中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2700-2714 DOI: 10.7536/220501 Previous Articles   Next Articles

• CONTENTS •

Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials

Hongyu Chu1,2, Tianyu Wang1,2, Chong-Chen Wang1,2()   

  1. 1 Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
    2 Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture,Beijing 100044, China
  • Received: Revised: Online: Published:
  • Contact: Chong-Chen Wang
  • Supported by:
    National Natural Science Foundation of China(22176012); Beijing Natural Science Foundation(8202016)
Richhtml ( 53 ) PDF ( 734 ) Cited
Export

EndNote

Ris

BibTeX

The pathogenic bacteria have exerted great threat to the safety of human being. Conventional antibacterial agents like antibiotics suffer from some limitations against drug-resistant bacteria. Thus, it is imperative to design novel antibacterial agents for efficient bacteria removal. Due to the tunable pores, abundant surface charge, periodically dispersed metal clusters and rich active sites, metal-organic frameworks (MOFs) can efficiently remove bacteria not only via the slowly released metal ions, but also via the corresponding advanced oxidation processes (AOPs) including photocatalysis, persulfate activation, Fenton-like reaction and photo-electrocatalysis. This review summarizes recent progress of antibacterial performances over MOFs-based AOPs catalysts (pristine MOFs, MOFs composites, MOFs derivatives and MOFs monoliths), in which the design strategies, antibacterial properties and antibacterial mechanisms are discussed. Finally, the challenges and the potential applications of MOFs-based catalysts are proposed.

