中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1537-1550 DOI: 10.7536/PC170739 Previous Articles   

• Review •

Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism

Mingxue Liu1, Faqin Dong2*, Xiaoqin Nie3, Congcong Ding3, Huichao He2, Gang Yang1   

  1. 1. Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China;
    2. Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang 621010, China;
    3. Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by National Basic Research Program of China (973)(No.2014CB846003) and the National Nature Science Foundation of China (No. 41272371, 41572035, 41502316).
PDF ( 704 ) Cited
Export

EndNote

Ris

BibTeX

Heavy metal pollution is an environmental and social problem that needs to be solved urgently. Heavy metal elements in nature will form a variety of minerals with different states of valence and show different physical and chemical properties, which has important implications for the treatment of heavy metal pollution. The valence state of heavy metal ions can be regulated through electron transfer and electron absorption from microbe, electrode, and semiconductor mineral photocatalysis. This review analyzes the reduction effect of heavy metal ions by microbes, microbial electrolysis system (MES), photoelectron and photoelectron-microorganism synergistic effect. The redox reaction and the energy utilization mechanism during the heavy metal ions reduction process are illustrated based on oxidation reduction potential principle. Detailed transmembrane electron transfer process and molecular networks are elaborated for direct/indirect electron transfer pathways during reduction of heavy metal ions by microorganism. The electron transfer from microorganism cells to electrode and reverse electron absorption-utilization process are also expounded for heavy metal ion valence state regulation by microbial electrolysis system and photoelectron-microorganism synergistic effect. Finally, the interaction network and energy utilization mechanism are proposed to elucidate the regulation of heavy metal ion valence state by microorganisms, electrodes, semiconductor minerals and light. This review will provide a reference for the further study regarding the microbial extracellular electron transfer, the photoelectron utilization by microorganism and the valence state regulation of heavy metal ions by microbe-photoelectron coordination as well as its environmental significance.
Contents
1 Introduction
2 Reduction and immobilization of heavy metal ions by microorganisms and electrochemical systems
2.1 Reduction of heavy metal ions by microorganisms
2.2 Reduction of heavy metal ions by microbial electrolysis system
3 Reduction of heavy metal ions by microorganism and photoelectron coordination
3.1 Reduction of heavy metal ions by photoelectron
3.2 Reduction of heavy metal ions by microorganism and photoelectron coordination
3.3 Mineralization, transformation and interface interaction during reduction of heavy metals induced by microorganisms and photoelectrons
4 Electrochemical mechanism of reduction of heavy metal ions by microorganisms, electrochemical systems and photoelectrons
5 The role of microbial electrode as well as electron transport and transfer during reduction of heavy metal ions
5.1 Electron transfer from microorganism to heavy metal ions
5.2 Electron transfer from microorganism to electrode
5.3 The reverse transfer of electrons:from electrode to microorganism
6 Conclusion and outlook

CLC Number: 

