中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 818-837 DOI: 10.7536/PC200656 Previous Articles   Next Articles

• Original article •

Organic Compounds as Electrode Materials for Rechargeable Devices

Xiaolin Liu1, Xiya Yang1, Hailong Wang1,*(), Kang Wang1, Jianzhuang Jiang1,*()   

  1. 1 Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Hailong Wang, Jianzhuang Jiang
  • Supported by:
    National Natural Science Foundation of China(21631003); National Natural Science Foundation of China(21871024); National Natural Science Foundation of China(21805005); Fundamental Research Funds for the Central Universities(FRF-BD-18-017A)
Richhtml ( 57 ) PDF ( 587 ) Cited
Export

EndNote

Ris

BibTeX

Organic-based materials which have been explored for use as electrodes in rechargeable devices have the potential to utilize changes in charge-state of the electroactive sites to realize intrinsic redox reactions. As outlined in this review, organic electrode materials are not strictly limited to conventional Li-ion batteries, they may also be used in other metal ion batteries with larger ionic radius(such as Na+, K+, Mg2+, Zn2+). Organic electrode materials have been shown to have great application potential in rechargeable devices due to a range of advantages which include high molecular structure diversity, low cost, abundant resource, and environmental sustainability. The properties of organic electrode materials can also be readily tailored with appropriate material design. However, there are still critical issues which need to be addressed in order to facilitate the practical application of organic electrode materials, including their poor electrical conductivity and dissolution in conventional organic electrolyte systems. This review addresses organic electrode materials with various redox centers, including organosulfur compounds, organic radicals, imide-based compounds, azo compounds and carbonyl compounds through first providing an overview of their working principles. We then focus on approaches towards enhancing the electrochemical performance of carbonyl-based electrode materials. We also review the last five years of advancements relating to applications of carbonyl-based electrode materials in the field rechargeable devices. Finally, the challenges and opportunities for organic electrode materials towards practical application are outlined.

