中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 471-489 DOI: 10.7536/PC200562 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

• Review •

Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites

Xiaohong Yi1,2, Chongchen Wang1,2,*()   

  1. 1 Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
    2 School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
  • Received: Revised: Online: Published:
  • Contact: Chongchen Wang
  • Supported by:
    the National Natural Science Foundation of China(51878023); the Beijing Natural Science Foundation(8202016); the Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323); the Beijing Talent Project(2019A22); the BUCEA Post Graduate Innovation Project(PG2020038)
Richhtml ( 86 ) PDF ( 3806 ) Cited
Export

EndNote

Ris

BibTeX

The emergence of emerging organic contaminants(EOCs) has attracted increasing attention due to their wide distribution and persistence in aquatic ecosystems, as well as the potential threat to the health and safety of aquatic organisms. Traditional water treatment processes represented by activated sludge processes are generally insufficient to eliminate these persistent pollutants. For efficient removal of EOCs, advanced oxidation technology based on new materials is one of the most important advanced treatment technologies. Fe-MOFs and their composites have been widely used in many fields, especially in the catalytic oxidation of pollutants in wastewater. With the aid of the improvement of synthesis methods, post-synthetic modification and being composited with specific functional materials, Fe-MOFs can be used to effectively improve the adsorption performance, enhance the light absorption characteristics, and promote the effective separation of charge carriers. The review focuses on the progress of advanced oxidation processes(photocatalysis, Fenton-like reaction and sulfate radical($SO_{4}^{-·}$) mediated oxidation) of Fe-MOFs and their composites to remove emerging organic contaminants in wastewater. As well, the opportunities and challenges of Fe-MOFs in the field of EOCs removal are proposed.

