中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1426-1439 DOI: 10.7536/PC200771 Previous Articles   Next Articles

• Review •

Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants

Wenliang Han(), Linyang Dong   

  1. Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University,Xiamen 361021, China
  • Received: Revised: Online: Published:
  • Contact: Wenliang Han
  • Supported by:
    National Natural Science Foundation of China(41203077); Natural Science Foundation of Fujian, China(2018J01065)
Richhtml ( 83 ) PDF ( 1137 ) Cited
Export

EndNote

Ris

BibTeX

Advanced oxidation processes(AOPs) based on sulfate radical(SO4.-) have attracted more and more attention due to their high degradation ability and adaptability to new types of organic pollutants. Compared with hydroxyl radical(·OH), SO4.- has better selectivity, higher reduction potential, longer half-life, wider pH range and lower cost, so it can degrade pollutants more effectively. SO4.- can be produced by persulfate(PS) such as peroxymonosulfate(PMS), peroxydisulfate(PDS), etc. which are activated by thermal, mechanochemical, transition metal, carbonaceous materials, alkali, ultraviolet(UV), electrochemical methods, etc. Advantages and disadvantages of different activation methods and the research progress of their applications in the degradation of organic pollutants are analyzed. Three degradation mechanisms(addition, hydrogen abstraction and direct electron transfer) of pollutants with different functional groups by SO4.- are summarized. The degradation pathways, degradation products, and research progress of persistent organic pollutants(POPs), “pseudo-persistent organic pollutants”, i.e. pharmaceuticals and personal care products(PPCPs), and organic dyes by SO4.- are reviewed. Moreover, future research directions of this technique are prospected.

Contents

1 Introduction

2 Activation methods of persulfate(PS)

2.1 Thermal activation

2.2 Mechanochemical activation

2.3 Transition metal activation

2.4 Carbonaceous materials activation

2.5 Alkali activation

2.6 Ultraviolet(UV) activation

2.7 Electrochemical activation

3 Degradation of organic pollutants by sulfate radical

3.1 Persistent organic pollutants(POPs)

3.2 Pharmaceuticals and personal care products(PPCPs)

3.3 Organic dyes

4 Conclusion and outlook

Fig. 1 Mechanism of SO4.- produced by the activation of peroxymonosulfate(PMS) or peroxydisulfate(PDS) by transition metals
Table 1 Degradation of organic pollutants by transition metal activated PS
Table 2 Degradation of organic pollutants by UV activated PS
Table 3 Advantages and disadvantages of different PS activation methods
Fig. 2 Direct electron transfer pathway for the degradation of organic pollutants by SO4.-[78]
Table 4 Degradation of POPs by SO4.-
Fig. 3 Degradation pathway of CB-28 by SO4.-[96,98]
Fig. 4 Degradation pathway of BDE-209 by SO4.-[41,50,65]
Table 5 Degradation of antibiotics by SO4.-
Table 6 Degradation of organic dyes by SO4.-
[1]
Han W L, Liu Y, Feng K W. Environ. Sci., 2020, 41(10): 4525.
(韩文亮, 刘豫, 冯凯文. 环境科学, 2020, 41(10): 4525.)
[2]
Han W L, Chen H M, Dong J J, Acta. Sci. Circumstant., 2020, 40(9): 3190.
(韩文亮, 陈海明. 董娟娟. 环境科学学报, 2020, 40(9): 3190.)
[3]
Han W L, Liu Y. Chem. In. Eng. Prog., 2021, 40(2): 1085.
(韩文亮, 刘豫. 化工进展, 2021, 40(2): 1085.)
[4]
Han W L, Zheng X Y. Acta. Sci. Circumstant., 2018, 38(2): 821.
(韩文亮. 郑小燕. 环境科学学报, 2018, 38(2): 821.)
[5]
Han W L, Chen H M. Chem. Ind. Eng. Prog., 2018, 37(1): 350.
(韩文亮, 陈海明. 化工进展, 2018, 37(1): 350.)
[6]
Han W L, Fan T, Xu B H, Feng J L, Zhang G, Wu M H, Yu Y X, Fu J M. Environ. Sci. Pollut. Res., 2016, 23(6): 5771.