Contents

1 Introduction

2 Redox mechanism of organic electrode materials

3 Classification of organic electrode materials

3.1 Organosulfur compounds

3.2 Organic radicals

3.3 Imide-based compounds

3.4 Azo compounds

3.5 Carbonyl compounds

4 Optimization strategies in carbonyl-based electrode materials

4.1 Function-oriented molecular structural design

4.2 Nanosizing of carbonyl compounds

4.3 Hybridization with inorganic materials

4.4 Optimization of electrolyte

5 Applications of carbonyl-based electrode materials

5.1 Organic alkali metal-ion batteries

5.2 Organic multivalent metal-ion batteries

5.3 Aqueous rechargeable batteries

5.4 Organic redox flow batteries

5.5 Supercapacitors

6 Conclusion and outlook

Fig. 1 The redox reaction of three types of electroactive organics: M+demotes metal cation and A- denotes anion of the electrolyte
Scheme 1 Redox mechanism of organosulfur compounds
Fig. 2 Structure of organosulfur compounds
Scheme 2 Redox mechanism of organic radicals
Fig. 3 Typic structure of organic radical compounds
Scheme 3 Redox mechanism of imide-based compounds
Fig. 4 Typic structure of imide-based compounds
Scheme 4 Redox mechanism of azo compounds
Fig. 5 Typic structure of azo compounds
Scheme 5 Redox mechanism of carbonyl compounds
Fig. 6 Typic structure of carbonyl compounds
Fig. 7 (a) The synthetic process and electrochemical redox mechanism of C6O6. (b) Typical discharge/charge profiles of C6O6 and(c) cycling performance of C6O6[59]. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 8 (a) Structure of BBQ, BBQB and TBQB, (b) digital photographs of the corresponding soaked electrolytes by one piece of electrode for 3 days and(c) cycling performance and coulombic efficiency of BBQ, BBQB and TBQB at 0.1 C[60]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 9 Structural formulas and redox processes for(a)(-)-NDI-Δ and(b) NDI-Ref and charge/discharge curves at different current rates for(c) the(-)-NDI-Δ battery and(d) the NDI-Ref battery[61]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.10 Effects of different substituents
Fig.11 (a) Charge-discharge curves of PDI with different number(1~4) of Br substitutions[68]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA. (b) Influence of position about substituents on charge-discharge curves[69]. Copyright 2014, American Chemical Society
Fig.12 (a) Structures of AQ, BDTD, BFFD and PID. (b) Correlation between the first reduction potentials and the LUMO energies. (c) Discharge/charge profiles of the cells at 0.1 C[70]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Scheme 6 Structures of DTN and reaction mechanism for lithium-ion batteries with three participating Li ions[72]. Copyright 2020, American Chemical Society
Fig.13 Extending the π-conjugated systems from PBQS and PAQS to PPTS
Scheme 7 Sodium-ion insertion/extraction mechanism of(a) DCCA electrode and(b) TSAQ electrode. ‘A’ refers to groups reacting with the radical intermediate [74]. Copyright 2016, Springer Nature
Scheme 8 Synthetic routes to poly-(NBE-BQ) and poly-(NBE-NQ)[75]. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.14 (a) Molecular structures of P14AQ and P15AQ. (b) Long-term cycling profiles of P14AQ. (c) Discharge-capacity profiles versus cycle number for P14AQ and P15AQ at a changing current rate[76]. Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.15 (a) Schematic of gradual lithiation and delithiation of the different kinds of carbonyl groups of PIBN in discharge and charge cycles. (b) Discharge/charge profiles and(c) rate performance of PIBN and PIBN-G. (d) Cycle stability of PIBN-G[78]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.16 (a) SEM images,(b) cycling test and(c) rate capability of SR microbulk, microrod, and nanorod samples[80]. Copyright 2016, American Chemical Society
Fig.17 (a) Synthetic route and simulated structure of DAAQ-COF and illustration of the Layer-by-Layer stacking in 2D-COF with different thickness, and (b,c) electrochemical performance of the samples with different thicknesses[84]. Copyright 2019, American Chemical Society
Fig.18 (a) Schematic illustration of synthesis of crystalline 2D-PAI@CNT and energy storage process. (b) Cycling performance of 2D-PAI and 2D-PAI@CNT at 0.1 A·g-1. (c) Long-term cycling stability of 2D-PAI@CNT at 0.5 A· g - 1 [ 91 ] . Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.19 (a) Scheme of the mechanism for stabilizing the structure and improving the performance after weaving the GDY. (b) The capacity retention under different rate and(c) long-term cycling performance of PTCDA and PTCDA@GDY[92]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.20 (a)AQ dissolution experiments and electrochemical performance of AQ/CMK-3 in a sodium battery: (b) cyclic performance and(c) coulombic efficiency at a current rate of 0.2 C[94]. Copyright 2015 Royal Society of Chemistry
Fig.21 (a) Schematic of the ASSSB. (b) SEM image of cathode/electrolyte cross-section(left top) and cathode surface(right top) and corresponding EDX mapping of O and S(bottom)[97]. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 22 (a) Rate performance of PTCDA and PTCDA-based polymers for potassium storage. (b) Cycling performance of PTCDA-based polymers at 7.35 C. (c) Ragone plots of PIBs[105]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 23 (a) Cycling performance of PI@CNT as Li ion cathode. (b) Voltage profiles of PI@CNT as Mg-ion cathode at different current densities. (c) Comparison of rate performance of PI@CNT as Li, Mg and Al ion cathodes[106]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.24 (a) Illustration of the reversible reaction mechanism and(b) cycle stability at a current density of 3 A·g-1. (c) Galvanostatic discharge/charge curves of the aqueous PTO//Zn battery [108]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.25 Three-electrode assembly using 2 mol·L-1 aq. H2S O 4 - (a) GCD using 7.5 mm2 active area and(b) Cyclic stability performance(10 mA·cm-2)[113]. Copyright 2018, American Chemical Society
Fig.26 Reversible discharge specific capacity, average redox potential and the corresponding mass energy density of selected inorganic and organic electrode materials
[1]
Whittingham M S. Chem. Rev., 2014, 114(23):11414.

