中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 388-399 DOI: 10.7536/PC170133 Previous Articles   Next Articles

• Review •

ZVI/Oxidant Systems Applied in Water Environment and Their Electron Transfer Mechanisms

Shiying Yang1,2,3*, Tengfei Ren1,3, Yixuan Zhang3, Di Zheng3, Jia Xin1,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21677135).
PDF ( 2142 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the use of zero-valent iron (ZVI) for treatment of toxic contaminants in water system has been widely investigated. In the presence of oxidant, such as oxygen (O2) or hydrogen peroxide (H2O2), the electron transfer processes among ZVI, oxidants and contaminants are extremely complex, and the interaction mechanisms between ZVI and oxidants are still inconclusive. Generally speaking, O2 can promote the formation of iron oxide layer via corrosion of ZVI by water and oxygen, which may block the outward electron transfer and then decrease the reductive ability of ZVI. However, O2 could be activated via two-electron reduction pathway to produce H2O2, thereby forming ZVI/O2 Fenton-like system. Based on this, the extra addition of H2O2, peroxymonosulfate (HSO5-) or persulfate (S2O82-) can react with ZVI and the generated Fe2+ and then produce strong oxidizing hydroxyl radicals (·OH) and sulfate radicals (SO4·-), which can efficiently degrade organic contaminants through advanced oxidation processes (ZVI-AOPs). Otherwise, some researchers recently propose another critical role of common oxidants in accelerating ZVI corrosion and then hence in facilitating the electron transfer rate and promoting the reductive performance of ZVI. The combination of ZVI and oxidants can not only show significant synergistic degradation between heavy metals and organic contaminants, but also achieve the degradation and mineralization of refractory pollutants through reduction through ZVI firstly and then oxidation through AOPs. This review summarizes the ZVI-AOPs system and ZVI-reduction system based on the interaction between ZVI and oxidants and their electron transfer processes, as well as makes a summary of the associative effect of ZVI and oxidants. At last, the prospects of the research areas meriting further investigation are pointed out.

Contents
1 Introduction
2 Advanced oxidation processes
2.1 ZVI/oxidant advanced oxidation system
2.2 Physically enhanced ZVI/oxidant system
2.3 Chemically enhanced ZVI/oxidant system
3 Reduction processes
3.1 ZVI/O2 reduction system
3.2 ZVI/H2O2 reduction system
3.3 ZVI/PS reduction system
3.4 ZVI/other oxidants reduction system
4 Associative mechanisms of ZVI and oxidants
4.1 Simultaneous removal of combined pollutants
4.2 Removal of refractory pollutants
5 Conclusion

CLC Number: 

