi: 10.1021/acs.est.8b05346 pmid: 30653306
[99]
Yeh R S, Wang Y Y, Wan C C . Water Res., 1995,29(2):597.
[100]
Chang J, Ellis A V, Yan C, Tung C . Sep. Purif. Technol., 2009,68(2):216.
[101]
Ju F, Hu Y . Sep. Purif. Technol., 2011,78(1):33.
[102]
Chen R, Chai L, Wang Y, Liu H, Shu Y, Zhao J . T. Nonferr. Metal. Soc., 2012,22(4):983.
[103]
Li L, Huang Z, Fan X, Zhang Z, Dou R, Wen S, Chen Y, Chen Y, Hu Y . Electrochim. Acta, 2017,231:354.
[104]
Ye X, Zhang J, Zhang Y, Lv Y, Dou R, Wen S, Li L, Chen Y, Hu Y . Chemosphere, 2016,164:304. https://www.ncbi.nlm.nih.gov/pubmed/27592320

doi: 10.1016/j.chemosphere.2016.08.043 pmid: 27592320
[105]
Gylien$\dot{e}$ O, Vengris T, Nivinskien$\dot{e}$ O, Binkien$\dot{e}$ R . J. Hazard. Mater., 2010,175(1/3):452. https://www.ncbi.nlm.nih.gov/pubmed/19896768

doi: 10.1016/j.jhazmat.2009.10.027 pmid: 19896768
[106]
Juang R, Lin L . Sep. Purif. Technol., 2001,22(1/2):627.
[107]
Guan W, Tian S, Cao D, Chen Y, Zhao X . Electrochim. Acta, 2017,246:1230.
[108]
Liu L, Li R, Liu Y, Zhang J . J. Hazard. Mater., 2016,308:264. https://www.ncbi.nlm.nih.gov/pubmed/26848824

doi: 10.1016/j.jhazmat.2016.01.046 pmid: 26848824
[1] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[2] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[3] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[4] Jiao Chengpeng, Huang Zili, Zhang Haijun, Zhang Shaowei. Bimetallic Nanocatalysts Synthesized via Galvanic Replacement Reaction [J]. Progress in Chemistry, 2015, 27(5): 472-481.
[5] . Treatment of Antibiotic Wastewater by Ozonation [J]. Progress in Chemistry, 2010, 22(05): 1002-1009.