doi: 10.1021/cr5003003
[2]
Zhang K, Han X P, Hu Z, Zhang X L, Tao Z L, Chen J. Chem. Soc. Rev., 2015, 44(3):699.

doi: 10.1039/c4cs00218k pmid: 25200459
[3]
Kim H, Kwon J E, Lee B, Hong J, Lee M, Park S Y, Kang K. Chem. Mater., 2015, 27(21):7258.

doi: 10.1021/acs.chemmater.5b02569
[4]
Xie J, Zhang Q C. J. Mater. Chem. A, 2016, 4(19):7091.

doi: 10.1039/C6TA01069E
[5]
Naoi K, Kawase K I, Mori M, Komiyama M. J. Electrochem. Soc., 1997, 144(6):L173.

doi: 10.1149/1.1837715
[6]
Deng S R, Kong L B, Hu G Q, Wu T, Li D, Zhou Y H, Li Z Y. Electrochimica Acta, 2006, 51(13):2589.

doi: 10.1016/j.electacta.2005.07.045
[7]
Naoi K, Kawase K I, Inoue Y. J. Electrochem. Soc., 1997, 144(6):L170.

doi: 10.1149/1.1837714
[8]
Tsutsumi H, Higashiyama H, Onimura K, Oishi T. J. Power Sources, 2005, 146(1/2):345.

doi: 10.1016/j.jpowsour.2005.03.015
[9]
Wu M, Cui Y, Bhargav A, Losovyj Y, Siegel A, Agarwal M, Ma Y, Fu Y Z. Angew. Chem. Int. Ed., 2016, 55(34):10027.

doi: 10.1002/anie.v55.34
[10]
Wang D Y, Si Y B, Guo W, Fu Y Z. Adv. Sci., 2020, 7(4):1902646.

doi: 10.1002/advs.v7.4
[11]
Bhargav A, Ma Y, Shashikala K, Cui Y, Losovyj Y, Fu Y Z. J. Mater. Chem. A, 2017, 5(47):25005.

doi: 10.1039/C7TA07460C
[12]
Zhang J Y, Kong L B, Zhan L Z, Tang J, Zhan H, Zhou Y H, Zhan C M. J. Power Sources, 2007, 168(1):278.

doi: 10.1016/j.jpowsour.2007.02.043
[13]
Zhan L Z, Song Z P, Shan N, Zhang J Y, Tang J, Zhan H, Zhou Y H, Li Z Y, Zhan C M. J. Power Sources, 2009, 193(2):859.

doi: 10.1016/j.jpowsour.2009.05.015
[14]
Hansen K A, Chambers L C, Eing M, Barner-Kowollik C, Fairfull-Smith K E, Blinco J P. ChemSusChem, 2020, 13(9):2386.

doi: 10.1002/cssc.v13.9
[15]
Tokue H, Murata T, Agatsuma H, Nishide H, Oyaizu K. Macromolecules, 2017, 50(5):1950.

doi: 10.1021/acs.macromol.6b02404
[16]
Karlsson C, Suga T, Nishide H. ACS Appl. Mater. Interfaces, 2017, 9(12):10692.

doi: 10.1021/acsami.7b00403
[17]
Ok B, Na W, Kwon T H, Kwon Y W, Cho S, Hong S M, Lee A S, Lee J H, Koo C M. J. Ind. Eng. Chem., 2019, 80(25):545.

doi: 10.1016/j.jiec.2019.08.027
[18]
Hagemann T, Strumpf M, Schröter E, Stolze C, Grube M, Nischang I, Hager M D, Schubert U S. Chem. Mater., 2019, 31(19):7987.

doi: 10.1021/acs.chemmater.9b02201
[19]
Kim J K, Kim Y, Park S, Ko H, Kim Y. Energy Environ. Sci., 2016, 9(4):1264.

doi: 10.1039/C5EE02806J
[20]
Zhang J Q, Sun B, Xie X Q, Zhao Y F, Wang G X. Adv. Sci., 2016, 3(4):1500285.

