中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1422-1434 DOI: 10.7536/PC170560 Previous Articles   

Special Issue: 电化学有机合成

• Review •

Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage

Yongming Zhu, Yunpeng Jiang, Huili Hu*   

  1. Falcuty of Applied Chemistry, Harbin Institute of Technology, Weihai 264209, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Major Program of Shandong Province, China(No. 2015ZDZX04002).
PDF ( 1282 ) Cited
Export

EndNote

Ris

BibTeX

Nickel-cobalt bimetallic sulfide (NiCo2S4) has a typical AB2O4 spinel structure. The conductivity of NiCo2S4 is two orders of magnitude higher than that of NiCo2O4, and its conductivity is 1.25×106 S·m-1at room temperature. In addition, NiCo2S4 provides a more efficient redox reaction than the corresponding one-component sulfide, and has great potential for its unique nanostructures and electrochemical properties. In this paper, the preparation of NiCo2S4 nanostructures and its application in electrochemical energy conversion and storage are reviewed. The morphology, physicochemical properties and synthesis methods of NiCo2S4 nano materials are introduced. Pretreatment conditions, preparation methods and growth matrix will have an effect on the morphology and properties of NiCo2S4 nanostructures. NiCo2S4 with different nanostructures (such as nanoneedles, nanowires, nanorods, nanotubes, nanocapses, nanosheets, nanostructures and hierarchical structures) can be prepared by a variety of methods (such as hydrothermal method and solvent heat method, low temperature synthesis method, anion exchange method, steam conversion method, electrodeposition method, coprecipitation method and self-assembly, etc.). Among them, hydrothermal and solvothermal are the most commonly used methods because they have the characteristics of low cost, easy handling and suitable for large scale manufacturing. The application status of NiCo2S4 nano materials in electrocatalysis, supercapacitors and lithium ion batteries is summarized. This paper analyzes and compares the preparation process, method and application of different nanostructures, hoping to promote the development of NiCo2S4 nano materials in the field of electrochemical energy conversion and storage. The development and application direction of NiCo2S4 nano materials are proposed.
Contents
1 Introduction
2 Preparation of NiCo2S4 nanostructures
3 Electrochemical application of NiCo2S4 nanostructures
3.1 Electrochemical catalysis:bifunctional electrocatalysts
3.2 Pseudocapacitive properties:supercapacitors
3.3 New electrode materials:anode material for Li-ion batteries
4 Conclusion

CLC Number: 