doi: 10.1007/s11356-015-5792-9
[7]
Liu W H, Ji M, Zhang X, Yang J. Environm. Chem., 2007, 26(1): 58.
(刘卫华, 季民, 张昕, 杨洁. 环境化学, 2007, 26(1): 58.)
[8]
Gao L W, Minakata D, Wei Z S, Spinney R, Dionysiou D D, Tang C J, Chai L Y, Xiao R Y. Environ. Sci. Technol., 2019, 53(1): 342.

doi: 10.1021/acs.est.8b05129
[9]
Gu D M, Guo C S, Feng Q Y, Zhang Y, Xu J. Environm. Chem., 2018, 37(11): 2489.
(谷得明, 郭昌胜, 冯启言, 张远, 徐建. 环境化学, 2018, 37(11): 2489.)
[10]
Zhang S P, Chen Y, Bai S Q, Liu R P. Environ. Sci., 2019, 40(11): 5009.
(张少朋, 陈瑀, 白淑琴, 刘锐平. 环境科学, 2019, 40(11): 5009.)
[11]
Yang Y Z, Li Y P, Yang D W, Duan F, Cao H B, Environ. Sci., 2013, 34(7): 2658.
(杨岳主, 李玉平, 杨道武, 段锋, 曹宏斌. 环境科学, 2013, 34(7): 2658.)
[12]
Xu W J, Zhang G C, Zheng M X, Chen J, Wang K J. Prog. Chem., 2010, 22(5): 1002.
(徐武军, 张国臣, 郑明霞, 陈健, 王凯军. 化学进展, 2010, 22(5): 1002.)
[13]
Wang X F, Hu X L. Acta. Sci. Circumstant., 2008, 28(6): 1113.
(王西峰, (胡晓莲. 环境科学学报, 2008, 28(6): 1113.)
[14]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.

pmid: 14594393
[15]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334: 1502.

doi: 10.1016/j.cej.2017.11.059
[16]
Ferreira L C, Castro-AlfÉrez M, Nahim-Granados S, Polo-LÓpez M I, Lucas M S, Li Puma G, Fernández-Ibáñez P. Chem. Eng. J., 2020, 381: 122275.
[17]
Ghanbari F, Moradi M. Chem. Eng. J., 2017, 310: 41.

doi: 10.1016/j.cej.2016.10.064
[18]
Yang Q F, Jia N, Shen C S, Ma J Q, Wen Y Z. Environ. Sci. Pollut. Res., 2018, 25(34): 34190.
[19]
Guerra Rodríguez S, Rodríguez E, Singh D, Rodríguez Chueca J. Water, 2018, 10(12): 1828.

doi: 10.3390/w10121828
[20]
Zheng H, Bao J G, Huang Y, Xiang L J, Faheem , Ren B X, Du J K, Nadagouda M N, Dionysiou D D. Appl. Catal. B: Environ., 2019, 259: 118056.
[21]
Yang S Y, Chen Y Y, Xu H Z, Wang P, Liu Y H, Wang M D. Prog. Chem., 2008, 20(9): 1433.
(杨世迎, 陈友媛, 胥慧真, 王萍, 刘玉红, 王茂东. 化学进展, 2008, 20(9): 1433.)
[22]
Lian L S, Yao B, Hou S D, Fang J Y, Yan S W, Song W H. Environ. Sci. Technol., 2017, 51(5): 2954.

doi: 10.1021/acs.est.6b05536
[23]
Chesney A R, Booth C J, Lietz C B, Li L J, Pedersen J A. Environ. Sci. Technol., 2016, 50(13): 7095.

doi: 10.1021/acs.est.5b06294
[24]
Cai C, Zhang H, Zhong X, Hou L W. Water Res., 2014, 66: 473.

doi: 10.1016/j.watres.2014.08.039
[25]
Shah N S, He X X, Khan H M, Khan J A, O'Shea K E, Boccelli D L, Dionysiou D D. J. Hazard. Mater., 2013, 263: 584.

