中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 263-280 DOI: 10.7536/PC200457 Previous Articles   Next Articles

• Review •

FeOCl and Its Intercalation Compounds: Structures, Properties and Applications

Jinling Wang1,2, Yuzhen Wen2, Hualin Wang1,2, Honglai Liu1,2, Xuejing Yang1,2,*()   

  1. 1 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2 National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology,Shanghai 200237, China
  • Received: Revised: Online: Published:
  • Contact: Xuejing Yang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21876049); National Natural Science Foundation of China(91834301); National Key R&D Program of China(2019YFC1906700)
Richhtml ( 151 ) PDF ( 2985 ) Cited
Export

EndNote

Ris

BibTeX

Iron oxychloride(FeOCl) is a typical iron-based material with layered structure. It was discovered in the 1930s, and since the 1970s, has been extensively studied as a unique host in the field of supramolecular intercalation chemistry. The modification of FeOCl is much more flexible and easier than traditional iron(hydr)oxides due to the layered structure. In 2013, our group reported that FeOCl has excellent Fenton-like activity, which shows the promising potentialities for practical applications. Inspired by the properties of FeOCl and encouraged by our result, FeOCl and its intercalation compounds have recently attracted significant attention in catalysis and energy storage. In this review, the characteristics of pristine FeOCl and its intercalation compounds are summarized, especially intercalation-induced crystal and electronic structure changes. And then we focus on the contributions made by these materials toward advanced oxidation processes(AOPs), selective oxidation, electrode materials and other fields. Finally, challenges and future perspectives are reviewed in terms of structural design and the improvement of stability.