[1] 孙宁(Sun N), 王兆苏(Wang Z S), 卢然(Lu R), 贾杰林(Jia J L). 环境保护科学(Environmental Protection Science), 2016, 42(2):1.
[2] Lovley D R, Phillips E J P, Gorby Y A, Landa E R. Nature, 1991, 350:413.
[3] Goulhen F, Gloter A, Guyot F, Bruschi M. Appl. Microbiol. Biotechnol., 2006, 71:892.
[4] Yoneyama H, Yamashita Y, Tamura H. Nature, 1979, 282:817.
[5] Lu A H, Li Y, Jin S, Wang X, Wu X L, Zeng C P, Li Y, Ding H R, Hao R X, Lv M, Wang C Q, Tang Y Q, Dong H L. Nat. Commun., 2012, 3:768.
[6] Huang W B, Nie X Q, Dong F Q, Ding C C, Huang R, Qin Y L, Liu M X, Sun S Y. J. Radioanal. Nucl. Chem., 2017, 312:531.
[7] Caccavo F, Lonergan D J, Lovley D R, Davis M, Stolz J F, McInerney M J. Appl. Environ. Microbiol., 1994, 60:3752.
[8] Suzuki Y, Kitatsuji Y, Ohnuki T, Tsujimura S. Phys. Chem. Chem. Phys., 2010, 12:10081.
[9] Chabalala S, Chirwa E M N. Miner. Eng., 2010, 23:526.
[10] 吴云当(Wu Y D), 李芳柏(Li F B), 刘同旭(Liu T X). 土壤学报(Acta Pedologica Sinica), 2016, 53(2):277.
[11] Liu T X, Li X M, Li F B, Han R, Wu Y D, Yuan X, Wang Y. Sci. Rep., 2016, 6:29592.
[12] Leigh M B, Wu W M, Cardenas E, Uhlik O, Carroll S, Gentry T, Marsh T L, Zhou J, Jardine P, Criddle C S, Tiedje J M. Front. Environ. Sci. Eng., 2015, 3:453.
[13] Reguera G. Biochem. Soc. Trans., 2012, 40:1227.
[14] Michelson K, Sanford R A, Valocchi A J, Werth C J. Environ. Sci. Technol., 2017, 51:11660.
[15] Madden A S, Swindle A L, Beazley M J, Moon J W, Ravel B, Phelps T J. Am. Mineral., 2012, 97:1641.
[16] Barlett M, Moon H S, Peacock A A, Hedrick D B, Williams K H, Long P E, Lovley D, Jaffe P R. Biodegradation, 2012, 23:535.
[17] Chang Y J, Long P E, Geyer R, Peacock A D, Resch C T, Sublette K, Pfiffner S, Smithgall A, Anderson R T, Vrionis H A, Stephen J R, Dayvault R, Ortiz-Bernad I, Lovley D R, White D C. Environ. Sci. Technol., 2005, 39:9039.
[18] Madden A S, Palumbo A V, Ravel B, Vishnivetskaya T A, Phelps T J, Schadt C W, Brandt C C. J. Environ. Qual., 2009, 38:53.
[19] 吴唯民(Wu W M), Carley J, Watson D, 顾宝华(Gu B H), Brooks S, Kelly S D, Kemner K, van Nostrand J D, 吴力游(Wu L Y), 许玫英(Xu M Y), 周集中(Zhou J Z), 罗剑(Luo J), Cardenas E, 黃家琪(Huang J Q), Fields M W, Marsh T L, Tiedje J M, Green S J, Kostka J E, Kitanidis P K, Jardine P M, Criddle C S. 环境科学学报(Acta Scientiae Circumstantiae), 2011, 31(3):449.
[20] Zhang P, He Z L, van Nostrand J D, Qin Y J, Deng Y, Wu L Y, Tu Q C, Wang J J, Schadt C W, W Fields M, Hazen T C, Arkin A P, Stahl D A, Zhou J Z. Environ. Sci. Technol., 2017, 51:3609.
[21] Tang G, Watson D B, Wu W M, Schadt C W, Parker J C, Brooks S C. Environ. Sci. Technol., 2013, 47:3218.
[22] Hu N, Ding D X, Li S M, Tan X, Li G Y, Wang Y D, Xu F. J. Environ. Radioact., 2016, 154:60.
[23] Newsome L, Morris K, Shaw S, Trivedi D, Lloyd J R. Chem. Geol., 2015, 409:125.
[24] Francis C A, Obraztsova A Y, Tebo B M. Appl. Environ. Microbiol., 2000, 66:543.
[25] Barnhart J. J. Soil Contam., 2008, 6:561.
[26] Yang C P, Cheng Y J, Ma X Y, Zhu Y, Holman H Y, Lin Z, Wang C. Langmuir, 2007, 23:4480.
[27] Hwang Y H, Shim M J, Oh D H, Yang J S, Kwon M J. J. Soil Groundwater Environ., 2014, 19:16.
[28] Wang C, Deng H, Zhao F. Soil Sediment Contam., 2016, 25:1.
[29] Lu Z H, Chang D M, Ma J X, Huang G T, Cai L K, Zhang L H. J. Power Sources, 2015, 275:243.
[30] Wang H M, Ren Z J. Biotechnol. Adv., 2013, 31:1796.