doi: 10.1002/advs.v3.4
[21]
Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat. Mater., 2019, 18(1):69.

doi: 10.1038/s41563-018-0215-1
[22]
Oyaizu K, Kawamoto T, Suga T, Nishide H. Macromolecules, 2010, 43(24):10382.

doi: 10.1021/ma1020159
[23]
Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21(16):1627.

doi: 10.1002/adma.v21:16
[24]
Herraiz M L, Martínez E C, González J C, Carrasco J, Rojo T, Armand M. Energy Environ. Sci., 2015, 8(11):3233.

doi: 10.1039/C5EE01832C
[25]
Lee M, Hong J, Seo D H, Nam D H, Nam K T, Kang K, Park C B. Angew. Chem. Int. Ed., 2013, 52(32):8322.

doi: 10.1002/anie.v52.32
[26]
Hong J, Lee M, Lee B, Seo D H, Park C B, Kang K. Nat. Commun., 2014, 5:5335.

doi: 10.1038/ncomms6335
[27]
Tian B B, Ding Z J, Ning G H, Tang W, Peng C X, Liu B, Su J, Su C L, Loh K P. Chem. Commun., 2017, 53(20):2914.

doi: 10.1039/C6CC09084B
[28]
Schorpp M, Heizmann T, Schmucker M, Rein S, Weber S, Krossing I. Angew. Chem. Int. Ed., 2020, 59,9453.

doi: 10.1002/anie.v59.24
[29]
Zhao Q, Lu Y, Chen J. Adv. Energy Mater., 2017, 7(8):1601792.

doi: 10.1002/aenm.201601792
[30]
Castillo-Martínez E, Carretero-González J, Armand M. Angew. Chem. Int. Ed., 2014, 53(21):5341.

doi: 10.1002/anie.v53.21
[31]
Wu J S, Rui X H, Long G K, Chen W Q, Yan Q Y, Zhang Q C. Angew. Chem. Int. Ed., 2015, 54(25):7354.

doi: 10.1002/anie.v54.25
[32]
Zhong L Q, Lu Y, Li H X, Tao Z L, Chen J. ACS Sustainable Chem. Eng., 2018, 6(6):7761.

doi: 10.1021/acssuschemeng.8b00663
[33]
Lee W, Kwon B W, Kwon Y. ACS Appl. Mater. Interfaces, 2018, 10(43):36882.

doi: 10.1021/acsami.8b10952
[34]
Peng C X, Ning G H, Su J, Zhong G M, Tang W, Tian B B, Su C L, Yu D Y, Zu L H, Yang J H, Ng M F, Hu Y S, Yang Y, Armand M, Loh K P. Nat. Energy, 2017, 2(7):17074.

doi: 10.1038/nenergy.2017.74
[35]
Luo C, Ji X, Hou S, Eidson N, Fan X L, Liang Y J, Deng T, Jiang J J, Wang C S. Adv. Mater., 2018, 30(23):1706498.

doi: 10.1002/adma.v30.23
[36]
Luo C, Xu G L, Ji X, Hou S, Chen L, Wang F, Jiang J J, Chen Z H, Ren Y, Amine K, Wang C S. Angew. Chem. Int. Ed., 2018, 57(11):2879.

doi: 10.1002/anie.201713417
[37]
Luo C, Borodin O, Ji X, Hou S, Gaskell K J, Fan X L, Chen J, Deng T, Wang R X, Jiang J J, Wang C S. PNAS, 2018, 115(9):2004.

doi: 10.1073/pnas.1717892115
[38]
Shea J J, Luo C. ACS Appl. Mater. Interfaces, 2020, 12(5):5361.

doi: 10.1021/acsami.9b20384
[39]
Yin X, Sarkar S, Shi S, Huang Q A, Zhao H, Yan L, Zhao Y, Zhang J. Adv. Funct. Mater., 2020, 30(11):1908445.

doi: 10.1002/adfm.v30.11
[40]
Sun P F, Bai P X, Chen Z F, Su H, Yang J X, Xu K, Xu Y H. Small, 2020, 16(3):1906462.

