中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1557-1563 DOI: 10.7536/PC200207 Previous Articles   Next Articles

Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application

Lixiang Chen1,2, Yidi Li1,2, Xiaochun Tian1, Feng Zhao1,**()   

  1. 1. CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Feng Zhao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777155); National Natural Science Foundation of China(21802133); FJIRSM&IUE Joint Research Fund(RHZX-2018-006)
Richhtml ( 39 ) PDF ( 1116 ) Cited
Export

EndNote

Ris

BibTeX

Microbial extracellular electron transfer (EET) is the process that electroactive microorganisms transfer electrons to an extracellular electron acceptor or receive electrons from the environment. EET is essential for interspecies electron transfer and also contributive to the biogeochemical cycling of elements and biotechnological applications in environments. Up till now, research on EET has been concentrated on Gram-negative electroactive bacteria, however, the EET pathway of Gram-positive electroactive bacteria remains limited. As the membrane structure between Gram-positive bacteria and Gram-negative bacteria are significantly different, the types of redox proteins and electron shuttles involved in the transmembrane transfer may be different. Gram-positive bacteria are widely distributed among environment and they can proceed EET in harsh condition e.g. high temperature, low pH, high pH and high salinity, therefore their electroactivity and EET have attracted great attention. In this review, we summarize the types of Gram-positive electroactive bacteria EET pathway, which include direct electron transfer and mediated electron transfer, the same as Gram-negative bacteria, but Gram-positive bacteria have much more diversities on redox proteins and electron shuttles. We elaborate recent development of EET pathways of Firmicutes, Actinobacteria and Chloroflexi, describe the applications in the degradation of pollutants, bio-electricity generation and biofuel production, then propose possible research directions in the future.

Contents

1 Introduction

2 Extracellular electron transfer of Gram-positive electroactive bacteria

2.1 The extracellular electron transfer of Bacilli in Firmicutes

2.2 The extracellular electron transfer of Clostridia in Firmicutes

2.3 The extracellular electron transfer in Actinobacteria and Chloroflexi

3 Applications of Gram-positive electroactive bacteria

3.1 Organic pollutant removal

3.2 Bioenergy

3.3 Bioproduction

4 Conclusion and outlook

Fig.1 Schematic image of extracellular electron transfer mechanisms for electroactive bacteria
Fig.2 Cladogram of gram-positive electroactive bacteria
Fig.3 Schematic images of the (a) direct and (b) mediated electron transfer mechanism of gram-positive electroactive bacteria
[1]
Xiong Y, Shi L, Chen B, Mayer M U, Lower B H, Londer Y, Bose S, Hochella M F, Fredrickson J K, Squier T C. J. Am. Chem. Soc., 2006,128:13978.
[2]
Carlson H K, Iavarone A T, Gorur A, Yeo B S, Tran R, Melnyk R A, Mathies R A, Auer M, Coates J D. Proc. l. Acad. Sci. U. S. A., 2012,109:1702.
[3]
Light S H, Su L, Rivera-Lugo R, Cornejo J A, Louie A, Iavarone A T, Ajo-Franklin C M, Portnoy D A. Nature, 2018,562:140.

pmid: 30209391
[4]
Holmes D E, Mester T, O'NeilR A, Perpetua L A, Larrahondo M J, Glaven R, Sharma M L, Ward J E, Nevin K P, Lovley D R. Microbiology, 2008,154:1422. doi: 10.1099/mic.0.2007/014365-0

pmid: 18451051
[5]
Pirbadian S, Barchinger S E, Leung K M, Byun H S, Jangir Y, Bouhenni R A, Reed S B, Romine M F, Saffarini D A, Shi L, Gorby Y A, Golbeck J H, El-Naggar M Y. Proc. Natl. Acad. Sci. U. S. A., 2014,111:12883.

pmid: 25143589
[6]
Pirbadian S, El-Naggar M Y. Phys. Chem. Chem. Phys., 2012,14:13802.
[7]
Okamoto A, Saito K, Inoue K, Nealson K H, Hashimoto K, Nakamura R. Energy Environ. Sci., 2014,7:1357.
[8]
Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. l. Acad. Sci. U. S. A., 2008,105:3968.
[9]
Wang Y, Kern S E, Newman D K. J. Bacteriol., 2010,192:365.

pmid: 19880596
[10]
Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009,76:14.