doi: 10.1016/j.jhazmat.2013.10.019
[26]
Chen J B, Zhou X F, Sun P Z, Zhang Y L, Huang C H. Environ. Sci. Technol., 2019, 53(20): 11774.
[27]
Wang Z Y, Shao Y S, Gao N Y, Xu B, An N, Lu X. Chem. Eng. J., 2020, 381: 122660.
[28]
Wang L, Peng L B, Xie L L, Deng P Y, Deng D Y. Environ. Sci. Technol., 2017, 51(12): 7055.

doi: 10.1021/acs.est.6b05477 pmid: 28548832
[29]
Ike I A, Orbell J D, Duke M. ACS Sustainable Chem. Eng., 2018, 6(3): 4345.

doi: 10.1021/acssuschemeng.7b04840
[30]
Hu L M, Zhang G S, Wang Q, Wang X J, Wang P. ACS Sustainable Chem. Eng., 2019, 7(13): 11662.
[31]
Huang A Z, Zhang Z M, Wang N, Zhu L H, Zou J. J. Hazard. Mater., 2016, 302: 158.

doi: 10.1016/j.jhazmat.2015.09.072
[32]
Wang N, Lv H, Zhou Y Q, Zhu L H, Hu Y, Majima T, Tang H Q. Environ. Sci. Technol., 2019, 53(14): 8302.

doi: 10.1021/acs.est.9b00486 pmid: 31149813
[33]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13): 3705.

pmid: 15296324
[34]
Fang G D, Wu W H, Deng Y M, Zhou D M. Chem. Eng. J., 2017, 323: 84.

doi: 10.1016/j.cej.2017.04.092
[35]
Liu Y, Guo W L, Guo H S, Ren X H, Xu Q. Sep. Purif. Technol., 2020, 230: 115848.
[36]
Zhang L, Zhao X F, Niu C G, Tang N, Guo H, Wen X J, Liang C, Zeng G M. Chem. Eng. J., 2019, 362: 851.

doi: 10.1016/j.cej.2019.01.078
[37]
Wang H, Gao Q, Li H T, Han B, Xia K S, Zhou C G. Chem. Eng. J., 2019, 368: 377.

doi: 10.1016/j.cej.2019.02.124
[38]
Deng J, Xu M Y, Chen Y J, Li J, Qiu C G, Li X Y, Zhou S Q. Chem. Eng. J., 2019, 366: 491.

doi: 10.1016/j.cej.2019.02.073
[39]
Wang Y, Chen S Y, Yang X, Huang X F, Yang Y H, He E K, Wang S Q, Qiu R L. Chem. Eng. J., 2017, 317: 613.

doi: 10.1016/j.cej.2017.02.070
[40]
Deng J M, Dong H R, Li L, Wang Y Y, Ning Q, Wang B, Zeng G M. Sep. Purif. Technol., 2019, 227: 115731.
[41]
Peng H J, Zhang W, Liu L, Lin K F. Chem. Eng. J., 2017, 307: 750.

doi: 10.1016/j.cej.2016.08.129
[42]
Chen X W, Yang B, Oleszczuk P, Gao Y Z, Yuan X J, Ling W T, Waigi M G. Chem. Eng. J., 2019, 364: 79.

doi: 10.1016/j.cej.2019.01.117
[43]
Liu M M, Hou L A, Li Q, Hu X J, Yu S L. RSC Adv., 2016, 6(42): 35216.
[44]
Chen L W, Zuo X, Zhou L, Huang Y, Yang S J, Cai T M, Ding D H. Chem. Eng. J., 2018, 345: 364.

doi: 10.1016/j.cej.2018.03.169
[45]
Hou L H, Li X M, Yang Q, Chen F, Wang S N, Ma Y H, Wu Y, Zhu X F, Huang X D, Wang D B. Sci. Total. Environ., 2019, 663: 453.

doi: 10.1016/j.scitotenv.2019.01.190
[46]
Kang J, Wu W C, Liu W X, Li J H, Dong C X. Bull. Environ. Contam. Toxicol., 2019, 103(1): 140.

doi: 10.1007/s00128-018-2511-5
[47]
Du J K, Bao J G, Liu Y, Kim S H, Dionysiou D D. Chem. Eng. J., 2019, 376: 119193.
[48]
Li J, Ren Y, Ji F Z, Lai B. Chem. Eng. J., 2017, 324: 63.