[31] 刘利丹(Liu L D), 肖勇(Xiao Y)吴义诚(Wu Y C), 陈必链(Chen B L), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2014, 26(11):1859.
[32] 张锦涛(Zhang J T), 倪晋仁(Ni J R), 周顺桂(Zhou S G). 应用与环境生物学报(Chinese Journal of Applied and Environmental Biology), 2008, 14(2):290.
[33] Bond D R, Holmes D E, Tender L M, Lovley D R. Science, 2002, 295:483.
[34] Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. Enzyme Microb. Technol., 2002, 30:145.
[35] Li Z J, Zhang X W, Lei L C. Process Biochem., 2008, 43:1352.
[36] Tao H C, Liang M, Li W, Zhang L J, Ni J R, Wu W M. J. Hazard. Mater., 2011, 189:186.
[37] 梁敏(Liang M), 陶虎春(Tao H C), 李绍峰(Li S F), 李伟(Li W), 张丽娟(Zhang L J), 倪晋仁(Ni J R). 环境科学(Environmental Science), 2011, 32(1):179.
[38] Qin B Y, Luo H P, Liu G L, Zhang R D, Chen S S, Hou Y P, Luo Y. Bioresour. Technol., 2012, 121:458.
[39] Williams K H, Nevin K P, Franks A, Englert A, Long P E, Lovley D R. Environ. Sci. Technol., 2010, 44:47.
[40] Lu A H, Li Y. Geomicrobiol. J., 2012, 29:236.
[41] Wang H Y, Qian F, Li Y. Nano Energy, 2014, 8:264.
[42] Kim G, Igunnu E T, Chen G Z. Chem. Eng. J., 2014, 244:411.
[43] Chen J, Ollis D F, Rulkens W H, Bruning H. Colloids Surf. A Physicochem. Eng. Asp., 1999, 151:339.
[44] Amadelli R, Maldotti A, Sostero S, Carassiti V. J. Chem. Soc. Faraday Trans., 1991, 87:3267.
[45] Selli E, Eliet V, Spini M R, Bidoglio G. Environ. Sci. Technol., 2000, 34:3742.
[46] 李乐(Li L). 南华大学硕士论文(Master Dissertation of University of South China), 2014.
[47] Kabra K, Chaudhary R, Sawhney R L. J. Hazard. Mater., 2007, 149:680.
[48] Kim Y K, Lee S, Ryu J, Park H. Appl. Catal. B-Environ., 2015, 163:584.
[49] Rosenbaum M, He Z, Angenent L T. Curr. Opin. Biotechnol., 2010, 21:259.
[50] Qian F, Wang G M, Li Y. Nano Lett., 2010, 10:4686.
[51] Feng H J, Liang Y X, Guo K, Li N, Shen D S, Cong Y Q, Zhou Y Y, Wang Y F, Wang M Z, Long Y Y. Water Res., 2016, 102:428.
[52] Lin Z Q, Yuan S J, Li W W, Chen J J, Sheng G P, Yu H Q. Water Res., 2017, 109:88.
[53] Li Y, Lu A H, Ding H R, Jin S, Yan Y H, Wang C Q, Zen C P, Wang X. Electrochem. Commun., 2009, 11:1496.
[54] 宗美荣(Zong M R). 西南科技大学硕士论文(Master Dissertation of Southwest University of Science and Technology), 2016.
[55] Ainsworth E V, Lockwood C W, White G F, Hwang E T, Sakai T, Gross M A, Richardson D J, Clarke T A, Jeuken L J, Reisner E, Butt J N. ChemBioChem, 2016, 17:2324.
[56] Liu M X, Dong F Q, Yan X Y, Zeng W M, Hou L Y, Pang X F. Bioresour. Technol., 2010, 101:8573.
[57] Nie X Q, Dong F Q, Liu N, Liu M X, Zhang D, Kang W, Sun S Y, Zhang W, Yang J. Appl. Surf. Sci., 2015, 347:122.
[58] 黄荣(Huang R), 覃贻琳(Qin Y L), 聂小琴(Nie X Q), 董发勤(Dong F Q), 刘明学(Liu M X), 杨刚(Yang G), 马佳林(Ma J L), 龚俊源(Gong J Y), 黄文波(Huang W B), 陈博(Chen B). 中国环境科学(China Environmental Science), 2016, 36(6):1780.
[59] Nie X Q, Dong F Q, Bian L, Liu M X, Ding C, He H, Yang G, Sun S Y, Qin Y, Huang R, Li Z, Ren W, Wang L. ACS Sustain. Chem. Eng., 2017, 5:1494.
[60] Ding C C, Cheng W C, Sun Y B, Wang X K. Geochim. Cosmochim. Acta, 2015, 165:86.
[61] He H C, Zong M R, Dong F Q, Yang P P, Ke G L, Liu M X, Nie X Q, Ren W, Bian L. J. Radioanal. Nucl. Chem., 2017, 313:59.
[62] 张格格(Zhang G G), 刘明学(Liu M X), 董发勤(Dong F Q), 何辉超(He H C), 向沙(Xiang S), 罗浪(Luo L), 宗美荣(Zong M R). 环境科学与技术(Environmental Science and Technology), 2016, 39(11):79.
[63] 向沙(Xiang S). 西南科技大学硕士论文(Master Dissertation of Southwest University of Science and Technology), 2017.