[1] Han S C, Hu L F, Gao N, Al-Ghamdi A A, Fang X S. Advanced Functional Materials, 2014, 24(24):3725.
[2] Xu X J, Hu L F, Gao N, Liu S X, Wageh S, Al-Ghamdi A A, Alshahire A, Fang X S. Advanced Functional Materials, 2015, 25(3):445.
[3] Han S, Wu D Q, Li S, Zhang F, Feng X L. Small, 2013, 9(8):1173.
[4] Xiao J W, Yang S H. RSC Advances, 2011, 1(4):588.
[5] Wei T Y, Chen C H, Chien H C, Lu S Y, Hu C C. Advanced Materials, 2010, 22(3):347.
[6] Chen H C, Jiang J J, Zhang L, Wan H Z, Qi T, Xia D D. Nanoscale, 2013, 5(19):8879.
[7] Xiao J W, Zeng X W, Chen W, Xiao F, Wang S. Chemical Communications, 2013, 49(100):11734.
[8] Bouchard R J, Russo P A. Inorganic Chemistry, 1965, 4(5):8.
[9] Xiao J W, Wan L, Yang S H, Wang S. Nano Letters, 2014, 14(2):831.
[10] Xia C, Li P, Gandi A N, Schwingenschl gl U, Alshareef H N. Chemistry of Materials, 2015, 27(19):6482.
[11] Wang J G, Jin D D, Zhou R, Shen C, Xie K Y, Wei B Q. Journal of Power Sources, 2016, 306:100.
[12] Zhang L S, Zuo L Z, Fan W, Liu T X. ChemElectroChem, 2016, 3(9):1384.
[13] Chen W, Xia C, Alshareef H N. ACS Nano, 2014, 8(9):9531.
[14] Wang M R, Lai Y Q, Fang J, Qin F R, Zhang Z, Li J, Zhang K. Catalysis Science & Technology, 2016, 6(2):434.
[15] Sivanantham A, Ganesan P, Shanmugam S. Advanced Functional Materials, 2016, 26(26):4661.
[16] Zhang Z Y, Wang X G, Cui G L, Zhang A H, Zhou X H, Xu H X, Gu L. Nanoscale, 2014, 6(7):3540.
[17] Liu Q, Jin J, Zhang J Y. ACS Applied Materials & Interfaces, 2013, 5(11):5002.
[18] Liu X B, Wu Z P. Materials Letters, 2016, 187:24.
[19] Chen J Z, Xu J L, Zhou S, Zhao N, Wong C P. Nano Energy, 2016, 25:193.
[20] Wang J G, Zhou R, Jin D D, Xie K Y, Wei B Q. Energy Storage Materials, 2015, 2:1.
[21] Zhou W W, Yu K, Wang D, Chu J, Li J Y, Zhao L M, Ding C Y, Du Y, Jia X T, Wang H T, Wen G W. Nanotechnology, 2016, 27(23):235402.
[22] Li Y H, Cao L J, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y H. Journal of Materials Chemistry A, 2014, 2(18):6540.
[23] Chen H C, Jiang J J, Zhang L, Xia D D, Zhao Y D, Guo D Q, Qi T, Wan H Z. Journal of Power Sources, 2014, 254(15):249.
[24] Pu J, Wang T T, Wang H Y, Tong Y, Lu C C, Kong W, Wang Z H. ChemPlusChem, 2014, 79(4):577.
[25] Yu D J, Yuan Y F, Zhang D, Yin S M, Lin J X, Rong Z, Yang J L, Chen Y B, Guo S Y. Electrochimica Acta, 2016, 198:280.
[26] Cai D P, Wang D D, Wang C X, Liu B, Wang L L, Liu Y, Li Q D,Wang T H. Electrochimica Acta, 2015, 151:35.
[27] Xiong X H, Waller G, Ding D, Chen D C, Rainwater B, Zhao B, Wang Z X, Liu M L. Nano Energy, 2015, 16:71.
[28] Chen H C, Chen S, Shao H Y, Li C, Fan M Q, Chen D, Tian G L, Shu K Y. Chemistry an Asian Journal, 2016, 11(2):248.
[29] Yang Y F, Cheng D, Chen S J, Guan Y L, Xiong J. Electrochimica Acta, 2016, 193:116.
[30] Wu Z B, Pu X L, Ji X B, Zhu Y R, Jing M J, Chen Q Y, Jiao F P. Electrochimica Acta, 2015, 174:238.
[31] Shen L F, Wang J, Xu G Y, Li H S, Dou H, Zhang X G. Advanced Energy Materials, 2015, 5(3):1400977.
[32] Peng T, Qian Z Y, Wang J, Song D L, Liu J Y, Liu Q, Wang P. Journal of Materials Chemistry A, 2014, 2(45):19376.
[33] Song Y, Chen Z L, Li Y M, Wang Q C, Fang F, Zhou Y N, Hu L F, Sun D L. Journal of Materials Chemistry A, 2017, 5:9022.
[34] Hou L R, Hua H, Bao R Q, Chen Z Y, Yang C, Zhu S Q, Pang G, Tong L N, Yuan C Z, Zhang X G. ChemPlusChem, 2016, 81(6):557.
[35] Jin R C, Liu G, Liu C P, Sun L L. Materials Research Bulletin, 2016, 80:309.
[36] Zou R J, Zhang Z Y, Yuen M F, Sun M L, Hu H Q, Lee C S, Zhang W J. NPG Asia Material, 2015, 7:e195.
[37] Lu F, Zhou M, Li W R, Weng Q H, Li C L, Xue Y M, Jiang X F, Zeng X H, Bando Y, Golberg D. Nano Energy, 2016, 26:313.
[38] Bai D X, Wang F, Lv J M, Zhang F Z, Xu S L. ACS Applied Materials & Interfaces, 2016, 8(48):32853.