Contents

1 Introduction

2 Preparation of Fe?MOFs and their composites for oxidative degradation of EOCs

2.1 MIL?100(Fe) and its composites

2.2 MIL?101(Fe) and its composites

2.3 MIL?53(Fe) and its composites

2.4 MIL?88(Fe) and its composites

3 The application of Fe?MOFs and their composites in advanced oxidation degradation of EOCs

3.1 Advanced oxidative degradation of drugs in wastewater by Fe?MOFs and their composites

3.2 Advanced oxidative degradation of environmental hormone in wastewater by Fe?MOFs and their composites

3.3 Advanced oxidative degradation of pesticide in wastewater by Fe?MOFs and their composites

3.4 Advanced oxidative degradation of multiple EOCs in wastewater by Fe?MOFs and their composites

4 The influencing factors of advanced oxidation degradation of EOCs by Fe?MOFs and their composites

4.1 The influence of physical properties of materials

4.2 The influence of operation conditions

4.3 The influence of active substances

5 Conclusions and prospects

Fig.1 Diagrams of carboxylic acid ligands and Fe-MOFs structure:(a) 1,4-dicarboxybenzene;(b) MIL-53(Fe)[42];(c) MIL-88B(Fe)[42];(d) MIL-101(Fe)[42];(e) 1,3,5-benzenetricarboxylic acid;(f) MIL-100(Fe)[44];(g) fumaric acid;(h) MIL-88A(Fe)[43]
Table 1 The degradation performance of iron-based MOFs and their composites for EOCs
Catalysts/Dosage (g·L-1) Target Pollutants/Volume
(mL)/concentration
(mg·L-1)/pH
Light Source Reaction Time (min) Degradation Efficiency (%) ref
Photocatalytic oxidation
WO3/MIL-53(Fe)/0.2 2,4-dichlorophenoxyacetic
acid/100/45/2.5
sun light 240 ~100 45
CdS/MIL-53(Fe)/0.75 ketorolac tromethamine/100/10/6 85 W Oreva CFL bulb(λ≥ 420 nm) 330 80 46
MIL-88A/g-C3N4/1.0 tetracycline/100/10/NA 1000 W iodine tungsten lamp(λ≥ 420 m) 120 22 47
Ag/AgCl@MIL-88A(Fe)/0.4 ibuprofen/50/10/NA 500 W Xe lamp(λ≥ 420 nm) 210 100 48
BiOI/MIL-88B(Fe)/0.3 ciprofloxacin/100/10/NA 150 W Xe lamp(AM 1.5G) 270 80 49
MIL-100(Fe)/PANI/0.25 tetracycline/200/10/NA 300 W Xe lamp 120 84 36
Fenton-like reaction
1T-MoS2@MIL-53(Fe)+20 mmol/L·H2O2/0.4 ibuprofen/50/10/7.0 500 W Xe lamp(λ≥ 420 nm) 120 100 50
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.4 tetracycline/50/50/6.0 5 W LED white lamp(380~800 nm) 40 90 51
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.4 carbamazepine/50/50/6.0 5 W LED white lamp(380~800 nm) 150 78 51
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.4 bisphenol A/50/50/6.0 5 W LED white lamp(380~800 nm) 10 100 51
g-C3N4/PDI@NH2-MIL-53(Fe)+10 mmol/L·H2O2/0.2 bisphenol A/50/2/6.0 5 W LED white lamp(380~800 nm) 10 100 51
MIL-88A(Fe)+100 μL H 2O2/0.2 bisphenol A/50/10/NA 350 mW LED visible light 60 ~100 52
PANI/MIL-88A(Fe)+20 μL H 2O2/0.2 bisphenol A/50/10/5.1 5 W LED visible light 30 100 53
CUS-MIL-100(Fe)+6 mmol/L H2O2/0.5 sulfamethazine/80/20/3.0 in dark 60 100 17
Pd@MIL-100(Fe)+40 μL H 2O2/0.125 theophylline/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 99.5 54
Pd@MIL-100(Fe)+40 μL H 2O2/0.125 ibuprofen /40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 100 54