Contents

1 Introduction

2 The preparation and structure of FeOCl

2.1 Preparation

2.2 Structure

3 Intercalation behavior

3.1 Intercalation mechanism

3.2 Intercalation-induced structural evolution

3.3 FeOCl intercalation compounds

4 Applications

4.1 Fenton-like catalysts

4.2 Other AOP catalysts

4.3 Selective oxidation catalysts

4.4 Organic synthesis catalysts

4.5 Electrode materials

4.6 Other applications

5 Conclusion and outlook

Fig. 1 The number of papers about FeOCl since 1970(a) and the number of papers dealing with the application of FeOCl since 2013(b)(The results are based on Scifinder and Web of Science, data as of March 2020)
Fig. 2 The crystal structure(a~c), octahedral geometry of [FeO4Cl2] sites(d)[22], SEM image(e) and TEM image(f) of FeOCl[9]
Fig. 3 The structure of guest between the interlayer of FeOCl(a)(from neutron diffraction)[36] and M?ssbauer spectrum of intercalation compound(b)[32]
Fig. 4 Proposed arrangement of PANI chains in the galleries of FeOCl viewed from two different directions[41]
Fig. 5 The intercalation mechanism of guests in FeOCl matrix and the typical FeOCl intercalation compounds
Table 1 Comparison of HO· formation rates for FeOCl and other iron-based materials[9]
Fig. 6 Turnover of Fe(Ⅱ)-Fe(Ⅲ) in FeOCl nanosheets upon reaction with H2O2[60]
Fig. 7 Schematic mechanism of photocatalytic-Fenton degradation of 4-CP with FeOCl/CDots[73]
Fig. 8 Schematic diagram of reaction mechanism of FeOCl-PANI system for pollutant removal at different pH[74]
Fig. 9 The structure of FeOCl/MoS2(a) and configuration of flow-through degradation experiment(b)[78]
Fig. 10 SEM image of FeOCl nanoparticle(a) and catalytic benzene hydroxylation mechanism(b)[10]
Fig. 11 Discharge and charge curves(10 mA·g-1)(a), CV patterns(1st to 10th cycles, 60 mVs·g-1)(b), cycling performance of the FeOCl/Li system(c) and XRD patterns of the FeOCl electrode(d)[11]
Fig. 12 Electrochemical properties of the FeOCl/CDCA electrode: GCD curves of FeOCl/CDCA at current densities of 2~50 mA·cm-2(a); rate performance(b); Nyquist plots of FeOCl@CDCA at 50 mA·cm-2 and insets show the enlarged image at the high-frequency region(c), the equivalent circuit used for EIS data fitting(d); schematic diagrams of functions of CDCA and FeOCl components on the electrochemical reactions(e)[12]
Fig. 13 AFM image of FeOCl nanosheet(a) and extracted nanosheet thickness profile(b); temperature-dependent magnetic susceptibility of bulk FeOCl(c) and FeOCl nanosheet(d)[98]
Fig. 14 Schematic illustration of FeOCl NSAs synthesized by a CVD method as well as a subsequent annealing treatment(a), SEM(b,c) images and TEM(d,e) images of FeOCl and α-Fe 2O3 NSAs[13]
[1]
Stark M S, Kuntz K L, Martens S J, Warren S C. Adv. Mater., 2019, 31:1808213.
[2]
Lingli Z, Ruigang X, Linjiang W. Progress in Chemistry, 2019, 31:275.
周伶俐, 谢瑞刚, 王林江. 化学进展, 2019, 31:275.
[3]
Zeng T, You Y, Wang X, Tai G, Hu T. Progress in Chemistry, 2016, 28:459.
曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 化学进展, 2016, 28:459.
[4]
Wang D Y, Luo F, Lu M, Xie X J, Huang L, Huang W. Small, 2019, 15:1804404.
[5]
Ötvös S B, PálinkÓ I, Fülöp F. Catal. Sci. Technol., 2019, 9:47.
[6]
Schäfer H. Z. Anorg. Chem., 1949, 260:279.
[7]
Whittingham M S, Jacobson A J, Editors. Intercalation Chemistry. New York: Academic Press, 1982.
[8]
Whittingham M S. US4049887A, 1977.
[9]
Yang X J, Xu X M, Xu J, Han Y F. J. Am. Chem. Soc., 2013, 135:16058.
[10]
ElMetwally A E, Eshaq G, Yehia F Z, Al-Sabagh A M, Kegnæs S. ACS Catal., 2018, 8:10668.
[11]
Zhao X Y, Zhao-Karger Z, Wang D, Fichtner M. Angew. Chem. Int. Ed., 2013, 52:13621.
[12]
Wan C C, Jiao Y, Bao W H, Gao H, Wu Y Q, Li J. J. Mater. Chem. A, 2019, 7:9556.
[13]
Wang C W, Yang S, Jiang H B, Yang H G. Chem. Eur. J., 2015, 21:18024.
[14]
Wang X, Ma Y C, Sheng X, Wang Y C, Xu H X. Nano Lett., 2018, 18:2217.