[39] Zhang Y F, Ma M Z, Yang J, Sun C C, Su H Q, Huang W, Dong X C. Nanoscale, 2014, 6(16):9824.
[40] Chen H, Liu X L, Zhang J M, Dong F, Zhang Y X. Ceramics International, 2016, 42(7):8909.
[41] Li Z C, Ji X, Han J, Hu Y M, Guo R. Journal of Colloid & Interface Science, 2016, 477:46.
[42] Yang W W, Chen L A,Yang J, Zhang X, Fang C, Chen Z L, Huang L, Liu J G, Zhou Y, Zou Z G. Chemical Communications, 2016, 52(30):5258.
[43] Nguyen V H, Lamiel C, Shim J J. New Journal of Chemistry, 2016, 40(5):4810.
[44] Zhu Y R, Wu Z B, Jing M J, Yang X M, Song W X, Ji X B. Journal of Power Sources, 2015, 273:584.
[45] Zeng Z F, Wang D Z, Zhu J L, Xiao F Q, Li Y D, Zhu X H. CrystEngComm, 2016, 18(13):2363.
[46] Niu L Y, Wang Y D, Ruan F P, Shen C, Shan S, Xu M, Sun Z K, Li C, Liu X J, Gong Y Y. Journal of Materials Chemistry A, 2016, 4(15):5669.
[47] Wan H Z, Jiang J J, Yu J W, Xu K, Miao L, Zhang L, Chen H C, Ruan Y J. CrystEngComm, 2013, 15(38):7649.
[48] Pu J, Cui F L, Chu S B, Wang T T, Sheng E H, Wang Z H. ACS Sustainable Chemistry & Engineering, 2013, 2(4):809.
[49] Wen Y X, Peng S L, Wang Z L, Hao J X, Qin T F, Lu S Q, Zhang J C, He D Y, Fan X Y, Cao G Z. Journal of Materials Chemistry A, 2017, 5(15):7144.
[50] Li R, Wang S L, Huang Z C, Lu F X, He T B. Journal of Power Sources, 2016, 312:156.
[51] Hu C G, Zhai X Q, Liu L L, Zhao Y, Liang L, Qiu L T. Scientific Reports, 2013, 3(6):2065.
[52] Lee S K, Song M J, Kim J H, Kan T S, Lim Y K, Ahn J P, Lim D S. NPG Asia Materials, 2014, 6(7):e115.
[53] Zhang G Q, Xia B Y, Xiao C, Yu L, Wang X, Xie Y, Lou X W. Angewandte Chemie, 2013, 52(33):8643.
[54] Luo J S, Xia X H, Luo Y S, Guan C, Liu J L, Qi X Y, Ng C F, Yu T, Zhang H, Fan H J. Advanced Energy Materials, 2013, 3(6):737.
[55] Zhu P N, Wu Y Z, Reddy M V, Nair A S, Chowdari B V R, Ramakrishna S. RSC Advances, 2012, 2(2):531.
[56] Binitha G, Soumya M S, Madhavan A A, Praveen P, Subramanian K R V, Reddy M V, Nair S V, Nair A S, Sivakumar N. Journal of Materials Chemistry A, 2013, 1(38):11698.
[57] Li D L, Gong Y N, Pan C X. Scientific Reports, 2016, 6:29788.
[58] Li L J. Bifunctional Air Electrodes, 2014, 5:24936.
[59] Qian Y H, Hu Z G, Ge X M, Yang S L, Peng Y W, Kang Z X, Liu Z L, Lee J Y, Zhao D. Carbon, 2016, 111:641.
[60] Lyons M E G, Brandon M P. International Journal of Electrochemical Science, 2008, 3:1425.
[61] Chen P Z, Xu K, Fang Z W, Tong Y, Wu J C, Lu X L, Peng X, Ding H, Wu C Z, Xie Y. Angewandte Chemie, 2015, 54(49):14710.
[62] Jervis R, Mansor N, Gibbs C, Murray C A, Tang C U, Shearing P R, Brett D J L. Journal of the Electrochemical Society, 2014, 161(4):F458.
[63] Wu J B, Li Z G, Huang X H, Lin Y. Journal of Power Sources, 2013, 224(5):1.
[64] Chen D Y, Mei X, Ji G, Lu M H, Xie J P, Lu J M, Lee J Y. Angewandte Chemie, 2012, 51(10):2409.
[65] Chen Y J, Qu B H, Mei L, Lei D N, Chen L B, Li Q H, Wang T H. Journal of Materials Chemistry, 2012, 22(48):25373.
[66] Zhu J, Xu Z, Lu B G. Nano Energy, 2014, 7(7):114.
[67] Li J F, Xiong S L, Liu Y R, Ju Z C, Qian Y T. ACS Applied Materials & Interfaces, 2013, 5(3):981.
[68] Shen L F, Che Q, Li H S, Zhang X G. Advanced Functional Materials, 2014, 24(18):2630.
[69] Yamaguchi Y, Takeuchi T, Sakaebe H, Kageyama H, Seno H, Sakai T, Tatsumib K. Journal of the Electrochemical Society, 2010, 157(6):A630.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[6] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[7] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[8] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[9] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[13] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[14] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[15] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.