Pd@MIL-100(Fe)+40 μL H 2O2/0.125 bisphenol A/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 68 54
Pd-PTA-MIL-100(Fe)+40 μL H 2O2/0.125 theophylline/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 150 99.5 55
Pd-PTA-MIL-100(Fe)+40 μL H 2O2/0.125 ibuprofen/40/20/4.0 300 W Xe lamp(λ≥ 420 nm) 180 99.5 55
Table 1 (continued) The degradation performance of iron-based MOFs and their composites for EOCs
Catalysts/Dosage (g·L-1) Target Pollutants/Volume
(mL)/concentration
(mg·L-1)/pH
Light Source Reaction Time (min) Degradation Efficiency (%) ref
WO3/MIL-100(Fe)+40 μL H 2O2/0.25 bisphenol A/80/10/3.0 25 W LED visible light 20 100 56
MIL-100(Fe)/g-C3N4+50 μL H 2O2/0.5 diclofenac sodium/200/0.1 mmol/L/NA 300 W Xe lamp 50 100 21
MIL-100(Fe)/Fe-SPC+40 mmol/L·H2O2/1.0 thiamethoxam/50/60/7.5 600 W ultrasonic probe 100 100 57
Cu2O/MIL-100(Fe/Cu)+49 mmol/L H2O2/0.5 thiacloprid/50/80/7.47 500 W Xe lamp 25 90 58
MIL-100(Fe)/TiO2+20 μL H 2O2/0.05 tetracycline /100/100/NA 450 W Xe arc lamp 60 85.8 59
MIL-100(Fe)@Fe3O4/CA+H2O2/0.2 tetracycline /50/10/5.0 150 W Xe lamp(λ≥ 400 nm) 210 85 60
M.MIL-100(Fe)@ZnO +10 mmol/L·H2O2/0.2 bisphenol A/50/5/2.0 LSH-500 W Xe arc lamp 60 ~100 61
M.MIL-100(Fe)@ZnO +10 mmol/L·H2O2/0.2 atrazine/50/5/2.0 LSH-500 W Xe arc lamp 120 >80 61
Oxidation of activated persulfate
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 methyl malathion/100/20/5.0 sun light 120 93 37
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 chlorpyrifos/100/20/5.0 sun light 120 97 37
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 methyl malathion(binary mixture)/100/20/5.0 sun light 180 100 37
AgIO3/MIL-53(Fe)+50 mg·L-1 PS/0.5 chlorpyrifos(binary mixture)/100/20/5.0 sun light 180 50 37
MIL-88A@MIP+10.8 mmol/L PS/0.5 dibutyl phthalate/100/3.5/ not adjusted in dark 480 77.4 62
MIL-88A@MIP+10.8 mmol/L PS/0.5 dibutyl phthalate/100/4.0/ not adjusted in dark 480 >80.4 62
MIL-88A@MIP+10.8 mmol/L PS/0.5 dibutyl phthalate/100/5.0/ not adjusted in dark 480 80.4 62
MIL-88B(Fe)+2 mmol/L PS/0.6 bisphenol A/100/10/6.5~7.2 300 W Xe lamp(λ≥ 420 nm) 25 100 63
Bi12O17Cl2/MIL-100(Fe)+0.2 mmol/L PS/0.25 bisphenol A/200/10/5.2 300 W Xe lamp 40 100 64
g-C3N4/MIL-101(Fe)+1 mmol/L PS/0.5 bisphenol A/NA/10/NA 300 W Xe lamp(λ≥ 400 nm) 60 98 34
AQS-NH-MIL-101(Fe)+10 mmol/L PS/0.2 bisphenol A/25/60/5.76 in dark 120 97.7 35
Fig.2 The morphologies of (a) Pd/MIL-100(Fe)[54],(b) Pd-PTA-MIL-100(Fe)[55],(c) CUS-MIL-100(Fe)[17],(d) MIL-100(Fe)/Fe-SPC[57],(e) Cu2O/MIL(Fe/Cu)[58];(f) Cu2O/MIL(Fe)[58];(g) MIL-100(Fe)/Ti2[59];(h) M.MIL-100(Fe)@ZnO[61] and (i) MIL-100(Fe)@Fe3O4/CA[60]
Fig.3 The morphologies of (a) MIL-100(Fe)/g-C3N4[21],(b) MIL-100(Fe)/PANI[36],(c) WO3/MIL-100(Fe)[56] and (d) Bi12O17Cl2/MIL-100(Fe)[64]
Fig.4 The morphologies of (a) g-C3N4/MIL-101(Fe)[34] and (b) AQS-NH-MIL-101(Fe)[35]
Fig.5 The morphologies of(a) WO3/MIL-53(Fe)[45],(b) 1T-MoS2@MIL-53(Fe)[50],(c) CdS/MIL-53(Fe)[46],(d) AgIO3/MIL-53(Fe)[37] and (e) g-C3N4/PDI@NH2-MIL-53(Fe)[51]
Fig.6 The morphologies of(a) MIL-88A-1[52],(b) MIL-88A-2[52],(c) PANI/MIL-88A(Fe)[53],(d) MIL-88A/g-C3N4[47],(e) MIL-88A@MIP[62],(f) Ag/AgCl@MIL-88A(Fe)[48],(g) MIL-88B(Fe)[63],(h) MIL-88B(Fe)[49] and (i) BiOI/MIL-88B(Fe)[49]