doi: 10.1016/j.cej.2017.04.104
[49]
Zhang J, Shao X T, Shi C, Yang S Y. Chem. Eng. J., 2013, 232: 259.

doi: 10.1016/j.cej.2013.07.108
[50]
Li H H, Zhu F, He S Y. Ecotoxicol. Environ. Saf., 2019, 183: 109540.
[51]
Zhang L B, Shen S Y. J. Ind. Eng. Chem., 2020, 83: 123.

doi: 10.1016/j.jiec.2019.11.020
[52]
Li J B, Hussain A, Li D X, Yang M, Xu S H. Environ. Sci. Pollut. Res., 2017, 24(8): 7264.

doi: 10.1007/s11356-017-8379-9
[53]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.)

doi: 10.7536/PC170310
[54]
Sun T, Fu Y T, Li K, Xu Y M, Sun Y B. Environ. Sci., 2020, 41(7): 3426.
(孙彤, 付宇童, 李可, 徐应明, 孙约兵. 环境科学, 2020, 41(7): 3426.)
[55]
Liang J, Xu X Y, Qamar Zaman W, Hu X F, Zhao L, Qiu H, Cao X D. Chem. Eng. J., 2019, 375: 121908.
[56]
Wang B, Li Y N, Wang L. Chemosphere, 2019, 237: 124454.
[57]
Pi Z J, Li X M, Wang D B, Xu Q X, Tao Z, Huang X D, Yao F B, Wu Y, He L, Yang Q. J. Clean. Prod., 2019, 235: 1103.

doi: 10.1016/j.jclepro.2019.07.037
[58]
Yang C D, Zong Y T, Lu S G. Environ. Sci., 2020, 41(4): 1914.
(杨彩迪, 宗玉统, 卢升高. 环境科学, 2020, 41(4): 1914.)
[59]
Liu C, Chen L W, Ding D H, Cai T M. Appl. Catal. B: Environ., 2019, 254: 312.

doi: 10.1016/j.apcatb.2019.05.014
[60]
Li X T, Wang J, Duan X G, Li Y, Fan X B, Zhang G L, Zhang F B, Peng W C. ACS Catal., 2021, 11(8): 4848.

doi: 10.1021/acscatal.0c05089
[61]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817
[62]
Xiao P F, An L, Han S. Chem. Ind. Eng. Prog., 2020, 39(8): 3293.
(肖鹏飞, 安璐, 韩爽. 化工进展, 2020, 39(8): 3293.)
[63]
Dominguez C M, Rodriguez V, Montero E, Romero A, Santos A. Sep. Purif. Technol., 2020, 241: 116679.
[64]
Wang Y F, Li Y B, Wang Y B, Qi F J, Zhao K, Tian S C, Guo T, Guan W, Zhao X. Environ. Sci., 2017, 38(3): 1061.
(王云飞, 李一兵, 王彦斌, 齐璠静, 赵凯, 田世超, 郭涛, 关伟, 赵旭. 环境科学, 2017, 38(3): 1061.)
[65]
Peng H J, Xu L Y, Zhang W, Liu F W, Lu X, Lu W, Danish M, Lin K F. Sci. Total. Environ., 2017, 574: 307.

doi: 10.1016/j.scitotenv.2016.09.057
[66]
Ge Y J, Cai X W, Lin H, Xu M Y, Shen Y T, Zhou D, Qian M J, Deng J. Environm. Sci., 2017, 38(12): 5116.
(葛勇建, 蔡显威, 林翰, 徐梦苑, 沈一挺, 周丹, 钱梦洁, 邓靖. 环境科学, 2017, 38(12): 5116.)
[67]
Serna-Galvis E A, Ferraro F, Silva-Agredo J, Torres-Palma R A. Water Res., 2017, 122: 128.

doi: S0043-1354(17)30429-3 pmid: 28599158
[68]
Albini A, Monti S. Chem. Soc. Rev., 2003, 32(4): 238.

doi: 10.1039/b209220b
[69]
Tan C Q, Gao N Y, Deng Y, Zhang Y J, Sui M H, Deng J, Zhou S Q. J. Hazard. Mater., 2013, 260: 1008.