Contents

1 Introduction

2 MOFs-based AOPs catalysts for bacteria removal

2.1 Pristine MOFs

2.2 Photosensitized MOFs

2.3 MOFs photo-electrodes

2.4 MOFs heterojunctions

2.5 MOFs derivatives

2.6 MOFs monoliths

3 Conclusions and outlooks

Fig. 1 (a) Illustration of antibacterial mechanism of the ultrathin Cu-TCPP(BA)-MOF[49] (Copyright 2022, Elsevier); (b) The synthetic process of Zn50Co50-ZIF[47] (Copyright 2019, Springer Nature); (c) Illustration of the enhanced bactericidal mechanism over PCN-224(Zr/Ti) and the application of PCN-224(Zr/Ti) for wound healing[54] (Copyright 2020, John Wiley and Sons); (d) Illustration of the proposed ROS production mechanisms over PCN-224-Zn[55] (Copyright 2022, Elsevier)
Fig. 2 (a) Schematic illustration of the disinfection mechanism of Polydopamine (PDA)-modified MOF-PDA[57] (Copyright 2021, Elsevier); (b) Schematic illustration of fabrication and photo-inspired disinfection of Chlorin e6-modified ZIF-8[58] (Copyright 2020, Elsevier)
Fig. 3 The solar-driven photo-electrocatalytic antibacterial mechanism over Zr-NDC-2NH2 [61] (Copyright 2022, Elsevier)
Fig. 4 The construction strategies for MOFs-based heterojunctions (MOF is represented by A, the precursor of MOFs is represented by A’, other materials are represented by B or C, and the precursor of other materials is represented by B’ or C’)
Fig. 5 (a) Photoinduced antibacterial mechanisms of Ag/Ag3PO4-IRMOF-1 under visible light[68] (Copyright 2020, John Wiley and Sons); (b) Possible mechanisms of ROS generation and sterilization process over MIL-88B@COF-200@10%PANI under visible light[72] (Copyright 2021, Elsevier); (c) Proposed mechanisms of E. coli removal over Ag/ZIF-67@GO and PMS under visible light[74] (Copyright 2021, Elsevier)
Fig. 6 (a) The ROS generation process and photothermal effects against bacteria over PB-PCN-224 under 660 nm light[79] (Copyright 2021, Elsevier); (b) The core-shell structure, the bacteria killing processes, and rational photocatalytic mechanism for PB@TCPP@UiO-66[80] (Copyright 2019, American Chemical Society); (c) The photogenerated charges transfer/separation mechanisms over Zn0.05TiOxNy@SCN/Zn0.05TiOxNy@MOF-5[82] (Copyright 2020, Elsevier); (d) The plausible mechanism of MnO2/ZIF-8 against E. coli under solar light[85] (Copyright 2021, Elsevier); (e) The antibacterial mechanism of ZIF-8@Zn-MoS2 heterojunction under 660 nm light[87] (Copyright 2022, Elsevier)
Table 1 AOPs disinfection over different MOFs heterojunctions
Fig. 7 (a) Mechanism for the enhanced E. coli inactivation over Ag/ZnO@C[89] (Copyright 2020, Elsevier); (b) Photocatalytic mechanisms of caterpillar-like Ag-ZnO-C and its membrane[90] (Copyright 2022, Royal Society of Chemistry); (c) The TEM image of C-Ti-MOF[95] (Copyright 2022, Elsevier); (d) Photothermal and photodynamic mechanism of CuS@HKUST-1 under NIR light[97] (Copyright 2020, Elsevier)
Table 2 AOPs for disinfection over MOFs derivatives
Fig. 8 (a) The disinfection mechanism of PCN-224/GQD composites[112] (Copyright 2020, Elsevier); (b) In situ anti-biofouling properties and charge transfer of CdS@MIL-101 membranes[91] (Copyright 2020, Elsevier); (c) Photocatalytic disinfection mechanisms toward Fe mesh @MIL-100(Fe)/PANI under visible light[88] (Copyright 2020, Elsevier); (d) Schematic illustration of fabrication process, photo-generated charge transfer routes, and the disinfection mechanism of UiO-66 films[117] (Copyright 2020, American Chemical Society)