Fig.7 The proposed pathways for the photo-Fenton degradation of BPA by (a) MIL-88A-2[52],(b) PANI/MIL-88A(Fe)[53] and (c) WO3/MIL-100(Fe)[56]
Fig.8 (a) Proposed transformation pathways for BPA degradation in M88/Vis/PS system;(b) risk assessment of BPA and its by-products via ECOSAR in M88/PS/Vis system;(c) the relative absorption intensity variation of M88/PS/Vis system to CCK-8;(d) the efficiency of BPA mineralization by the M88/PS/Vis system[63]
Fig.9 (a) BPA chemical structure;(b) HOMO and LUMO orbitals of BPA;(c) NPA charge distribution and Fukui index of BPA;(d) Proposed pathways of photocatalytic degradation toward BPA over BM200/light/PS system[64]
[1]
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G S. Energy Environ. Sci., 2014, 7(9):2831.
[2]
Gao Q, Xu J, Bu X H. Coord. Chem. Rev., 2019, 378:17.
[3]
Zhao C, Wang Z H, Li X, Yi X H, Chu H Y, Chen X, Wang C C. Chem. Eng. J., 2020, 389:123431.
[4]
Sharma V K, Feng M B. J. Hazard. Mater., 2019, 372:3.
[5]
Fono L J, McDonald H S. J. Am. Water Work. Assoc., 2008, 100(11):50.
[6]
Yu M L, Wang J J, Tang L, Feng C Y, Liu H Y, Zhang H, Peng B, Chen Z M, Xie Q Q. Water Res., 2020, 175:115673.
[7]
Deng Y C, Tang L, Zeng G M, Zhu Z J, Yan M, Zhou Y Y, Wang J J, Liu Y N, Wang J J. Appl. Catal. B: Environ., 2017, 203:343.
[8]
Deng Y C, Tang L, Zeng G M, Wang J J, Zhou Y Y, Wang J J, Tang J, Wang L L, Feng C Y. J. Colloid Interface Sci., 2018, 509:219.
[9]
Wang J L, Wang S Z. J. Environ. Manag., 2016, 182:620.
[10]
Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44(10):2997.
[11]
Hu P D, Long M C. Appl. Catal. B: Environ., 2016, 181:103.
[12]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334:1502.
[13]
Minella M, Bertinetti S, Hanna K, Minero C, Vione D. Environ. Res., 2019, 179:108750.
[14]
Guo S, Wang H J, Yang W, Fida H, You L M, Zhou K. Appl. Catal. B: Environ., 2020, 262:118250.
[15]
Xu X M, Chen W M, Zong S Y, Ren X, Liu D. J. Hazard. Mater., 2019, 377:62.
[16]
Liang S X, Jia Z, Zhang W C, Li X F, Wang W M, Lin H C, Zhang L C. Appl. Catal. B: Environ., 2018, 221:108.
[17]
Tang J T, Wang J L. Environ. Sci. Technol., 2018, 52(9):5367.
[18]
Wang Y B, Zhao H Y, Zhao G H, Wang Y J, Yang X C. Progress in Chemistry, 2013, 25(8):1246.
王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 化学进展, 2013, 25(8):1246.
[19]
Huang G, Chen Y Z, Jiang H L. Acta Chimica Sin., 2016, 74(2):113.
黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74(2):113.
[20]
Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B: Environ., 2016, 193:198.
[21]
Du X D, Yi X H, Wang P, Deng J, Wang C C. Chin. J. Catal., 2019, 40(1):70.
[22]
Wang C C, Yi X H, Wang P. Appl. Catal. B: Environ., 2019, 247:24.
[23]
Wang C C, Wang X, Liu W. Chem. Eng. J., 2019:123601.
[24]
Guo R M, Bai J Q, Zhang H, Xie Y B, Li J R. Progress in Chemistry, 2016, 28(2/3):232.
郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣. 化学进展, 2016, 28(2/3):232.
[25]
Gao C, Chen S, Quan X, Yu H T, Zhang Y B. J. Catal., 2017, 356:125.
[26]