[64] Kato S, Hashimoto K, Watanabe K. Proc. Natl. Acad. Sci. U.S.A., 2012, 109:10042.
[65] 黄杰勋(Huang J X).中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2009.
[66] 曹效鑫(Cao X X). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2009.
[67] 张丽华(Zhang L H). 南华大学硕士论文(Master Dissertation of University of South China), 2013.
[68] Kabra K, Chaudhary R, Sawhney R L. J. Hazard. Mater., 2008, 155:424.
[69] Litter M I. Pure Appl. Chem., 2015, 87:557.
[70] Odoh S O, Pan Q J, Shamov G A, Wang F Y, Fayek M, Schreckenbach G. Chem.-Eur. J., 2012, 18:7117.
[71] Shi L, Dong H L, Reguera G, Beyenal H, Lu A H, Liu J, Yu H Q, Fredrickson J K. Nat. Rev. Microbiol., 2016, 14:651.
[72] McMillan D G, Marritt S J, Butt J N, Jeuken L J. J. Biol. Chem., 2012, 287:14215.
[73] Shi L, Chen B W, Wang Z M, Elias D A, Mayer M U, Gorby Y A, Ni S S, Lower B H, Kennedy D W, Wunschel D S, Mottaz H M, Marshall M J, Hill E A, Beliaev A S, Zachara J M, Fredrickson J K, Squier T C. J. Bacteriol., 2006, 188:4705.
[74] Mitchell A C, Peterson L, Reardon C L, Reed S B, Culley D E, Romine M R, Geesey G G. Geobiology, 2012, 10:355.
[75] Lovley D R. Energ. Environ. Sci., 2011, 4:4896.
[76] Cologgi D L, Lampa-Pastirk S, Speers A M, Kelly S D, Reguera G. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:15248.
[77] Yang Y, Ding Y Z, Hu Y D, Cao B, Rice S A, Kjelleberg S, Song H. ACS Synth. Biol., 2015, 4:815.
[78] White G F, Shi Z, Shi L, Wang Z M, Dohnalkova A C, Marshall M J, Fredrickson J K, Zachara J M, Butt J N, Richardson D J, Clarke T A. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:6346.
[79] Pirbadian S, Barchinger S E, Leung K M, Byun H S, Jangir Y, Bouhenni R A, Reed S B, Romine M F, Saffarini D A, Shi L, Gorby Y A, Golbeck J H, El-Naggar M Y. Proc. Natl. Acad. Sci. U.S.A., 2014, 111:12883.
[80] Shi L, Richardson D J, Wang Z M, Kerisit S N, Rosso K M, Zachara J M, Fredrickson J K. Environ. Microbiol. Rep., 2009, 1:220.
[81] Leang C, Qian X L, Mester T, Lovley D R. Appl. Environ. Microbiol., 2010, 76:4080.
[82] Tan Y, Adhikari R Y, Malvankar N S, Ward J E, Nevin K P, Woodard T L, Smith J A, Snoeyenbos-West O L, Franks A E, Tuominen M T, Lovley D R. Front. Microbiol., 2016, 7:980.
[83] Ding D W, Li L, Shu C J, Sun X. Front. Microbiol., 2016, 7:530.
[84] Mtimunye P J, Chirwa E M. Chemosphere, 2014, 113:22.
[85] Hartshorne R S, Reardon C L, Ross D, Nuester J, Clarke T A, Gates A J, Mills P C, Fredrickson J K, Zachara J M, Shi L, Beliaev A S, Marshall M J, Tien M, Brantley S, Butt J N, Richardson D J. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:22169.
[86] Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435:1098.
[87] Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:11358.
[88] Ntarlagiannis D, Atewwana E A, Hill E A, Gorby Y. Geophys. Res. Lett., 2007, 34:L17305.
[89] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105:3968.
[90] Coursolle D, Baron D B, Bond D R, Gralnick J A. J. Bacteriol., 2010, 192:467.
[91] 刘鹏程(Liu P C), 朱雯雯(Zhu W W), 肖翔(Xiao X). 微生物学通报(Microbiology China), 2015, 42(11):2238.
[92] Tokunou Y, Hashimoto K, Okamoto A. J. Phys. Chem. C, 2016, 120:16168.
[93] Hong G Y, Pachter R. J. Phys. Chem. B, 2016, 120:5617.
[94] 丁阿强(Ding A Q), 郑平(Zheng P), 张萌(Zhang M). 浙江大学学报(农业与生命科学版) (Journal of Zhejiang University(Agriculture and Life Sciences)), 2016, 42(5):573.