pmid: 29528661
[15]
North N A, Pearson C. Stud. Conserv., 1977, 22:146.
[16]
Dehnicke K. Angew. Chem., 1965, 77:22.
[17]
Zhang J, Jiao X L, Xia Y G, Liu F F, Pang Y P, Zhao X F, Chen D R. Chem. Eur. J., 2016, 22:9321.
[18]
Yang X J. Doctoral Dissertation of East China University of Science and Technology, 2014.
( 杨雪晶. 华东理工大学博士论文, 2014.).
[19]
Goldsztaub S. Bull. De La SociÉtÉ Française De MinÉralogie, 1935, 58:6.
[20]
Grant R W, Wiedersich H, Housley R M, Espinosa G P, Artman J O. Phys. Rev. B, 1971, 3:678.
[21]
Sengupta D, Artman J O, Sawatzky G A. Phys. Rev. B, 1971, 4:1484.
[22]
Lind M D. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1970, 26:1058.
[23]
Pieczko M E, Breen J J. Langmuir, 1995, 11:1412.
[24]
Kostiner E, Steger J. J. Solid State Chem., 1971, 3:273.
[25]
Dai Y D, Yu Z, He Y, Huang H B, Shao T, Lin J, Musa Ali A, Jiang Z Y, Hsia Y F. Chem. Phys. Lett., 2002, 358:473.
[26]
Herber R H, Maeda Y. Phys. B+C, 1980, 99:352.
[27]
Grant R W. J. Appl. Phys., 1971, 42:1619.
[28]
Herber R H. Acc. Chem. Res., 1982, 15:216.
[29]
Eckert H, Herber R H. J. Chem. Phys., 1984, 80:4526.
[30]
Herber R H, Rein A J. J. Chem. Phys., 1980, 73:6345.
[31]
Jarrige I, Cai Y Q, Shieh S R, Ishii H, Hiraoka N, Karna S, Li W H. Phys. Rev. B, 2010, 82:165121.
[32]
Herber R H, Eckert H. Phys. Rev. B, 1985, 31:34.
[33]
Kim S H, Kim H. Bull. Korean Chem. Soc., 1993, 14:132.
[34]
Gamble F R, Silbernagel B G. J. Chem. Phys., 1975, 63:2544.
[35]
Riekel C, Hohlwein D, Schöllhorn R. J. Chem. Soc. Chem. Commun., 1976:863.
[36]
Kauzlarich S M, Stanton J L, Faber J, Averill B A. J. Am. Chem. Soc., 1986, 108:7946.
[37]
Sagua A, Morán E, Alario-Franco M A, Rivera A, LeÓn C, Santamaría J, Sanz J. Int. J. Inorg. Mater., 2001, 3:293.
[38]
Kauzlarich S M, Averill B A, Teo B K. Mol. Cryst. Liq. Cryst., 1984, 107:65.
[39]
Choy J H, Yoon J B, Kim D K, Hwang S H. Inorg. Chem., 1995, 34:6524.
[40]
Maeda Y, Yamashita M, Ohshio H, Tsutsumi N, Takashima Y. Bull. Chem. Soc. Jpn., 1982, 55:3138.
[41]
Wu C G, DeGroot D C, Marcy H O, Schindler J L, Kannewurf C R, Bakas T, Papaefthymiou V, Hirpo W, Yesinowski J P. J. Am. Chem. Soc., 1995, 117:9229.
[42]
Prassides K, Bell C J, JosÉDianoux A, Wu C G, Kanatzidis M G. Phys. B: Condens. Matter, 1992, 180/181:668.
[43]
Hwang S R, Li W H, Lee K C, Lynn J W, Wu C G. Phys. Rev. B, 2000, 62:14157.
[44]
Sakaebe H, Higuchi S, Kanamura K, Fujimoto H, Takehara Z I. J. Power Sources, 1995, 56:165.
[45]
Dai Y D, Zhong Y B, Han W, Wu Y J, Chang S Q. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37:643.
戴耀东, 钟义兵, 韩薇, 伍亚军, 常树全. 南京航空航天大学学报, 2005, 37:643.
[46]
Ōya A, Yamada K, Ōtani S. J. Mater. Sci., 1982, 17:3617.
[47]
Kanamaru F, Yamanaka S, Koizumi M, Nagai S. Chem. Lett., 1974, 3:373.
[48]
Herber R H, Maeda Y. Inorg. Chem., 1981, 20:1409.
[49]
Schäfer-Stahl H, Abele R. Angew. Chem., 1980, 92:493.
[50]
Halbert T R, Scanlon J. Mater. Res. Bull., 1979, 14:415.
[51]
Palvadeau P, Coīc L, Rouxel J, MÉnil F, Fournès L. Mater. Res. Bull., 1981, 16:1055.
[52]
Siu G G, Bai Z P, Yu Z, Fang N, Shi F N, Liu R C, You X Z. Mater. Chem. Phys., 1999, 59:168.
[53]
Maguire J A, Banewicz J J. Mater. Res. Bull., 1984, 19:1573.
[54]
Banewicz J J, Maguire J A. Mater. Res. Bull., 1986, 21:93.
[55]
Kikkawa S, Kanamaru F, Koizumi M. Inorg. Chem., 1976, 15:2195.
[56]
Kikkawa S, Kanamaru F, Koizumi M. Inorg. Chem., 1980, 19:259.
[57]
Kauzlarich S M, Ellena J F, Stupik P D, Rieff W M, Averill B A. J. Am. Chem. Soc., 1987, 109:4561.
[58]
Bringley J F, Averill B A. Chem. Mater., 1990, 2:180.
[59]
Bringley J F, Averill B A. J. Chem. Soc. Chem. Commun., 1987,399.
[60]
Sun M, Chu C H, Geng F L, Lu X L, Qu J H, Crittenden J, Elimelech M, Kim J H. Environ. Sci. Technol. Lett., 2018, 5:186.
[61]
Ji X X, Wang H F, Hu P J. Rare Met., 2019, 38:783.
[62]
ElShafei G M S, Al-Sabagh A M, Yehia F Z, Philip C A, Moussa N A, Eshaq G, ElMetwally A E. Appl. Catal. B: Environ., 2018, 224:681.
[63]
ElMetwally A E, Eshaq G, Al-Sabagh A M, Yehia F Z, Philip C A, Moussa N A, ElShafei G M S. Sep. Purif. Technol., 2019, 210:452.
[64]
Li M, Wang Y G, Chen Y H, Zhang S M. Photochem. Photobiol. Sci., 2014, 13:1025.