doi: 10.1002/smll.v16.3
[41]
Liang Y L, Zhang P, Chen J. Chem. Sci., 2013, 4(3):1330.

doi: 10.1039/c3sc22093a
[42]
Hanyu Y, Ganbe Y, Honma I. J. Power Sources, 2013, 221:186.

doi: 10.1016/j.jpowsour.2012.08.040
[43]
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Solid State Ionics, 1981, 3/4:171.

doi: 10.1016/0167-2738(81)90077-1
[44]
Zhao Q, Zhu Z Q, Chen J. Adv. Mater., 2017, 29(48):1607007.

doi: 10.1002/adma.v29.48
[45]
Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H, Yoshida J I. J. Am. Chem. Soc., 2012, 134(48):19694.

doi: 10.1021/ja306663g
[46]
Park Y, Shin D S, Woo S H, Choi N S, Shin K H, Oh S M, Lee K T, Hong S Y. Adv. Mater., 2012, 24(26):3562.

doi: 10.1002/adma.201201205
[47]
Fédèle L, Ouari O, Sauvage F, Thiam A, Becuwe M. ChemSusChem, 2020, 13(9):2321.

doi: 10.1002/cssc.v13.9
[48]
Wang C L, Xu Y, Fang Y G, Zhou M, Liang L Y, Singh S, Zhao H P, Schober A, Lei Y. J. Am. Chem. Soc., 2015, 137(8):3124.

doi: 10.1021/jacs.5b00336
[49]
Wang H G, Yuan S, Ma D L, Huang X L, Meng F L, Zhang X B. Adv. Energy Mater., 2014, 4(7):1301651.

doi: 10.1002/aenm.201301651
[50]
Wang C G, Chu R R, Guan Z X, Ullah Z, Song H W, Zhang Y F, Yu C C, Zhao L Y, Li Q, Liu L W. Nanoscale, 2020, 12(7):4729.

doi: 10.1039/C9NR09237D
[51]
Wang H G, Yuan S, Si Z J, Zhang X B. Energy Environ. Sci., 2015, 8(11):3160.

doi: 10.1039/C5EE02589C
[52]
Luo W, Allen M, Raju V, Ji X L. Adv. Energy Mater., 2014, 4(15):1400554.

doi: 10.1002/aenm.201400554
[53]
Yu Y X. ACS Appl. Mater. Interfaces, 2014, 6(18):16267.

doi: 10.1021/am504452a
[54]
Shi Y, Tang H M, Jiang S L, Kayser L V, Li M Q, Liu F, Ji F, Lipomi D J, Ong S P, Chen Z. Chem. Mater., 2018, 30(10):3508.

doi: 10.1021/acs.chemmater.8b01304
[55]
Ma L, Lu D, Yang P, Xi X, Liu R L, Wu D Q. Electrochimica Acta, 2019, 319:201.

doi: 10.1016/j.electacta.2019.06.153
[56]
Schon T B, McAllister B T, Li P F, Seferos D S. Chem. Soc. Rev., 2016, 45(22):6345.

doi: 10.1039/C6CS00173D
[57]
Han X Y, Qing G Y, Sun J T, Sun T L. Angew. Chem., 2012, 124(21):5237.

doi: 10.1002/ange.201109187
[58]
Han X Y, Yi F, Sun T L, Sun J T. Electrochem. Commun., 2012, 25:136.

doi: 10.1016/j.elecom.2012.09.014
[59]
Lu Y, Hou X S, Miao L C, Li L, Shi R J, Liu L J, Chen J. Angew. Chem. Int. Ed., 2019, 58(21):7020.

doi: 10.1002/anie.v58.21
[60]
Yang J X, Xiong P X, Shi Y Q, Sun P F, Wang Z P, Chen Z F, Xu Y H. Adv. Funct. Mater., 2020, 30(15):1909597.