Laurier K G M, Vermoortele F, Ameloot R, de Vos D E, Hofkens J, Roeffaers M B J. J. Am. Chem. Soc., 2013, 135(39):14488.
[27]
Wang D K, Wang M T, Li Z H. ACS Catal., 2015, 5(11):6852.
[28]
Zhang T, Lin W B. Chem. Soc. Rev., 2014, 43(16):5982.
[29]
Li Y, Xu H, Ouyang S X, Ye J H. Phys. Chem. Chem. Phys., 2016, 18(11):7563.
[30]
Wang D K, Li Z H. Res. Chem. Intermed., 2017, 43(9):5169.
[31]
Ai L H, Zhang C H, Li L L, Jiang J. Appl. Catal. B: Environ., 2014, 148/149:191.
[32]
Zhang C H, Ai L H, Jiang J. J. Mater. Chem. A, 2015, 3(6):3074.
[33]
Gao Y W, Li S M, Li Y X, Yao L Y, Zhang H. Appl. Catal. B: Environ., 2017, 202:165.
[34]
Gong Y, Yang B, Zhang H, Zhao X. J. Mater. Chem. A, 2018, 6(46):23703.
[35]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. J. Hazard. Mater., 2017, 324:665.
[36]
Chen D D, Yi X H, Zhao C, Fu H, Wang P, Wang C C. Chemosphere, 2020, 245:125659.
[37]
Oladipo A A, Vaziri R, Abureesh M A. J. Taiwan Inst. Chem. Eng., 2018, 83:133.
[38]
Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48(41):7502.
[39]
Li X R, Le Z Y, Chen X L, Li Z Q, Wang W C, Liu X Y, Wu A, Xu P C, Zhang D Q. Appl. Catal. B: Environ., 2018, 236:501.
[40]
Horcajada P, SurblÉ S, Serre C, Hong D Y, Seo Y K, Chang J S, Grenèche J M, Margiolaki I, FÉrey G. Chem. Commun., 2007,(27):2820.
[41]
Hupp J T. Science, 2005, 309(5743):2008.
[42]
Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Fe?rey G, Stock N. Inorg. Chem., 2008, 47(17):7568.
[43]
Chalati T, Horcajada P, Gref R, Couvreur P, Serre C. J. Mater. Chem., 2011, 21(7):2220.
[44]
Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, de Weireld G, Chang J S, Hong D Y, Kyu Hwang Y, Hwa Jhung S, Fe?rey G. Langmuir, 2008, 24(14):7245.
[45]
Oladipo A A. Process. Saf. Environ. Prot., 2018, 116:413.
[46]
Chaturvedi G, Kaur A, Kansal S K. J. Phys. Chem. C, 2019, 123(27):16857.
[47]
Shao Z W, Zhang D F, Li H, Su C H, Pu X P, Geng Y L. Sep. Purif. Technol., 2019, 220:16.
[48]
Huang W Y, Jing C W, Zhang X D, Tang M Q, Tang L, Wu M H, Liu N. Chem. Eng. J., 2018, 349:603.
[49]
Jahurul Islam M, Kim H K, Amaranatha Reddy D, Kim Y, Ma R, Baek H, Kim J, Kim T K. Dalton Trans., 2017, 46(18):6013.
[50]
Liu N, Huang W Y, Tang M Q, Yin C C, Gao B, Li Z M, Tang L, Lei J Q, Cui L F, Zhang X D. Chem. Eng. J., 2019, 359:254.
[51]
Li Y Y, Fang Y, Cao Z L, Li N J, Chen D Y, Xu Q F, Lu J M. Appl. Catal. B: Environ., 2019, 250:150.
[52]
Fu H F, Song X X, Wu L, Zhao C, Wang P, Wang C C. Mater. Res. Bull., 2020, 125:110806.
[53]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9):e5795.
[54]
Liang R W, Luo S G, Jing F F, Shen L J, Qin N, Wu L. Appl. Catal. B: Environ., 2015, 176/177:240.
[55]
Liang R W, Huang R K, Ying S M, Wang X X, Yan G Y, Wu L. Nano Res., 2018, 11(2):1109.
[56]
Wang J W, Qiu F G, Wang P, Ge C J, Wang C C. J. Clean. Prod., 2021, 279:123408.
[57]
Wei Y N, Wang B F, Cui X F, Muhammad Y, Zhang Y J, Huang Z Q, Li X S, Zhao Z X, Zhao Z X. ACS Appl. Mater. Interfaces, 2018, 10(41):35260.
[58]
Zhong Z, Li M, Fu J H, Wang Y X, Muhammad Y, Li S H, Wang J X, Zhao Z X, Zhao Z X. Chem. Eng. J., 2020, 395:125184.