pmid: 19411192
[11]
Li F, Li Y X, Cao Y X, Wang L, Liu C G, Shi L, Song H. Nat. Commun., 2018,9:3637.

pmid: 30194293
[12]
Watanabe H C, Yamashita Y, Ishikita H. Proc. l. Acad. Sci. U. S. A., 2017,114:2916.
[13]
Levar C E, Hoffman C L, Dunshee A J, Toner B M, Bond D R. ISME. J, 2017,11:741.

pmid: 28045456
[14]
Steidl R J, Lampa-Pastirk S, Reguera G. Nat. Commun., 2016,7:12217.

pmid: 27481214
[15]
Wu L C, Tsai T H, Liu M H, Kuo J L, Chang Y C, Chung Y C. Sensors, 2017,17:2461.
[16]
Liu M, Yuan Y, Zhang L X, Zhuang L, Zhou S G, Ni J R. Bioresour. Technol, 2010,101:1807.
[17]
肖勇(Xiao Y), 吴.松(WuS)., 杨朝晖(YangZ H), 郑越(ZhengY), 赵峰(Zhao F). 化学进展 (Progress in Chemistry), 2013,25:1771.
[18]
Refojo P N, Sena F V, Calisto F, Sousa F M, Pereira M M. Advances in Microbial Physiology. NY: Zoe Kruze, 2019. 331
[19]
Modestra J A, Mohan S V. RSC Adv, 2014,4:34045.
[20]
Light S H, Meheust R, Ferrell J L, Cho J, Deng D, Agostoni M, Iavarone A T, Banfield J F, D'Orazio S E F, Portnoy D A. Proc. Natl. Acad. Sci. U. S. A., 2019,116:26892.
[21]
Chen L X, Cao C L, Wang S H, Varcoe J R, Slade R C T, Avignone-Rossa C, Zhao F. iScience, 2019,12:260. doi: 10.1016/j.isci.2019.01.020

pmid: 30711749
[22]
You L X, Liu L D, Xiao Y, Dai Y F, Chen B L, Jiang Y X, Zhao F. Bioelectrochemistry, 2018,119:196.

pmid: 29055859
[23]
Wu S, Xiao Y, Wang L, Zheng Y, Chang K, Zheng Z, Yang Z, Varcoe J R, Zhao F. Electrochim. Acta, 2014,146:564.
[24]
Gurumurthy D M, Bharagava R N, Kumar A, Singh B, Ashfaq M, Saratale G D, Mulla S I. Microbiol. Res, 2019,229:126324. doi: 10.1016/j.micres.2019.126324

pmid: 31491671
[25]
Tian T, Fan X Y, Feng M, Su L, Zhang W, Chi H M, Fu D G. RSC Adv, 2019,9:40903.
[26]
Pankratova G, Leech D, Gorton L, Hederstedt L. Biochemistry, 2018,57:4597.

pmid: 29989403
[27]
Keogh D, Lam L N, Doyle L E, Matysik A, Pavagadhi S, Umashankar S, Low P M, Dale J L, Song Y, Ng S P, Boothroyd C B, Dunny G M, Swarup S, Williams R B H, Marsili E, Kline K A. mBio, 2018,9:e00626.

pmid: 29636430
[28]
Hederstedt L, Gorton L, Pankratova G. J. Bacteriol., 2020,202:e00725-19.

pmid: 31932308
[29]
Naradasu D, Miran W, Sakamoto M, Okamoto A. Front. Microbiol., 2019,9:3267. doi: 10.3389/fmicb.2018.03267

pmid: 30697198
[30]
Marshall C W, May H D. Energy Environ. Sci., 2009,2:699.
[31]
Costa N L, Hermann B, Fourmond V, Faustino M M, Teixeira M, Einsle O, Paquete C M, Louro R O. mBio, 2019,10:e01210.
[32]
Junier P, Junier T, Podell S, Sims D R, Detter J C, Lykidis A, Han C S, Wigginton N S, Gaasterland T, Bernier-Latmani R. Environ. Microbiol., 2010,12:2738.

pmid: 20482743
[33]
郭军辉(Guo J H). 上海海洋大学硕士毕业论文 (Master Dissertation of Shanghai Ocean University), 2016.
[34]
Kruse T, van de Pas B A, Atteia A, Krab K, Hagen W R, Goodwin L, Chain P, Boeren S, Maphosa F, Schraa G, de Vos W M, van der Oost J, Smidt H, Stams A J M. J. Bacteriol., 2015,197:893. doi: 10.1128/JB.02370-14

pmid: 25512312
[35]
Hess V, Schuchmann K, Müller V. J. Biol. Chem., 2013,288:31496.