Fig. 9 (a) Plausible disinfection mechanisms of KCT containing PCN-224 and Ag-NPs[118] (Copyright 2021, Elsevier); (b) Schematic illustration for the synthesis and antimicrobial activity of zirconium-based MOFs/PCL mixed-matrix membranes[119] (Copyright 2017, American Chemical Society)
[1]
Willyard C. Nature, 2017, 543(7643): 15.
[2]
Huh A J, Kwon Y J. J. Control. Release, 2011, 156(2): 128.
[3]
Joh G, Choi Y S, Shin J, Lee J. J. Water Supply Res. T., 2011, 60(4): 219.
[4]
Tan Z K, Gong J L, Fang S Y, Li J, Cao W C, Chen Z P. Appl. Surf. Sci., 2022, 590: 153059.
[5]
Ji H D, Qi J J, Zheng M S, Dang C Y, Chen L, Huang T B, Liu W. Prog. Chem., 2022, 34(01): 207.
(冀豪栋, 齐娟娟, 郑茂盛, 党晨原, 陈龙, 黄韬博, 刘文. 化学进展, 2022, 34(01): 207.).
[6]
Qi Y, Ren S S, Che Y, Ye J W, Ning G L. Acta Chim. Sin., 2020, 78(07): 613.
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲. 化学学报, 2020, 78(07): 613.).
[7]
Chai Z Z, Tian Q Z, Ye J W, Zhang S Q, Wang G Y, Qi Y, Che Y, Ning G L. J. Mater. Sci., 2020, 55(10): 4408.
[8]
Ye J W, Cheng H, Li H, Yang Y Y, Zhang S Q, Rauf A, Zhao Q, Ning G L. J. Colloid Interface Sci., 2017, 504: 448.
[9]
Li R, Chen T T, Pan X L. ACS Nano, 2021, 15(3): 3808.
[10]
Li M H, Liu Y B, Li F, Shen C S, Kaneti Y V, Yamauchi Y, Yuliarto B, Chen B, Wang C C. Environ. Sci. Technol., 2021: 55(19):13209.
[11]
Gao J K, Huang Q, Wu Y H, Lan Y Q, Chen B L. Adv. Energy Sustain. Res., 2021, 2(8): 2100033.
[12]
Li X, Wang B, Cao Y H, Zhao S, Wang H, Feng X, Zhou J W, Ma X J. ACS Sustainable Chem. Eng., 2019, 7(5): 4548.
[13]
Wang R D, He L C, Zhu R R, Jia M X, Zhou S H, Tang J S, Zhang W Q, Du L, Zhao Q H. J. Hazard. Mater., 2022, 427: 127852.
[14]
Du X D, Wang C C, Liu J G, Zhao X D, Zhong J, Li Y X, Li J, Wang P. J. Colloid Interface Sci., 2017, 506: 437.
[15]
Li J J, Wang C C, Fu H F, Cui J R, Xu P, Guo J, Li J R. Dalton Trans., 2017, 46(31): 10197.
[16]
Jing H P, Wang C C, Zhang Y W, Wang P, Li R. RSC Adv., 2014, 4(97): 54454.
[17]
Wang F X, Yi X H, Wang C C, Deng J G. Chin. J. Catal., 2017, 38(12): 2141.
[18]
Hou S L, Dong J, Jiang X L, Jiao Z H, Zhao B. Angew. Chem. Int. Ed., 2019, 58(2): 577.
[19]
Liu J L, Zhu D D, Guo C X, Vasileff A, Qiao S Z. Adv. Energy Mater., 2017, 7(23): 1700518.
[20]
Wang C Y, Fu H F, Wang P, Wang C C. Appl. Organomet. Chem., 2019, 33(8): e5021.
[21]
Wang C Y, Yu B Y, Fu H F, Wang P, Wang C C. Polyhedron, 2019, 159: 298.
[22]
Wang C Y, Ma L S, Wang C C, Wang P, Gutierrez L, Zheng W W. Environ. Funct. Mater., 2022, 1(1): 49.
[23]
Verma G, Kumar S, Vardhan H, Ren J Y, Niu Z, Pham T, Wojtas L, Butikofer S, Echeverria Garcia J C, Chen Y S, Space B, Ma S Q. Nano Res., 2021, 14(2): 512.
[24]
Chen S J, Li X J, Duan J, Fu Y, Wang Z Y, Zhu M, Li N. Chem. Eng. J., 2021, 419: 129653.
[25]
Liu A, Wang C C, Wang C Z, Fu H F, Peng W, Cao Y L, Chu H Y, Du A F. J. Colloid Interface Sci., 2018, 512: 730.
[26]
Chu H Y, Fu H F, Liu A, Wang P, Cao Y L, Du A F, Wang C C. Polyhedron, 2020, 188: 114684.
[27]
Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dincă M. Nat. Mater., 2017, 16(2): 220.