[59]
He X, Fang H, Gosztola D J, Jiang Z, Jena P, Wang W N. ACS Appl. Mater. Interfaces, 2019, 11(13):12516.
[60]
Rasheed H U, Lv X, Zhang S Y, Wei W, Ullah N, Xie J M. Adv. Powder Technol., 2018, 29(12):3305.
[61]
Ahmad M, Chen S, Ye F, Quan X, Afzal S, Yu H T, Zhao X Y. Appl. Catal. B: Environ., 2019, 245:428.
[62]
Wang J M, Guan Z Y, Wan J Q, Wang Y, Ma Y W, Yan Z C, Zhang G H. Environ. Sci., 2017, 38(12):5124.
王九妹, 关泽宇, 万金泉, 王艳, 马邕文, 闫志成, 张桂华. 环境科学, 2017, 38(12):5124).
[63]
Lin J W, Hu Y Y, Wang L X, Liang D H, Ruan X, Shao S C. Chem. Eng. J., 2020, 382:122931.
[64]
Zhao C, Wang J S, Chen X, Wang Z H, Ji H D, Chen L, Liu W, Wang C C. Sci. Total. Environ., 2021, 752:141901.
[65]
Seo Y K, Yoon J W, Lee J S, Lee U H, Hwang Y K, Jun C H, Horcajada P, Serre C, Chang J S. Microporous Mesoporous Mater., 2012, 157:137.
[66]
Moon H R, Lim D W, Suh M P. Chem. Soc. Rev., 2013, 42(4):1807.
[67]
Bayaguud A, Chen K, Wei Y G. Nano Res., 2016, 9(12):3858.
[68]
Zhou L H, Fu P, Wen D H, Yuan Y, Zhou S G. Appl. Catal. B: Environ., 2016, 181:635.
[69]
Shi M J, Wei W, Jiang Z F, Han H K, Gao J R, Xie J M. RSC Adv., 2016, 6(30):25255.
[70]
Leng Y Q, Guo W L, Shi X, Li Y Y, Wang A Q, Hao F F, Xing L T. Chem. Eng. J., 2014, 240:338.
[71]
Araya T, Jia M K, Yang J, Zhao P, Cai K, Ma W H, Huang Y P. Appl. Catal. B: Environ., 2017, 203:768.
[72]
Xu H, Yi J J, She X J, Liu Q, Song L, Chen S M, Yang Y C, Song Y H, Vajtai R, Lou J, Li H M, Yuan S Q, Wu J J, Ajayan P M. Appl. Catal. B: Environ., 2018, 220:379.
[73]
Hu L X, Deng G H, Lu W C, Pang S W, Hu X. Appl. Surf. Sci., 2017, 410:401.
[74]
Song S, Hong F Y, He Z Q, Cai Q L, Chen J M. J. Colloid Interface Sci., 2012, 378(1):159.
[75]
Chu S, Wang Y, Guo Y, Feng J Y, Wang C C, Luo W J, Fan X X, Zou Z G. ACS Catal., 2013, 3(5):912.
[76]
Wang L W, Zhang X, Yu X, Gao fene, Shen Z Y, Zhang X L, Ge S G, Liu J, Gu Z J, Chen C Y. Adv. Mater., 2019, 31(33):1901965.
[77]
Guo Y X, Jia Z Q, Shi Q, Liu Z J, Wang X, Li L X. Microporous Mesoporous Mater., 2019, 285:215.
[78]
Yan J, Yu Y, Xiao J, Li Y W, Li Z. Ind. Eng. Chem. Res., 2016, 55(45):11767.
[79]
Qian K, Fang G Z, Wang S. Chem. Commun., 2011, 47(36):10118.
[80]
Yang S, Xu D, Chen B, Luo B, Shi W. Appl. Catal. B: Environ., 2017, 204:602.
[81]
Huang H, Han X, Li X, Wang S, Chu P K, Zhang Y. ACS Appl. Mater. Interfaces, 2015, 7(1):482.
[82]
Anjali R, Shanthakumar S. J. Environ. Manag., 2019, 246:51.
[83]
Reardon S. Nature, 2014, 509(7499):141.
[84]
García-Galán M J, González Blanco S, LÓpez Roldán R, Díaz-Cruz S, BarcelÓ D. Sci. Total Environ., 2012, 437:403.
[85]
Kaur A, Umar A, Kansal S K. J. Colloid Interface Sci., 2015, 459:257.
[86]
Wang J J, Tang L, Zeng G M, Deng Y C, Liu Y N, Wang L L, Zhou Y Y, Guo Z, Wang J J, Zhang C. Appl. Catal. B: Environ., 2017, 209:285.
[87]
Rubasinghege G, Gurung R, Rijal H, Maldonado-Torres S, Chan A, Acharya S, Rogelj S, Piyasena M. Water Res., 2018, 131:22.
[88]
Sun J Y, Guo Y P, Wang Y, Cao D, Tian S C, Xiao K, Mao R, Zhao X. Chem. Eng. J., 2018, 332:312.
[89]
Vandenberg L N, Hauser R, Marcus M, Olea N, Welshons W V. Reproductive Toxicol., 2007, 24(2):139.