doi: 10.1039/c4pp00076e pmid: 24770347
[65]
Zhang J, Liu G D, Wang P H, Liu S J. New J. Chem., 2017, 41:10339.
[66]
Shi X H, Cui C, Zhang L, Zhang J, Liu G D. New J. Chem., 2019, 43:16273.
[67]
Jiang L L, Zhang L, Cui C, Zhang J, Liu G D, Song J J. Mater. Lett., 2019, 240:30.
[68]
Zhang J, Yang M X, Lian Y, Zhong M L, Sha J Q, Liu G D, Zhao X F, Liu S J. Dalton Trans., 2019, 48:3476.

pmid: 30801080
[69]
Zhang J, Liu G D, Liu S J. New J. Chem., 2018, 42:6896.
[70]
Zhang J, Zhao X F, Zhong M L, Yang M X, Lian Y, Liu G D, Liu S J. Eur. J. Inorg. Chem., 2018, 2018:3080.
[71]
Zhang J, Zhan M Y, Zheng L L, Zhang C, Liu G D, Sha J Q, Liu S J, Tian S. Inorg. Chem., 2019, 58:250.
[72]
Ma Y H, Xie J, Zhang R, Hu C C, Zhao J Q. Photochem. Photobiol. Sci., 2008, 7:263.

doi: 10.1039/b714837b pmid: 18264596
[73]
Zhang J, Zhang G, Ji Q H, Lan H C, Qu J H, Liu H J. Appl. Catal. B: Environ., 2020, 266:118665.
[74]
Wang J L, Tsai M C, Lu Z Y, Li Y, Huang G T, Wang H L, Liu H L, Liao X Y, Hwang B J, Neumann A, Yang X J. ACS Omega, 2019, 4:21945.
[75]
Yang X J, Tian P F, Zhang X M, Yu X, Wu T, Xu J, Han Y F. AIChE J., 2015, 61:166.
[76]
Yang X J, Xu X M, Xu X C, Xu J, Wang H L, Semiat R, Han Y F. Catal. Today, 2016, 276:85.
[77]
Sun M, Zucker I, Davenport D M, Zhou X C, Qu J H, Elimelech M. Environ. Sci. Technol., 2018, 52:8674.
[78]
Qu S Y, Wang W H, Pan X Y, Li C L. J. Hazard. Mater., 2020, 384:121494.

pmid: 31679890
[79]
Li Z Z, Shen C S, Liu Y B, Ma C Y, Li F, Yang B, Huang M H, Wang Z W, Dong L M, Wolfgang S. Appl. Catal. B-Environ., 2020, 260:10.
[80]
Liu Y B, Zhang J, Liu F Q, Shen C S, Li F, Huang M H, Yang B, Wang Z W, Sand W. Chemosphere, 2020, 245:125604.