doi: 10.1002/adfm.v30.15
[61]
Chen D Y, Avestro A J, Chen Z H, Sun J L, Wang S J, Xiao M, Erno Z, Algaradah M M, Nassar M S, Amine K, Meng Y Z, Stoddart J F. Adv. Mater., 2015, 27(18):2907.

doi: 10.1002/adma.v27.18
[62]
Huang W W, Zhang X Q, Zheng S B, Zhou W J, Xie J, Yang Z N, Zhang Q C. Sci. China Mater., 2020, 63(3):339.

doi: 10.1007/s40843-019-1185-2
[63]
Zhu Z Q, Li H, Liang J, Tao Z L, Chen J. Chem. Commun., 2015, 51(8):1446.

doi: 10.1039/C4CC08220F
[64]
Wan W, Lee H, Yu X Q, Wang C, Nam K W, Yang X Q, Zhou H H. RSC Adv., 2014, 4(38):19878.

doi: 10.1039/C4RA01166J
[65]
Sieuw L, Jouhara A, Quarez É, Auger C, Gohy J F, Poizot P, Vlad A. Chem. Sci., 2019, 10(2):418.

doi: 10.1039/C8SC02995D
[66]
Okazaki S, Oyarna M, Nomura S. Electroanalysis, 1997, 9(16):1242.

doi: 10.1002/(ISSN)1521-4109
[67]
Vadehra G S, Maloney R P, Garcia-Garibay M A, Dunn B. Chem. Mater., 2014, 26(24):7151.

doi: 10.1021/cm503800r
[68]
Banda H, Damien D, Nagarajan K, Raj A, Hariharan M, Shaijumon M M. Adv. Energy Mater., 2017, 7(20):1701316.

doi: 10.1002/aenm.201701316
[69]
Gottis S, Barrès A L, Dolhem F, Poizot P. ACS Appl. Mater. Interfaces, 2014, 6(14):10870.

doi: 10.1021/am405470p
[70]
Liang Y L, Zhang P, Yang S Q, Tao Z L, Chen J. Adv. Energy Mater., 2013, 3(5):600.

doi: 10.1002/aenm.v3.5
[71]
Zhao H Y, Wang J W, Zheng Y H, Li J, Han X G, He G, Du Y P. Angew. Chem., 2017, 129(48):15536.

doi: 10.1002/ange.201708960
[72]
Cui C Y, Ji X, Wang P F, Xu G L, Chen L, Chen J, Kim H, Ren Y, Chen F, Yang C Y, Fan X L, Luo C, Amine K, Wang C S. ACS Energy Lett., 2020, 5(1):224.

doi: 10.1021/acsenergylett.9b02466
[73]
Tang M, Zhu S L, Liu Z T, Jiang C, Wu Y C, Li H Y, Wang B, Wang E J, Ma J, Wang C L. Chem, 2018, 4(11):2600.

doi: 10.1016/j.chempr.2018.08.014
[74]
Wu S F, Wang W X, Li M C, Cao L J, Lyu F C, Yang M Y, Wang Z Y, Shi Y, Nan B, Yu S C, Sun Z F, Liu Y, Lu Z G. Nat. Commun., 2016, 7:13318.

doi: 10.1038/ncomms13318
[75]
Shi Y Q, Sun P F, Yang J X, Xu Y H. ChemSusChem, 2020, 13(2):334.

doi: 10.1002/cssc.v13.2
[76]
Song Z P, Qian Y M, Gordin M L, Tang D H, Xu T, Otani M, Zhan H, Zhou H S, Wang D H. Angew. Chem. Int. Ed., 2015, 54(47):13947.

doi: 10.1002/anie.201506673
[77]
Li H Y, Tang M, Wu Y C, Chen Y, Zhu S L, Wang B, Jiang C, Wang E J, Wang C L. J. Phys. Chem. Lett., 2018, 9(12):3205.

doi: 10.1021/acs.jpclett.8b01285
[78]
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30):9443.

doi: 10.1002/anie.201805540
[79]
Wang S W, Wang L J, Zhang K, Zhu Z Q, Tao Z L, Chen J. Nano Lett., 2013, 13(9):4404.