[90]
Lan H C, Zhang G, Zhang H W, Liu H J, Liu R P, Qu J H. Catal. Commun., 2017, 98:9.
[91]
Qiu P X, Yao J H, Chen H, Jiang F, Xie X C. J. Hazard. Mater., 2016, 317:158.
[92]
Meijide J, GÓmez J, Pazos M, Sanromán M A. J. Hazard. Mater., 2016, 319:43.
[93]
Bani N D, Šoji D V, Krsti J B, Abramovi B F. Water Air Soil Poll., 2014, 225(5):1954.
[94]
Al Hakim S, Jaber S, Zein Eddine N, Baalbaki A, Ghauch A. Chem. Eng. J., 2020, 380:122478.
[95]
Blake K V, Massey K L, Hendeles L, Nickerson D, Neims A. Ann. Emerg. Med., 1988, 17(10):1024.
[96]
Singh S, Kumar V, Chauhan A, Datta S, Wani A B, Singh N, Singh J. Environ. Chem. Lett., 2018, 16(1):211.
[97]
Wang S Z, Wang J L. J. Hazard. Mater., 2017, 321:639.
[98]
Deng S Y, Chen Y, Wang D S, Shi T Z, Wu X W, Ma X, Li X Q, Hua R M, Tang X Y, Li Q X. J. Hazard. Mater., 2015, 297:17.
[99]
Li H X, Wan J Q, Ma Y W, Wang Y, Chen X, Guan Z Y. J. Hazard. Mater., 2016, 318:154.
[100]
Bedin K C, Muche D N F, Melo M A Jr, Freitas A L M, Gonçalves R V, Souza F L. ChemCatChem, 2020, 12(12):3156.
[101]
Li W Y, Xu,. Acta Chimica Sin., 2019, 77(8):705. 9.
李午阳, 徐乐瑾. 化学学报, 2019, 77(8):705.
[102]
Liu X J, Lv T, Pan L K, Sun Z, Sun C Q. Desalination Water Treatment, 2012, 42:216.
[103]
Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y. Appl. Catal. B: Environ., 2013,5, 8:2924.
[104]
Alvaro M, Carbonell E, Ferrer B, LlabrÉs i Xamena F, Garcia H. Chem. Eur. J., 2007, 13(18):5106.
[105]
Kavitha V, Palanivelu K. Chemosphere, 2004, 55(9):1235.
[106]
de Luna M D G, Briones R M, Su C C, Lu M C. Chemosphere, 2013, 90(4):1444.
[107]
Mirzaei A, Chen Z, Haghighat F, Yerushalmi L. Chemosphere, 2017, 174:665.
[108]
Pignatello J J, Oliveros E, MacKay A. Crit. Rev. Environ. Sci. Technol., 2006, 36(1):1.
[109]
Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Appl. Catal. B: Environ., 2008, 83(1/2):131.
[110]
Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Environ. Sci. Technol., 2007, 41(3):1010.
[111]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13):3705.
[112]
Hayon E, Treinin A, Wilf J. J. Am. Chem. Soc., 1972, 94(1):47.
[113]
Liang C J, Su H W. Ind. Eng. Chem. Res., 2009, 48(11):5558.
[114]
Zhang M, Chen X Q, Zhou H, Murugananthan M, Zhang Y R. Chem. Eng. J., 2015, 264:39.
[115]
Matzek L W, Carter K E. Chemosphere, 2016, 151:178.
[116]
Li X N, Liu J Y, Rykov A I, Han H X, Jin C Z, Liu X, Wang J H. Appl. Catal. B: Environ., 2015, 179:196.
[117]
Burns J M, Cooper W J, Ferry J L, King D W, DiMento B P, McNeill K, Miller C J, Miller W L, Peake B M, Rusak S A, Rose A L, Waite T D. Aquat. Sci., 2012, 74(4):683.
[118]
Tan C Q, Gao N Y, Deng Y, An N, Deng J. Chem. Eng. J., 2012, 203:294.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[8] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[9] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[10] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[11] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[12] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[13] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.