pmid: 24045950
[36]
Park H S, Kim B H, Kim H S, Kim H J, Kim G T, Kim M, Chang I S, Park Y K, Chang H I. Anaerobe, 2001,7:297.
[37]
Schwab L, Rago L, Koch C, Harnisch F. Bioelectrochemistry, 2019,130:107334.

pmid: 31352302
[38]
Khan M T, Duncan S H, Stams A J M, van Dijl J M, Flint H J, Harmsen H J M. The ISME. J., 2012,6:1578.

pmid: 22357539
[39]
Gavrilov S N, Lloyd J R, Kostrikina N A, Slobodkin A I. Geomicrobiol. J, 2012,29:804.
[40]
Li X, Zeng X, Qiu D, Zhang Z, Zhang X, Shao Z. Sci. Total Environ, 2020,722:137723.
[41]
Bott M, Niebisch A. J. Biotechnol., 2003,104:129.
[42]
Cournet A, Délia M L, Bergel A, Roques C, Bergé M. Electrochem. Commun., 2010,12:505.
[43]
Khawdas W, Watanabe K, Karatani H, Aso Y, Tanaka T, Ohara H. J. Biosci. Bioeng., 2019,128:593.

pmid: 31147220
[44]
Kawaichi S, Yamada T, Umezawa A, McGlynn S E, Suzuki T, Dohmae N, Yoshida T, Sako Y, Matsushita N, Hashimoto K, Nakamura R. Front. Microbiol., 2018,9:68
[45]
Liu X, Li Z, Zhang C, Tan X, Yang X, Wan C, Lee D J. Bioresour. Technol, 2020,295:122305. doi: 10.1016/j.biortech.2019.122305

pmid: 31675520
[46]
Hassan H, Jin B, Dai S, Ma T, Saint C. Chem. Eng. J, 2016,301:103.
[47]
Deng H, Xue H, Zhong W. Electroanalysis, 2017,29:1294.
[48]
Junier P, Frutschi M, Wigginton N S, Schofield E J, Bargar J R, Bernier-Latmani R. Environ. Microbiol., 2009,11:3007.

pmid: 19601961
[49]
Chen G, Bai Y, Zeng R J, Qin L. Geochim. Cosmochim. Acta, 2019,256:135.
[50]
Nimje V R, Chen C Y, Chen C C, Jean J S, Reddy A S, Fan C W, Pan K Y, Liu H T, Chen J L. J. Power Sources, 2009,190:258.
[51]
Samsudeen N, Radhakrishnan T K, Matheswaran M. Process Biochem., 2016,51:1876.
[52]
Islam M A, Ethiraj B, Cheng C K, Yousuf A, Khan M M R. Energy Fuels, 2017,31:6132.
[53]
Choi O, Kim T, Woo H M, Um Y. Sci. Rep, 2014,4:6961.

pmid: 25376371
[54]
Tremblay P L, Zhang T, Dar S A, Leang C, Lovley D R. mBio, 2013,4:e00406.

pmid: 23269825
[55]
Hashsham S A, Freedman D L. Appl. Environ. Microbiol, 1999,65:4537.

pmid: 10508086
[56]
Liu T, Yu Y Y, Chen T, Chen W N. Biotechnol. Bioeng, 2017,114:526. doi: 10.1002/bit.26094

pmid: 27596754
[57]
Pham T H, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K. Appl. Microbiol. Biotechnol, 2008,77:1119.

pmid: 17968538
[58]
Nicolas-Alonso L F, Gomez-Gil J. Sensors, 2012,12:1211.

pmid: 22438708
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[3] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[4] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.
[5] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[6] Xu Jielong, Zhou Shungui, Yuan Yong, Wang Yueqiang, Zhuang Li. Live Wire: A Review on Electron Transfer Mechanism and Applications of Microbial Nanowires [J]. Progress in Chemistry, 2012, (9): 1794-1800.
[7] Kuang Tingyun1,2*,Bai Kezhi1,Yang Xiushan2. Suggestions on the Development Strategy of Bioenergy in China [J]. Progress in Chemistry, 2007, 19(0708): 1060-1063.