doi: 10.1016/j.jhazmat.2013.06.060
[70]
Liu X W, Zhang T Q, Zhou Y C, Fang L, Shao Y. Chemosphere, 2013, 93(11): 2717.

doi: 10.1016/j.chemosphere.2013.08.090
[71]
Rodríguez-Blanco L A J, Ocampo-PÉrez R, GÓmez-Durán C F A, Mojica-Sánchez J P, Razo-Hernández R S. Environ. Sci. Pollut. Res., 2020, 27(33): 41609.
[72]
Song H R, Yan L X, Ma J, Jiang J, Cai G Q, Zhang W J, Zhang Z X, Zhang J M, Yang T. Water Res., 2017, 116: 182.

doi: 10.1016/j.watres.2017.03.035
[73]
Shin Y U, Yoo H Y, Ahn Y Y, Kim M S, Lee K, Yu S, Lee C, Cho K, Kim H I, Lee J. Appl. Catal. B: Environ., 2019, 254: 156.

doi: 10.1016/j.apcatb.2019.04.060
[74]
Song H R, Yan L X, Jiang J, Ma J, Zhang Z X, Zhang J M, Liu P X, Yang T. Water Res., 2018, 128: 393.

doi: 10.1016/j.watres.2017.10.018
[75]
Song H R, Yan L X, Jiang J, Ma J, Pang S Y, Zhai X D, Zhang W, Li D. Chem. Eng. J., 2018, 344: 12.

doi: 10.1016/j.cej.2018.03.050
[76]
Liu Y M, Fan X F, Quan X, Fan Y F, Chen S, Zhao X Y. Environ. Sci. Technol., 2019, 53(9): 5195.

doi: 10.1021/acs.est.8b06130
[77]
Farhat A, Keller J, Tait S, Radjenovic J. Environ. Sci. Technol., 2015, 49(24): 14326.
[78]
Li X J, Liao F Z, Ye L M, Liu Z L. Chem. Ind. Eng. Prog., 2019, 38(10): 4712.
(李小娟, 廖凤珍, 叶兰妹, 刘政霖. 化工进展, 2019, 38(10): 4712.)
[79]
Xiao R Y, Ye T T, Wei Z S, Luo S, Yang Z H, Spinney R. Environ. Sci. Technol., 2015, 49(22): 13394.
[80]
Luo S, Wei Z S, Dionysiou D D, Spinney R, Hu W P, Chai L Y, Yang Z H, Ye T T, Xiao R Y. Chem. Eng. J., 2017, 327: 1056.

doi: 10.1016/j.cej.2017.06.179
[81]
Lin H, Zhang H. Prog. Chem., 2015, 27(8): 1123.
(林恒, (张晖. 化学进展, 2015, 27(8): 1123.)

doi: 10.7536/PC141233
[82]
Zhao Q X, Mao Q M, Zhou Y Y, Wei J H, Liu X C, Yang J Y, Luo L, Zhang J C, Chen H, Chen H B, Tang L. Chemosphere, 2017, 189: 224.

doi: 10.1016/j.chemosphere.2017.09.042
[83]
Antoniou M G, de la Cruz A A, Dionysiou D D. Appl. Catal. B: Environ., 2010, 96(3/4): 290.

doi: 10.1016/j.apcatb.2010.02.013
[84]
Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist R L, Bjerg P L. Crit. Rev. Environ. Sci. Technol., 2010, 40(1): 55.

doi: 10.1080/10643380802039303
[85]
Li H, Li J, Song P, Cheng Y X, Jiao L X, Yang Y Z. Environ. Sci., 2021, 42(1): 147.

doi: 10.1021/es071553d
(李慧, 李捷, 宋鹏, 程云轩, 焦立新, 杨亚铮. 环境科学, 2021, 42(1): 147.)
[86]
Chakraborty P, Gadhavi H, Prithiviraj B, Mukhopadhyay M, Khuman S N, Nakamura M, Spak S N. Environ. Sci. Technol., 2021, 55(14): 9469.

doi: 10.1021/acs.est.1c01460
[87]
Khan S, He X X, Khan H M, Boccelli D, Dionysiou D D. J. Photochem. Photobiol. A: Chem., 2016, 316: 37.