[1] Fu F, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194.
[2] Sun Y, Li J, Huang T, Guan X. Water Res., 2016, 100: 277.
[3] Guan X, Sun Y, Qin H, Li J, Lo I M C, He D, Dong H. Water Res., 2015, 75: 224.
[4] Xin J, Tang F, Zheng X, Shao H, Kolditz O, Lu X. Water Res., 2016, 100: 80.
[5] Noubactep C. Environ. Technol., 2008, 29(8): 909.
[6] Flury B, Frommer J, Eggenberger U, Mãder U, Nachtegaal M, Kretzschmar R. Environ. Sci. Technol., 2009, 43(17): 6786.
[7] Brillas E, Sirés I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.
[8] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42(4): 1262.
[9] Zhou T, Li Y, Ji J, Wong F, Lu X. Sep. Purif. Technol., 2008, 62(3): 551.
[10] Liang C, Lai M. Environ. Eng. Sci., 2008, 25(7): 1071.
[11] Guo X, Yang Z, Liu H, Lv X, Tu Q, Ren Q, Xia X, Jing C. Sep. Purif. Technol., 2015, 146: 227.
[12] Guo X, Yang Z, Dong H, Guan X, Ren Q, Lv X, Jin X. Water Res., 2016, 88: 671.
[13] Diao Z, Xu X, Jiang D, Kong L, Sun Y, Hu Y, Hao Q, Chen H. Chem. Eng. J., 2016, 302: 213.
[14] Luo S, Yang S, Sun C, Wang X. Water Res., 2011, 45(4): 1519.
[15] 杨世迎(Yang S Y), 杨鑫(Yang X), 梁婷(Liang T), 马楠(Ma N), 王平(Wang P). 环境化学(Environmental Chemistry), 2012, 31(5): 682.
[16] Harada T, Yatagai T, Kawase Y. Chem. Eng. J., 2016, 303: 611.
[17] 赵进英(Zhao J Y). 大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2010.
[18] Nam S Y, Jeon B C, Kim Y K. Environ. Eng. Res., 2014, 19(1): 9.
[19] Kallel M, Belaid C, Boussahel R, Ksibi M, Montiel A, Elleuch B. J. Hazard. Mater., 2009, 163(2/3): 550.
[20] Chen S, Hsu H, Tsui H, Chang Y. Desalin. Water Treat., 2013, 51(7/9): 1678.
[21] Zhang W, Gao H, He J, Yang P, Wang D, Ma T, Xia H, Xu X. Sep. Purif. Technol., 2017, 172: 158.
[22] Matzek L W, Carter K E. Chem. Eng. J., 2017, 307: 650.
[23] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z), 王萍(Wang P), 刘玉红(Liu Y H), 王茂东(Wang M D). 化学进展(Progress in Chemistry), 2008, 20(9): 1433.
[24] 韩强(Hang Q), 杨世迎(Yang S Y), 杨鑫(Yang X), 邵雪停(Shao X T), 牛瑞(Niu R), 王雷雷(Wang L L). 化学进展(Progress in Chemistry), 2012, 24(1): 144.
[25] Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, Niu R. J. Hazard. Mater., 2010, 179(1/3): 552.
[26] Yang S, Li L, Xiao T, Zheng D, Zhang Y. Appl. Surf. Sci., 2016, 383: 142.
[27] Matzek L W, Carter K E. Chemosphere, 2016, 151: 178.
[28] Oh S, Kim H, Park J, Park H, Yoon C. J. Hazard. Mater., 2009, 168(1): 346.
[29] Oh S, Kang S, Chiu P C. Sci. Total Environ., 2010, 408(16): 3464.
[30] 杨世迎(Yang S Y), 马楠(Ma N), 王静(Wang J), 石超(Shi C), 冯琳玉(Feng L Y). 环境化学(Environmental Chemistry), 2013, 33(11): 2127.
[31] Ghanbari F, Moradi M, Manshouri M. J. Environ. Chem. Eng., 2014, 2(3): 1846.
[32] Zhou T, Zou X, Mao J, Wu X. Appl. Catal. B-Environ., 2016, 185: 31.
[33] Lee Y, Lo S, Chiueh P, Liou Y, Chen M. Water Res., 2010, 44(3): 886.
[34] Devi L G, Srinivas M, Arunakumari M L. J. Water Process Eng., 2016, 13: 117.
[35] Gao Y, Zhang Z, Li S, Liu J, Yao L, Li Y, Zhang H. Appl. Catal. B-Environ., 2016, 185: 22.
[36] Li Y, Yuan X, Wu Z, Wang H, Xiao Z, Wu Y, Chen X, Zeng G. Chem. Eng. J., 2016, 303: 636.
[37] Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X. Water Res., 2014, 62: 53.
[38] Kang J W, Hung H M, Lin A, Hoffmann M R. Environ. Sci. Technol., 1999, 33(18): 3199.
[39] Shin J, Lee Y C, Ahn Y, Yang J W. Desalin. Water Treat., 2013, 50(1/3): 737.
[40] Segura Y, Martínez F, Melero J A, Molina R, Chand R, Bremner D H. Appl. Catal. B-Environ., 2012, 113: 100.
[41] Weng C, Lin Y, Chang C, Liu N. Ultraso. Sonochem., 2013, 20(3): 970.
[42] Gholami M, Rahmani K, Rahmani A, Rahmani H, Esrafili A. Desalin. Water Treat., 2015, 57(30): 1.
[43] Zou X, Zhou T, Mao J, Wu X. Chem. Eng. J., 2014, 257: 36.
[44] Yang S Y, Wang P, Yang X, Wei G, Zhang W Y, Shan L. J. Environ. Sci., 2009, 21: 1175.