doi: 10.1021/nl402239p
[80]
Wang Y Q, Ding Y, Pan L J, Shi Y, Yue Z H, Shi Y, Yu G H. Nano Lett., 2016, 16(5):3329.

doi: 10.1021/acs.nanolett.6b00954
[81]
Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Adv. Energy Mater., 2019, 9(48):1902428.

doi: 10.1002/aenm.v9.48
[82]
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12):4258.

doi: 10.1021/jacs.7b02648
[83]
Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31(29):1901640.

doi: 10.1002/adma.v31.29
[84]
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. J. Am. Chem. Soc., 2019, 141(24):9623.

doi: 10.1021/jacs.9b03467
[85]
Xiong W X, Huang W W, Zhang M, Hu P D, Cui H M, Zhang Q C. Chem. Mater., 2019, 31(19):8069.

doi: 10.1021/acs.chemmater.9b02601
[86]
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12):5330.

doi: 10.1039/C9NR00088G
[87]
Wu X, Ma J, Ma Q, Xu S, Hu Y S, Sun Y, Li H, Chen L, Huang X. J. Mater. Chem. A, 2015, 3(25):13193.

doi: 10.1039/C5TA03192C
[88]
Liu T Y, Kim K C, Lee B, Chen Z M, Noda S, Jang S S, Lee S W. Energy Environ. Sci., 2017, 10(1):205.

doi: 10.1039/C6EE02641A
[89]
Wang N, Hou D, Li Q, Zhang P F, Wei H, Mai Y Y. ACS Appl. Energy Mater., 2019, 2(8):5816.

doi: 10.1021/acsaem.9b00946
[90]
Jiang C, Tang M, Zhu S L, Zhang J D, Wu Y C, Chen Y, Xia C, Wang C L, Hu W P. Angew. Chem. Int. Ed., 2018, 57(49):16072.

doi: 10.1002/anie.v57.49
[91]
Wang G, Chandrasekhar N, Biswal B P, Becker D, Paasch S, Brunner E, Addicoat M, Yu M H, Berger R, Feng X L. Adv. Mater., 2019, 31(28):1901478.

doi: 10.1002/adma.v31.28
[92]
Li L, Zuo Z C, Wang F, Gao J C, Cao A M, He F, Li Y L. Adv. Mater., 2020, 32(14):2000140.

doi: 10.1002/adma.v32.14
[93]
Xu F, Xia J T, Shi W, Cao S A. Chem. Lett., 2016, 45(3):271.

doi: 10.1246/cl.151020
[94]
Guo C Y, Zhang K, Zhao Q, Pei L K, Chen J. Chem. Commun., 2015, 51(50):10244.

doi: 10.1039/C5CC02251G
[95]
Wang X C, Shang Z F, Yang A K, Zhang Q, Cheng F Y, Jia D Z, Chen J. Chem, 2019, 5(2):364.

doi: 10.1016/j.chempr.2018.10.018
[96]
Zhu Z Q, Hong M L, Guo D S, Shi J F, Tao Z L, Chen J. J. Am. Chem. Soc., 2014, 136(47):16461.

doi: 10.1021/ja507852t
[97]
Chi X W, Liang Y L, Hao F, Zhang Y, Whiteley J, Dong H, Hu P, Lee S, Yao Y. Angew. Chem. Int. Ed., 2018, 57(10):2505.

doi: 10.1002/anie.201801717
[98]
Zhang G, Hong Y L, Nishiyama Y, Bai S Y, Kitagawa S, Horike S. J. Am. Chem. Soc., 2019, 141(3):1227.

doi: 10.1021/jacs.8b07670
[99]
Hu Y M, Dunlap N, Wan S, Lu S L, Huang S F, Sellinger I, Ortiz M, Jin Y H, Lee S H, Zhang W. J. Am. Chem. Soc., 2019, 141(18):7518.

doi: 10.1021/jacs.9b02448
[100]
Jeong K, Park S, Jung G Y, Kim S H, Lee Y H, Kwak S K, Lee S Y. J. Am. Chem. Soc., 2019, 141(14):5880.