pmid: 31855755
[81]
Chen M D, Xu H M, Wang Q, Li D Y, Xia D S. Chem. Phys. Lett., 2018, 706:415.
[82]
Chen M D, Xu H M, Zhang X F, Li D Y, Xia D S. J. Mater. Res., 2018, 33:3549.
[83]
Chen Y Q, Liu Y P, Zhang L, Xie P C, Wang Z P, Zhou A J, Fang Z, Ma J. J. Hazard. Mater., 2018, 353:18.
[84]
Qu S Y, Li C L, Sun X, Wang J W, Luo H J, Wang S, Ta J Y, Li D Y. Sep. Purif. Technol., 2019, 224:132.
[85]
Dumbre D, Amin M H, Loh Q, Choudahry V R, Selvakannan P R, Bhargava S K. RSC Adv., 2016, 6:69334.
[86]
Mohammadi H, Karami C, Bahri M, Gilany M M, Taher M A. Inorg. Nano Met. Chem., 2017, 47:1334.
[87]
Kanamura K, Imanishi N, Fujiwara M, Takehara Z I. J. Power Sources, 1989, 26:467.
[88]
Kanamura K, Sakaebe H, Fujimoto H, Takehara Z I. J. Electrochem. Soc., 1995, 142:2126.
[89]
Zhao X Y, Ren S H, Bruns M, Fichtner M. J. Power Sources, 2014, 245:706.
[90]
Chen C, Yu T T, Yang M, Zhao X Y, Shen X D. Adv. Sci., 2019, 6:1802130.
[91]
Zhao X Y, Li Q, Yu T T, Yang M, Fink K, Shen X D. Sci. Rep., 2016, 6:19448.

pmid: 26777572
[92]
Yu T T, Li Q, Zhao X Y, Xia H, Ma L Q, Wang J L, Meng Y S, Shen X D. ACS Energy Lett., 2017, 2:2341.
[93]
Yang R J, Yu T T, Zhao X Y. J. Alloy. Compd., 2019, 788:407.
[94]
Yu T T, Yang R J, Zhao X Y, Shen X D. ChemElectroChem, 2019, 6:1761.
[95]
Luo J M, Sun M, Ritt C L, Liu X, Pei Y, Crittenden J C, Elimelech M. Environ. Sci. Technol., 2019, 53:2075.
[96]
Wang Y Y, Zhang H W, Zhu Y D, Dai Z F, Bao H M, Wei Y, Cai W P. Adv. Mater. Interfaces, 2016, 3:1500801.
[97]
Yan Z J, Chrisey D B. J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13:204.
[98]
Ferrenti A M, Klemenz S, Lei S M, Song X Y, Ganter P, Lotsch B V, Schoop L M. Inorg. Chem., 2020, 59:1176.

pmid: 31880436
[99]
Wei X, Su J, Li X H, Chen J S. Dalton Trans., 2014, 43:16173.

pmid: 25251637
[100]
Frydrych J, Machala L, Hermanek M, Medrik I, Mashlan M, Tucek J, Pechousek J, Sharma V K. Thin Solid Films, 2010, 518:5916.
[101]
Marinović-Cincović M, Wang G, Fedoroff M, Šaponjić Z V, Milonjić S K, Nedeljković J M. Mater. Sci. Forum, 2006, 518:63.
[102]
Notestein J M, Katz A. Chem. Eur. J., 2006, 12:3954.
[103]
Rao C R, Cheetham A K, Thirumurugan A. J. Phys.: Condens. Matter, 2008, 20:159801.
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[3] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[4] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[5] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[6] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[7] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[8] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[9] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[10] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[11] Min Li, Yanli Wang, Xiaoyan Wu, Lei Duan, Chunming Zhang, Dannong He. The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery [J]. Progress in Chemistry, 2017, 29(12): 1526-1536.
[12] Yongming Zhu, Yunpeng Jiang, Huili Hu*. Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage [J]. Progress in Chemistry, 2017, 29(11): 1422-1434.
[13] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[14] Zhuang Shuxin, Lv Jianxian, Lu Mi, Liu Yimin, Chen Xiaobin. Preparation and Applications of Perovskite-Type Oxides as Electrode Materials for Solid Oxide Fuel Cell and Metal-Air Battery [J]. Progress in Chemistry, 2015, 27(4): 436-447.
[15] Cai Kedi, Zhao Xue, Tong Yujin, Xiao Yao, Gao Yong, Wang Cheng. Investigation of Technology for Lithium-Oxygen Battery [J]. Progress in Chemistry, 2015, 27(12): 1722-1731.