doi: 10.1016/j.jphotochem.2015.10.004
[88]
Zhao Y K, Wang Y Y, Ji H W, Ma W H, Chen C C, Zhao J C. Prog. Chem., 2017, 29(9): 911.
(赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城, 赵进才. 化学进展, 2017, 29(9): 911.

doi: 10.7536/PC170510
[89]
Wang R, Lu G N, Lin H Z, Huang K B, Tang T, Xue X L, Yang X J, Yin H, Dang Z. Environ. Pollut., 2017, 222: 331.

doi: S0269-7491(16)31229-5 pmid: 28034557
[90]
Dominguez C M, Romero A, Lorenzo D, Santos A. J. Environ. Manag., 2020, 261: 110240.
[91]
Fang G D, Dionysiou D D, Wang Y, Al-Abed S R, Zhou D M. J. Hazard. Mater., 2012, 227-228: 394.
[92]
Yang F, Li Q Q, Su G J, Huang X C, Li B K, Zhao Y H, Miao X, Zheng M H. Chemosphere, 2016, 150: 445.

doi: S0045-6535(15)30580-4 pmid: 26791419
[93]
Peng H J, Xu L Y, Zhang W, Liu L, Liu F W, Lin K F, Lu Q. Environ. Sci. Pollut. Res., 2017, 24(3): 2442.

doi: 10.1007/s11356-016-7965-6
[94]
Dombrowski P M, Kakarla P, Caldicott W, Chin Y, Sadeghi V, Bogdan D, Barajas-Rodriguez F, Chiang S Y D. Remediat. J., 2018, 28(2): 135.

doi: 10.1002/rem.2018.28.issue-2
[95]
Lee Y C, Li Y F, Chen M J, Chen Y C, Kuo J, Lo S L. Water Res., 2020, 174: 115618.
[96]
Qin W X, Fang G D, Wang Y J, Zhou D M. Chem. Eng. J., 2018, 348: 526.

doi: 10.1016/j.cej.2018.04.215
[97]
Zhu C Y, Fang G D, Dionysiou D D, Liu C, Gao J, Qin W X, Zhou D M. J. Hazard. Mater., 2016, 316: 232.

doi: 10.1016/j.jhazmat.2016.05.040
[98]
Fang G D, Wu W H, Liu C, Dionysiou D D, Deng Y M, Zhou D M. Appl. Catal. B: Environ., 2017, 202: 1.
[99]
Bruton T A, Sedlak D L. Chemosphere, 2018, 206: 457.

doi: 10.1016/j.chemosphere.2018.04.128
[100]
Park S, Lee L S, Medina V F, Zull A, Waisner S. Chemosphere, 2016, 145: 376.

doi: 10.1016/j.chemosphere.2015.11.097
[101]
Yang S W, Cheng J H, Sun J, Hu Y, Liang X. PLoS One, 2013, 8(10): e74877.

doi: 10.1371/journal.pone.0074877
[102]
Qin W X, Fang G D, Wang Y J, Wu T L, Zhu C Y, Zhou D M. Chemosphere, 2016, 148: 68.

doi: 10.1016/j.chemosphere.2016.01.020
[103]
Rastogi A, Al-Abed S R, Dionysiou D D. Appl. Catal. B: Environ., 2009, 85(3/4): 171.

doi: 10.1016/j.apcatb.2008.07.010
[104]
Yao C H, Zhang Y Q, Du M M, Du X D, Huang S B. Chem. Eng. J., 2019, 362: 262.

doi: 10.1016/j.cej.2019.01.040
[105]
Su C, Cui Y. Environm. Sci., 2020, 41(11): 4081.
(苏超, 崔严. 环境科学, 2020, 41(11): 4081.)
[106]
Awfa D, Ateia M, Fujii M, Johnson M S, Yoshimura C. Water Res., 2018, 142: 26.

doi: 10.1016/j.watres.2018.05.036
[107]
Su C, Cui Y, Liu D, Zhang H, Baninla Y. Sci. Total. Environ., 2020, 720: 137652.
[108]
Wang S L, Zhou N. Ultrason. Sonochemistry, 2016, 29: 156.

doi: 10.1016/j.ultsonch.2015.09.008
[109]
Mahdi Ahmed M, Barbati S, Doumenq P, Chiron S. Chem. Eng. J., 2012, 197: 440.