doi: 10.1038/nmat4766 pmid: 27723738
[28]
Amini S, Amiri M, Ebrahimzadeh H, Seidi S, Hejabri kandeh S. J. Food Compos. Anal., 2021, 104: 104128.
[29]
Deng Z H, Zhang W J, Zheng S R, Xu Z Y. J. Chromatogr. A, 2021, 1657: 462569.
[30]
Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Drug Discov. Today, 2016, 21(6): 1009.
[31]
Liu A, Wang C Z, Chu C, Chu H Y, Chen X, Du A F, Mao J, Zheng W W, Wang C C. J. Environ. Chem. Eng., 2018, 6(4): 4961.
[32]
Nong W Q, Wu J, Ghiladi R A, Guan Y G. Coord. Chem. Rev., 2021, 442: 214007.
[33]
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris R E, Wuttke S. Chem. Soc. Rev., 2022, 51(2): 464.

doi: 10.1039/d1cs00918d pmid: 34985082
[34]
Soltani S, Akhbari K. CrystEngComm, 2022, 24(10): 1934.
[35]
Chowdhuri A R, Das B, Kumar A, Tripathy S, Roy S, Sahu S K. Nanotechnology, 2017, 28(9): 095102.
[36]
Zhao Y, Chen L, Wang Y N, Song X Y, Li K Y, Yan X F, Yu L M, He Z Y. Nano Res., 2021, 14(12): 4417.
[37]
Li X M, Wu D H, Hua T, Lan X Q, Han S P, Cheng J H, Du K S, Hu Y Y, Chen Y C. Sci. Total. Environ., 2022, 804: 150096.
[38]
Wang C C, Wang X. Ind. Water Treat., 2020, 40(11): 1.
(王崇臣, 王恂. 工业水处理, 2020, 40(11): 1. ).
[39]
Zhao C, Li Y, Chu H Y, Pan X, Ling L, Wang P, Fu H F, Wang C C, Wang Z H. J. Hazard. Mater., 2021, 419: 126466.
[40]
Yi X H, Ma S Q, Du X D, Zhao C, Fu H F, Wang P, Wang C C. Chem. Eng. J., 2019, 375: 121944.
[41]
Wang C, Yi X H, Wang P. Appl. Catal., B., 2019, 247: 24.
[42]
Zhang W T, Huang W G, Jin J Y, Gan Y H, Zhang S J. Appl. Catal. B Environ., 2021, 292: 120197.
[43]
Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Chem. Eng. J., 2022, 429: 132495.
[44]
Tian A, Shi X G, Tan H C, Li B X, Ma J W, Yang H. Chin. J. Rare Met., 2021, 45(1): 41.
(田昂, 史晓国, 谭昊存, 李秉轩, 马嘉蔚, 杨合. 稀有金属, 2021, 45(1): 41.).
[45]
Liu X M, Zhang L, Wang J. J. Materiomics, 2021, 7(3): 440.
[46]
Ali Akbar Razavi S, Morsali A. Coord. Chem. Rev., 2019, 399: 213023.
[47]
Ahmed S A, Bagchi D, Katouah H A, Hasan M N, Altass H M, Pal S K. Sci. Rep., 2019, 9: 19372.
[48]
Chen H Y, Yuan X Z, Jiang L B, Wang H, Yu H B, Wang X X. Appl. Catal. B Environ., 2022, 302: 120823.
[49]
Bai Y, Nie G Z, He Y, Li C, Wang X B, Ye L Q. J. Taiwan Inst. Chem. Eng., 2022, 132: 104154.
[50]
Zhao Y W, Wang J N, Pei R J. J. Am. Chem. Soc., 2020, 142(23): 10331.
[51]
Chen L Z, Gong Q B, Chen Z. Prog. Chem., 2021(8): 1280.
(陈立忠, 龚巧彬, 陈哲. 化学进展, 2021(8): 1280.).
[52]
Zhao C, Pan X, Wang Z H, Wang C C. Chem. Eng. J., 2021, 417: 128022.
[53]
Qian X K, Ren Q B, Wu X F, Sun J, Wu H Y, Lei J. ChemistrySelect, 2018, 3(2): 657.
[54]
Chen M, Long Z, Dong R H, Wang L, Zhang J J, Li S X, Zhao X H, Hou X D, Shao H W, Jiang X Y. Small, 2020, 16(7): 1906240.
[55]
Jiang X, Liu S M, Wang W, Shi S L, Zeng Z X, Chen C. Appl. Surf. Sci., 2022, 575: 151769.
[56]
Feng J J, Zhang P P, Wang A J, Liao Q C, Xi J L, Chen J R. New J. Chem., 2012, 36(1): 148.
[57]
Han D L, Yu P L, Liu X M, Xu Y D, Wu S L. Rare Met., 2022, 41(2): 663.
[58]
Li J, Gopal A, Karaosmanoglu S, Lin J F, Munshi T, Zhang W J, Chen X F, Yan L. Colloids Surf. B Biointerfaces, 2020, 190: 110900.
[59]
Mu F H, Dai B L, Zhao W, Zhang L L, Xu J M, Guo X J. Chin. Chem. Lett., 2020, 31(7): 1773.
[60]
Deng X, Li R, Wu S K, Wang L, Hu J H, Ma J, Jiang W B, Zhang N, Zheng X S, Gao C, Wang L J, Zhang Q, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2019, 141(27): 10924.