[95] Li R, Tiedje J M, Chiu C C, Worden R M. Environ. Sci. Technol., 2012, 46:2813.
[96] Bouhenni R A, Vora G J, Biffinger J C, Shirodkar S, Brockman K, Ray R, Wu P, Johnson B J, Biddle E M, Marshall M J, Fitzgerald L A, Little B J, Fredrickson J K, Beliaev A S, Ringeisen B R, Saffarini D A. Electroanalysis, 2010, 22:856.
[97] Bond D R, Lovley D R. Appl. Environ. Microbiol., 2003, 69:1548.
[98] Yi H N, Nevin K P, Kim B C, Franks A E, Klimes A, Tender L M, Lovley D R. Biosens. Bioelectron., 2009, 24:3498.
[99] Nevin K P, Kim B C, Glaven R H, Johnson J P, Woodard T L, Methé B A, Didonato R J, Covalla S F, Franks A E, Liu A, Lovley D R. PLoS One, 2009, 4:e5628.
[100] Inoue K, Qian X L, Morgado L, Kim B C, Mester T, Izallalen M, Salgueiro C A, Lovley D R. Appl. Environ. Microbiol., 2010, 76:3999.
[101] Inoue K, Leang C, Franks A E, Woodard T L, Nevin K P, Lovley D R. Environ. Microbiol. Rep., 2011, 3:211.
[102] Busalmen J P, Esteve-Nuñez A, Berná A, Feliu J M. Bioelectrochemistry, 2010, 78:25.
[103] Marsili E, Sun J, Bond D R. Electroanalysis, 2010, 22:865.
[104] Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R, Sun J, Schilling C H, Lovley D R. MeTab. Eng., 2008, 10:267.
[105] Coursolle D, Gralnick J A. Mol. Microbiol., 2010, 77:995.
[106] Gregory K B, Bond D B, Lovley D R. Environ. Microbiol., 2004, 6:596.
[107] Strycharz S M, Woodard T L, Johnson J P, Nevin K P, Sanford R A, Löffler F E, Lovley D R. Appl. Environ. Microbiol., 2008, 74:5943.
[108] Strycharz S M, Glaven R H, Coppi M V, Gannon S M, Perpetua L A, Liu A, Nevin K P, Lovley D R. Bioelectrochemistry, 2011, 80:142.
[109] Lovley D R, Nevin K P. Curr. Opin. Biotechnol., 2011, 22:441.
[110] Ross D E, Flynn J M, Baron D B, Gralnick J A, Bond D R. PLoS One, 2011, 6:e16649.
[111] Dantas J M, Tomaz D M, Morgado L, Salgueiro C A. FEBS Lett., 2013, 587:2662.
[112] Dantas J M, Campelo L M, Duke N E, Salgueiro C A, Pokkuluri P R. FEBS J., 2015, 282:2215.
[113] Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. Appl. Microbiol. Biotechnol., 2014, 98:8481.
[1] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[2] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[3] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[4] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[5] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[6] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[7] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[8] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[9] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[10] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[11] Shiying Yang, Tengfei Ren, Yixuan Zhang, Di Zheng, Jia Xin. ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms [J]. Progress in Chemistry, 2017, 29(4): 388-399.
[12] Meng Depeng, Wu Juntao. Adsorption and Separation Materials Produced by Electrospinning [J]. Progress in Chemistry, 2016, 28(5): 657-664.
[13] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[14] Liu Yu, Fu Ruiqi, Lou Zimo, Fang Wenzhe, Wang Zhuoxing, Xu Xinhua. Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution [J]. Progress in Chemistry, 2015, 27(11): 1665-1678.
[15] Liu Lidan, Xiao Yong, Wu Yicheng, Chen Bilian, Zhao Feng. Electron Transfer Mediators in Microbial Electrochemical Systems [J]. Progress in Chemistry, 2014, 26(11): 1859-1866.