[45] Son H, Im J, Zoh K. Water Res., 2009, 43(5): 1457.
[46] Li J, Qin H, Zhang W, Shi Z, Zhao D, Guan X. Sep. Purif. Technol., 2017, 176: 40.
[47] Xiong X, Sun Y, Sun B, Song W, Sun J, Gao N, Qiao J, Guan X.RSC Adv., 2015, 5(18): 13357.
[48] Xiang W, Zhang B, Zhou T, Wu X, Mao J. Sci. Rep., 2016, 6: 24094.
[49] Hou X, Huang X, Ai Z, Zhao J, Zhang L. J. Hazard. Mater., 2016, 310: 170.
[50] Qin Y, Song F, Ai Z, Zhang P, Zhang L. Environ. Sci. Technol., 2015, 49(13): 7948.
[51] Al-Shamsi M A, Thomson N R. Water, Air, Soil Pollut., 2013, 224(11): 1780.
[52] Ayoub G, Ghauch A. Chem. Eng. J., 2014, 256: 280.
[53] Gong J, Lee C, Kim E, Chang Y, Chang Y. J. Hazard. Mater., 2016, 310: 135.
[54] Wei X, Gao N, Li C, Deng Y, Zhou S, Li L. Chem. Eng. J., 2016, 285: 660.
[55] Pagano M, Volpe A, Lopez A, Mascolo G, Ciannarella R. Environ. Technol., 2011, 32(1/2): 155.
[56] Li J, Liu Q, Ji Q Q, Lai B. Appl. Catal. B-Environ., 2017, 200: 633.
[57] Da Silva-Rackov C K O, Lawal W A, Nfodzo P A, Vianna M M G R, Do Nascimento C A O, Choi H. Appl. Catal. B-Environ., 2016, 192: 253.
[58] Joo S H. Water, Air, Soil Pollut., 2014, 225(8): 2076.
[59] Yan J, Han L, Gao W, Xue S, Chen M. Bioresour. Technol., 2015, 175: 269.
[60] Shi Q, Li A, Qing Z, Li Y. J. Ind. Eng. Chem., 2015, 25: 308.
[61] Tai C, She J, Yin Y, Zhao T, Wu L. J. Nanosci. Nanotechnol., 2016, 16(6): 5850.
[62] Ahmad A, Gu X, Li L, Lv S, Xu Y, Guo X. Environ. Sci. Pollut. Res., 2015, 22(22): 17876.
[63] Danish M, Gu X, Lu S, Xu M, Zhang X, Fu X, Xue Y, Miao Z, Naqvi M, Nasir M. Res. Chem. Intermed., 2016, 42(9): 6959.
[64] Cai C, Zhang H, Zhong X, Hou L. J. Hazard. Mater., 2015, 283: 70.
[65] Ai Z, Gao Z, Zhang L, He W, Yin J J. Environ. Sci.Technol., 2013, 47(10): 5344.
[66] Mu Y, Jia F, Ai Z, Zhang L. Environ. Sci.: Nano, 2017, 4: 27.
[67] Zhu L, Ai Z, Ho W, Zhang L. Sep. Purif. Technol., 2013, 108: 159.
[68] Li H, Wan J, Ma Y, Wang Y. Chem. Eng. J., 2016, 301: 315.
[69] Song S, Su Y, Adeleye A S, Zhang Y, Zhou X. Appl. Catal. B Environ., 2017, 201: 211.
[70] Qin H, Li J, Bao Q, Li L, Guan X. RSC Adv., 2016, 6(55): 50144.
[71] ZouY, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environ. Sci. Technol., 2016, 50(14): 7290.
[72] Cao S. Master Dissertation of Lappeenranta University of Technology, 2016.
[73] Yang Z, Shan C, Zhang W, Jiang Z, Guan X, Pan B. Water Res., 2016, 106: 461.
[74] Ji Q, Li J, Xiong Z, Lai B. Chemosphere, 2017, 172: 10.
[75] Diao Z, Xu X, Chen H, Jiang D, Yang Y, Kong L, Sun Y, Hu Y, Hao Q, Liu L. J. Hazard. Mater., 2016, 316: 186.
[76] Luo S, Yang S, Xue Y, Liang F, Sun C. J. Hazard. Mater., 2011, 192(3): 1795.
[77] Tan L, Lu S, Fang Z, Cheng W, Tsang E P. Appl. Catal. B-Environ., 2017, 200: 200.
[78] Lv Y, Zhang Z, Chen Y, Hu Y. Chem. Eng. J., 2016, 289: 382.
[79] Liu J, Ou C, Han W, Faheem F, Shen J, Bi H, Sun X, Li J, Wang L. RSC Adv., 2015, 5(71): 57444.
[80] 杨世迎(Yang S Y), 郑迪(Zheng D), 常书雅(Chang S Y), 石超(Shi C). 化学进展(Progress in Chemistry), 2016, 28(5): 754.
[81] Rajajayavel S R C, Ghoshal S. Water Res., 2015, 78: 144.
[82] Liu H, Wang Q, Wang C, Li X. Chem. Eng. J., 2013, 215: 90.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[6] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[7] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[8] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[9] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[10] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[11] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[12] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[13] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[14] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[15] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.