doi: 10.1021/jacs.9b06239 pmid: 31200598
[61]
Valenzuela L, Amariei G, Ezugwu C I, Faraldos M, Bahamonde A, Mosquera M E G, Rosal R. Sep. Purif. Technol., 2022, 285: 120351.
[62]
Pan C, Mao Z, Yuan X, Zhang H J, Mei L, Ji X Y. Adv. Sci., 2022, 9(11): 2105747.
[63]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.
[64]
Chen D D, Yi X H, Wang C C. Chin. J. Inorg. Chem., 2020, 36(10): 1805.
(陈丹丹, 衣晓虹, 王崇臣. 无机化学学报, 2020, 36(10): 1805.).
[65]
Zhou Y C, Wang P, Fu H F, Zhao C, Wang C C. Chin. Chem. Lett., 2020, 31(10): 2645.
[66]
Liu B, Lv M Y, Jiang W, Gao B H, Li Y X, Zhou S, Wang D D, Liu C B, Che G B. CrystEngComm, 2021, 23(42): 7496.
[67]
Zhou Y C, Wang C C, Wang P, Fu H F, Zhao C. Chin. J. Inorg. Chem., 2020, 36(11): 2100.
(周云彩, 王崇臣, 王鹏, 付会芬, 赵晨. 无机化学学报, 2020, 36(11): 2100.).
[68]
Naimi Joubani M, Zanjanchi M A, Sohrabnezhad S. Appl. Organomet. Chem., 2020, 34(5): e5575.
[69]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9): e5795.
[70]
Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J, Fu X Z. J. Phys. Chem. C, 2012, 116(9): 5764.
[71]
Chen D D, Yi X H, Zhao C, Fu H F, Wang P, Wang C C. Chemosphere, 2020, 245: 125659.
[72]
Lv S W, Liu J M, Yang F E, Li C Y, Wang S. Chem. Eng. J., 2021, 409: 128269.
[73]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334: 1502.
[74]
Kohantorabi M, Giannakis S, Moussavi G, Bensimon M, Gholami M R, Pulgarin C. J. Hazard. Mater., 2021, 413: 125308.
[75]
Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Prog. Mater. Sci., 2019, 99: 1.
[76]
Li J, Liu X M, Tan L, Cui Z D, Yang X J, Liang Y Q, Li Z Y, Zhu S L, Zheng Y F, Yeung K W K, Wang X B, Wu S L. Nat. Commun., 2019, 10: 4490.
[77]
Cheng L, Gong H, Zhu W W, Liu J J, Wang X Y, Liu G, Liu Z. Biomaterials, 2014, 35(37): 9844.
[78]
Han D L, Li Y, Liu X M, Li B, Han Y, Zheng Y F, Yeung K W K, Li C Y, Cui Z D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. Chem. Eng. J., 2020, 396: 125194.
[79]
Luo Y, Liu X M, Tan L, Li Z Y, Yeung K W K, Zheng Y F, Cui Z D, Liang Y Q, Zhu S L, Li C Y, Wang X B, Wu S L. Chem. Eng. J., 2021, 405: 126730.
[80]
Luo Y, Li J, Liu X M, Tan L, Cui Z D, Feng X B, Yang X J, Liang Y Q, Li Z Y, Zhu S L, Zheng Y F, Yeung K W K, Yang C, Wang X B, Wu S L. ACS Cent. Sci., 2019, 5(9): 1591.
[81]
Oh W D, Lok L W, Veksha A, Giannis A, Lim T T. Chem. Eng. J., 2018, 333: 739.
[82]
Younis S A, Serp P, Nassar H N. J. Hazard. Mater., 2021, 410: 124562.
[83]
Wang S Q, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H P, Zhang Q Y. Biomaterials, 2020, 260: 120314.
[84]
Fei J B, Cui Y, Yan X H, Qi W, Yang Y, Wang K W, He Q, Li J B. Adv. Mater., 2008, 20(3): 452.
[85]
Liang Z D, Wang H Q, Zhang K N, Ma G, Zhu L S, Zhou L, Yan B. Chem. Eng. J., 2022, 428: 131349.
[86]
Zhu M, Liu X M, Tan L, Cui Z D, Liang Y Q, Li Z Y, Kwok Yeung K W, Wu S L. J. Hazard. Mater., 2020, 383: 121122.
[87]
Wang C F, Luo Y, Liu X M, Cui Z D, Zheng Y F, Liang Y Q, Li Z Y, Zhu S L, Lei J, Feng X B, Wu S L. Bioact. Mater., 2022, 13: 200.
[88]
An J B, Li Y L, Chen W, Li G Q, He J H, Feng H X. Environ. Res., 2020, 191: 110067.
[89]
Niu B X, Wu D P, Wang J S, Wang L, Zhang W L. Appl. Surf. Sci., 2020, 528: 146965.
[90]
Liu Y, Wan Y C, Kong C C, Cheng P, Cheng Q, Liu Q Z, Liu K, Xia M, Guo Q H, Wang D. Environ. Sci.: Nano, 2022, 9(3): 975.
[91]
Ni L F, Zhu Y J, Ma J, Wang Y Y. Water Res., 2021, 188: 116554.
[92]
Li Y X, Han Y C, Wang C C. Chem. Eng. J., 2021, 405: 126648.
[93]
Wang F, Fu H F, Wang F X, Zhang X W, Wang P, Zhao C, Wang C C. J. Hazard. Mater., 2022, 423: 126998.
[94]
Sha L, Ji X X, Si H Y, Zhang L Q, Li C W, Wu Q, Zhao X, Chen H L. J. Chem. Technol. Biotechnol., 2021, 96(9): 2579.
[95]
Xie L, Yang H, Wu X, Wang L, Zhu B, Tang Y, Bai M, Li L, Cheng C, Ma T. Biosaf. Health, 2022, 4(2): 135.
[96]
Wang S H, Riedinger A, Li H B, Fu C H, Liu H Y, Li L L, Liu T L, Tan L F, Barthel M J, Pugliese G, de Donato F, Scotto D’Abbusco M, Meng X W, Manna L, Meng H, Pellegrino T. ACS Nano, 2015, 9(2): 1788.
[97]
Yu P L, Han Y J, Han D L, Liu X M, Liang Y Q, Li Z Y, Zhu S L, Wu S L. J. Hazard. Mater., 2020, 390: 122126.
[98]
Yao Y Y, Wang C H, Na J, Hossain M S A, Yan X, Zhang H, Amin M A, Qi J W, Yamauchi Y, Li J S. Small, 2022, 18(8): 2104387.
[99]
Westerhoff P, Atkinson A, Fortner J, Wong M S, Zimmerman J, Gardea-Torresdey J, Ranville J, Herckes P. Nat. Nanotechnol., 2018, 13(8): 661.