doi: 10.1021/jacs.9b00543
[101]
Chen J M, Xiong J W, Ji S M, Huo Y P, Zhao J W, Liang L. Prog. Chem., 2020, 32(4):481.
( 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 化学进展, 2020, 32(4):481.)

doi: 10.7536/PC190627
[102]
Zhu L, Ding G, Xie L, Cao X, Liu J, Lei X, Ma J. Chem. Mater., 2019, 31(21):8582.

doi: 10.1021/acs.chemmater.9b03109
[103]
Liu MY, Gu T T, Zhou M, Wang K L, Cheng S J, Jiang K. Energy Stor. Sci. T., 2018, 7(06):1171.
( 刘梦云, 谷天天, 周敏, 王康丽, 程时杰, 蒋凯. 储能科学与技术. 2018, 7(06):1171.)
[104]
Wang C L, Fang Y G, Xu Y, Liang L Y, Zhou M, Zhao H P, Lei Y. Adv. Funct. Mater., 2016, 26(11):1777.

doi: 10.1002/adfm.v26.11
[105]
Tong Z Q, Tian S, Wang H, Shen D, Yang R, Lee C S. Adv. Funct. Mater., 2020, 30(5):1907656.

doi: 10.1002/adfm.v30.5
[106]
Fan X L, Wang F, Ji X, Wang R X, Gao T, Hou S, Chen J, Deng T, Li X G, Chen L, Luo C, Wang L N, Wang C S. Angew. Chem. Int. Ed., 2018, 57(24):7146.

doi: 10.1002/anie.v57.24
[107]
Liang Y L, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, Yao Y. Nat. Mater., 2017, 16(8):841.

doi: 10.1038/nmat4919
[108]
Guo Z W, Ma Y Y, Dong X L, Huang J H, Wang Y G, Xia Y Y. Angew. Chem. Int. Ed., 2018, 57(36):11737.

doi: 10.1002/anie.v57.36
[109]
Dong X L, Yu H C, Ma Y Y, Bao J L, Truhlar D G, Wang Y G, Xia Y Y. Chem. Eur. J., 2017, 23(11):2560.

doi: 10.1002/chem.201700063
[110]
Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X D, Aspuru-Guzik A, Gordon R G, Aziz M J. Nature, 2014, 505(7482):195.

doi: 10.1038/nature12909 pmid: 24402280
[111]
Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Science, 2015, 349(6255):1529.

doi: 10.1126/science.aab3033
[112]
Goulet M A, Tong L C, Pollack D A, Tabor D P, Odom S A, Aspuru-Guzik A, Kwan E E, Gordon R G, Aziz M J. J. Am. Chem. Soc., 2019, 141(20):8014.
[113]
Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140(35):10941.

doi: 10.1021/jacs.8b06460
[114]
Liang Y, Yao Y. Joule, 2018, 2(9):1690.

doi: 10.1016/j.joule.2018.07.008
[115]
Zhang S N, Han D M, Ren S, Xiao M, Wang S J, Meng Y Z. Prog. Chem., 2020, 32(1):103.
( 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 化学进展, 2020, 32(1):103.)

doi: 10.7536/PC190526
[116]
Luo C, Ji X, Chen J, Gaskell K J, He X Z, Liang Y J, Jiang J J, Wang C S. Angew. Chem. Int. Ed., 2018, 57(28):8567.

doi: 10.1002/anie.v57.28
[117]
Sun T, Li Z J, Wang H G, Bao D, Meng F L, Zhang X B. Angew. Chem., 2016, 128(36):10820.

doi: 10.1002/ange.201604519
[118]
Yang Y X, Zhong Y R, Shi Q W, Wang Z H, Sun K N, Wang H L. Angew. Chem. Int. Ed., 2018, 57(47):15549.

doi: 10.1002/anie.v57.47
[119]
Zhang M, Song X, Ou X, Tang Y. Energy Stor. Mater., 2019, 16:65.
No related articles found!