doi: 10.1016/j.cej.2012.05.040
[110]
Deng J, Feng S F, Zhang K J, Li J, Wang H Y, Zhang T Q, Ma X Y. Chem. Eng. J., 2017, 308: 505.

doi: 10.1016/j.cej.2016.09.075
[111]
Chen C, Liu L, Li Y X, Li W, Zhou L X, Lan Y Q, Li Y. Chem. Eng. J., 2020, 384: 123257.
[112]
Ismail L, Ferronato C, Fine L, Jaber F, Chovelon J M. Appl. Catal. B: Environ., 2017, 201: 573.

doi: 10.1016/j.apcatb.2016.08.046
[113]
Qian Y J, Xue G, Chen J B, Luo J M, Zhou X F, Gao P, Wang Q. J. Hazard. Mater., 2018, 354: 153.

doi: 10.1016/j.jhazmat.2018.05.004
[114]
Velosa A C, Nascimento C A O. Environ. Sci. Pollut. Res., 2017, 24(7): 6270.

doi: 10.1007/s11356-016-7036-z
[115]
Zhang X, Deng H H, Zhang G Q, Yang F L, Yuan G G. Chem. Eng. J., 2020, 381: 122717.
[116]
Isari A A, Payan A, Fattahi M, Jorfi S, Kakavandi B. Appl. Surf. Sci., 2018, 462: 549.

doi: 10.1016/j.apsusc.2018.08.133
[117]
Jeon P, Park S M, Baek K. Korean J. Chem. Eng., 2017, 34(5): 1305.

doi: 10.1007/s11814-017-0062-9
[118]
Zhao X F, Niu C G, Zhang L, Guo H, Wen X J, Liang C, Zeng G M. Chemosphere, 2018, 204: 11.

doi: 10.1016/j.chemosphere.2018.04.023
[119]
Lyu C, Ju L N, Yang X J, Song L, Liu N. J. Mater. Sci.: Mater. Electron., 2020, 31(6): 4797.
[120]
Wei J, Li X M, Yang Q, Wu Y, Huang X D, Tao Z, Xu Q X, Zhu X F, Wang D B. Environ. Sci. Pollut. Res., 2019, 26(13): 12963.
[121]
Ji Y F, Yang Y, Wang L, Lu J H, Ferronato C, Chovelon J M. Environ. Chem. Lett., 2019, 17(2): 1111.

doi: 10.1007/s10311-018-00836-y
[122]
Yi Q Y, Liu W Y, Tan J L, Yang B, Xing M Y, Zhang J L. Chemosphere, 2020, 244: 125539.
[1] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[2] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[3] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[4] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[5] Lin Heng, Zhang Hui. Treatment of Organic Pollutants Using Electro-Fenton and Electro-Fenton-Like Process in Aqueous Solution [J]. Progress in Chemistry, 2015, 27(8): 1123-1132.
[6] Long Anhua, Lei Yang, Zhang Hui. In Situ Chemical Oxidation of Organic Contaminated Soil and Groundwater Using Activated Persulfate Process [J]. Progress in Chemistry, 2014, 26(05): 898-908.
[7] . Treatment of Antibiotic Wastewater by Ozonation [J]. Progress in Chemistry, 2010, 22(05): 1002-1009.
[8] . Advances in the Analysis of Short Chain Chlorinated Paraffins [J]. Progress in Chemistry, 2010, 22(04): 720-726.
[9] Yang Shiying** Chen Youyuan|Xu Huizhen|Wang Ping|Liu Yuhong|Zhang Wei|Wang Maodong. A Novel Advanced Oxidation Technology: Activated Persulfate [J]. Progress in Chemistry, 2008, 20(09): 1433-1438.
[10]

Zheng Bing|Niu Haijun|Bai Xuduo**

. Organic Dye-sensitized Nanocrystalline Solar Cells [J]. Progress in Chemistry, 2008, 20(06): 828-840.
[11]

Shang Zhenhua, Zhou Liangmo

. Current Situation,Development and Applications of Membrane Affinity Chromatography [J]. Progress in Chemistry, 1995, 7(01): 47-.