doi: 10.1038/s41565-018-0217-9 pmid: 30082812
[100]
Maynard A D, Kidd J. Nat. Nanotechnol., 2018, 13(8): 673.

doi: 10.1038/s41565-018-0230-z pmid: 30082811
[101]
Yang S J, Tang R, Dai Y N, Wang T H, Zeng Z N, Zhang L P. Sep. Purif. Technol., 2021, 279: 119524.
[102]
Zhang M, Wang G H, Wang D, Zheng Y Q, Li Y X, Meng W Q, Zhang X, Du F F, Lee S X. Int. J. Biol. Macromol., 2021, 175: 481.

doi: 10.1016/j.ijbiomac.2021.02.045 pmid: 33571589
[103]
Li P, Li J Z, Feng X, Li J, Hao Y C, Zhang J W, Wang H, Yin A X, Zhou J W, Ma X J, Wang B. Nat. Commun., 2019, 10: 2177.
[104]
Liu X L, Xiao Y, Zhang Z Y, You Z F, Li J L, Ma D X, Li B Y. Chin. J. Chem., 2021, 39(12): 3462.
[105]
Duan C, Meng J R, Wang X Q, Meng X, Sun X L, Xu Y J, Zhao W, Ni Y H. Carbohydr. Polym., 2018, 193: 82.
[106]
Jia S Y, Ji D X, Wang L M, Qin X H, Ramakrishna S. Small Struct., 2022, 3(4): 2100222.
[107]
Qian L W, Lei D, Duan X, Zhang S F, Song W Q, Hou C, Tang R H. Carbohydr. Polym., 2018, 192: 44.
[108]
Huang G H, Xu D X, Qin Z M, Liang Q, Xu C H, Lin B F. Chem. Eng. J., 2020, 395: 125181.
[109]
Firouzjaei M D, Shamsabadi A A, Aktij S A, Seyedpour S F, Sharifian Gh M, Rahimpour A, Esfahani M R, Ulbricht M, Soroush M. ACS Appl. Mater. Interfaces, 2018, 10(49): 42967.
[110]
Yang Y, Liu H L, Han M J, Sun B B, Li J B. Angew. Chem., 2016, 128(43): 13816.
[111]
Chu Z Y, Wang W N, Zhang C Y, Ruan J, Chen B J, Xu H M, Qian H S. Chem. Eng. J., 2019, 375: 121927.
[112]
Nie X L, Wu S L, Mensah A, Wang Q Q, Huang F L, Wei Q F. Chem. Eng. J., 2020, 395: 125012.
[113]
Sapsford K E, Berti L, Medintz I L. Angew. Chem. Int. Ed., 2006, 45(28): 4562.
[114]
Chen J Z, Wu X J, Yin L S, Li B, Hong X, Fan Z X, Chen B, Xue C, Zhang H. Angew. Chem., 2015, 127(4): 1226.
[115]
Yan Z P, Sun Z J, Liu X, Jia H X, Du P W. Nanoscale, 2016, 8(8): 4748.
[116]
He Y Y, Wang Y F, Shi J F, Lu X B, Liu Q L, Liu Y W, Zhu T T, Wang D B, Yang Q. Chem. Eng. J., 2022, 446: 136866.
[117]
Hao L W, Jiang R J, Fan Y, Xu J N, Tian L M, Zhao J, Ming W H, Ren L Q. ACS Sustainable Chem. Eng., 2020, 8(42): 15834.
[118]
Nie X L, Wu S L, Liao S Q, Chen J F, Huang F L, Li W, Wang Q Q, Wei Q F. J. Hazard. Mater., 2021, 416: 125786.
[119]
Liu M, Wang L, Zheng X H, Xie Z G. ACS Appl. Mater. Interfaces, 2017, 9(47): 41512.
[120]
Shi Y J, Ma J X, Chen Y N, Qian Y K, Xu B, Chu W H, An D. Sci. Total. Environ., 2022, 804: 150024.
[121]
You J H, Guo Y Z, Guo R, Liu X W. Chem. Eng. J., 2019, 373: 624.
[122]
Shi Y, Rong X, Chen C, Wu M, Takai Y, Qiu X, Wang C C, Shimasaki Y, Oshima Y. J. Fac. Agr., Kyushu Univ., 2021, 66(2): 211.
[123]
Qiu X C, Liu L, Xu W, Chen C, Li M, Shi Y H, Wu X Y, Chen K, Wang C C. Antioxidants, 2022, 11(5): 945.
[124]
Li J, Wang H, Yuan X Z, Zhang J J, Chew J W. Coord. Chem. Rev., 2020, 404: 213116.
[125]
Zhou S Y, Gao J, Zhu J Y, Peng D L, Zhang Y M, Zhang Y T. J. Membr. Sci., 2020, 610: 118219.
[126]
Wang Z Y, Qi J Y, Lu X H, Jiang H C, Wang P P, He M R, Ma J. J. Membr. Sci., 2021, 630: 119327.
[127]
Ferreira D P, Costa S M, Felgueiras H P, Fangueiro R. Key Eng. Mater., 2019, 812: 66.
[128]
Wang X P, Chen X Z, Alcântara C C J, Sevim S, Hoop M, Terzopoulou A, de Marco C, Hu C Z, de Mello A J, Falcaro P, Furukawa S, Nelson B J, Puigmartí-Luis J, Pané S. Adv. Mater., 2019, 31(27): 1970192.
[129]
Qi X Y, Chang Z Y, Zhang D, Binder K J, Shen S S, Huang Y Y S, Bai Y, Wheatley A E H, Liu H W. Chem. Mater., 2017, 29(19): 8052.
[130]
Zhang J W, Li P, Zhang X N, Ma X J, Wang B. ACS Appl. Mater. Interfaces, 2020, 12(41): 46057.
[131]
Ma D, Li P, Duan X Y, Li J Z, Shao P P, Lang Z L, Bao L X, Zhang Y Y, Lin Z G, Wang B. Angew. Chem., 2020, 132(10): 3933.
[132]
Zheng W T, Qiu J L, Yuan R R, Liu F Q. Environ. Prot. Chem. Ind., 2021(3): 287.
(郑文婷, 邱金丽, 袁冉冉, 刘福强. 化工环保, 2021(3): 287.).
[133]
Wang J S, Yi X H, Xu X T, Ji H D, Alanazi A M, Wang C C, Zhao C, Kaneti Y V, Wang P, Liu W, Yamauchi Y. Chem. Eng. J., 2022, 431: 133213.
[134]
Yi X H, Ji H D, Wang C C, Li Y, Li Y H, Zhao C, Wang A, Fu H F, Wang P, Zhao X, Liu W. Appl. Catal. B Environ., 2021, 293: 120229.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[6] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[7] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[8] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[9] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[10] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[11] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[12] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[13] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[14] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[15] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.