中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 633-648 DOI: 10.7536/PC200528 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Electrode Materials for Flexible Lithium-Ion Battery

Changhuan Zhang1, Nianwu Li2, Xiuqin Zhang1()   

  1. 1 Beijing Key Laboratory of Clothing Materials R & D and Assessment,Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2 College of Chemistry and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: Xiuqin Zhang
  • Supported by:
    the Key Project of Science for Beijing Institute of Fashion Technology(2020A-04); the Special Fund for High-Level Teachers of Beijing Institute of Fashion Technology(BIFTXJ201917); the Beijing Great Wall Scholars Incubator Program(CTT&TCD20180321); and the Research of High-Performance Multi-Functional Winter Olympic Clothing(Z181100005918005)
Richhtml ( 92 ) PDF ( 1676 ) Cited
Export

EndNote

Ris

BibTeX

With the development of science and technology, great progress has been made in portable electronic products, especially in wearable devices. Flexible battery, as the core component of portable electronic products, has attracted attention of more and more researchers. Lithium-ion battery is used as the main power source in a variety of products because of its good cycle performance and long life span. In order to make portable electronic products flexible and miniaturized, the development of flexible lithium-ion batteries with high energy density can be an urgent issue. Flexible electrode materials are regarded as the important research direction because they are key materials for flexible lithium-ion battery. The article describes recent progress on researches about electrode materials for flexible lithium-ion battery, including integrated flexible electrode and new macro-flexibility electrode structure design. The carbon-based materials and Mxene-based materials all belong to integrated flexible electrode with electrochemical activity. The polymer-based materials, textile-based materials and metal-based materials all belong to integrated flexible electrode based on non-electrochemical activity. The new macro-flexibility electrode structure design meets the needs that wearable devices are woven and tolerable of large scale deformation. This paper analyzes and discusses existing problems of flexible electrodes in order to provide new ideas for researches about flexible lithium-ion battery with high energy density in future.

Contents

1 Introduction

2 Integrated flexible electrode design

2.1 Based material with electrochemical active

2.2 Other non-electrochemical activity based material

3 Macro-flexible electrode structure design

3.1 Kirigami structure

3.2 Fiber structure

4 Conclusion and outlook

Fig.1 Schematic diagrams for the formation of CuOx-Co3O4@-PNCNF composites[19]. Copyright 2019, RSC
Fig.2 (a) Schematic illustration of the formation of CNT/meso-Si/C sponges.(b) The cycling and rate capabilities of CNT/meso-Si/C electrode[25]. Copyright 2017, ACS
Fig.3 Scheme of synthesis of CP and fabrication of CP@Fe3O4@RGO[33]. Copyright 2019, ACS
Fig.4 Illustration of the dry compression process for LIB electrode fabrication and electrochemical performance[36]. Copyright 2019, ACS
Fig.5 (a) Schematic illustration of the experimental setup.(b) Possible reaction pathway for the synthetic process.(c) Photograph of a PM-GDY film without Cu foil.(d) Photograph of a PY-GDY film without Cu foil.(e) The optimized AA stacked configurations with corresponding interlayer spacing of bilayer PY-GDY and PM-GDY from top and side view.(f) Rate performance of PY-GDY and PM-GDY-based electrode for LIBs[42]. Copyright 2019, ACS
Fig.6 The schematic for synthesizing V2O5@N-C nanobelt array and photographic image of the V2O5@N-C nanobelt arrays delivering excellent flexibility[44]. Copyright 2018, RSC
Fig.7 Schematic diagram for the preparation of (a) Si/MXene composite paper[50] and (b) the freestanding and flexible 3D porous MXene foam[51]. Copyright 2019, ACS and Copyright 2019, Wiley
Fig.8 Schematic of the fabrication process of the RGO/CNF/RGO papers[53]. Copyright 2018, ACS
Fig.9 (a) Fabrication process of silicon anode with flexible interface design on the soft nylon substrate with a Cu-Ni buffer layer.(b) The detailed structure of the flexible interface, and the shape change of the silicon anode during the alloying and de-alloying process.(c) SEM morphologies and photograph of the silicon anode before and after 50 000 bends[54]. Copyright 2020, Wiley.
Fig.10 Schematic illustration of the synthesis procedure of the L-LiCoO2nanosheet arrays[55]. Copyright 2018, Wiley
Fig.11 Schematic of the products at various reaction stages[57]. Copyright 2017, RSC
Fig.12 (a) Fabrication process of customized deformable electrodes.(b) Illustration of customized kirigami deformable electrodes under stretched states and the inset image shows the dense and steady microstructure of electrodes after the drying process.(c) Optical photos of pristine kirigami deformable LFP electrodes. The scale bar is 8 mm[60]. Copyright 2020, ACS
Fig.13 (a) Schematic illustration of the fabrication process for the hybrid fiber of titania/rGO and schematic drawing of the assembled half-cell[62].(b) Schematic of the design concept and fabrication process of 3D printed all-fiber flexible LIBs[63]. Copyright 2017, ACS and Copyright 2017, Wiley
[1]
Wang X F, Lu X H, Liu B, Chen D, Tong Y X, Shen G Z. Adv. Mater., 2014, 26(28): 4763.

pmid: 24913891
[2]
Zhu Y H, Yang X Y, Liu T, Zhang X B. Adv. Mater., 2020, 32(5): 1901961.
[3]
Chen D, Lou Z, Jiang K, Shen G Z. Adv. Funct. Mater., 2018, 28(51): 1805596.
[4]
Li J, Jiang Q, Yuan N, Tang J G. Materials, 2018, 11(11): 2280.
[5]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

pmid: 11713543
[6]
Gwon H, Hong J, Kim H, Seo D H, Jeon S, Kang K. Energy Environ. Sci., 2014, 7(2): 538.
[7]
Zhu Y J, Yang M, Huang Q Y, Wang D R, Yu R B, Wang J Y, Zheng Z J, Wang D. Adv. Mater., 2020, 32(7): 1906205.
[8]
Zhang Y, Jiao Y D, Liao M, Wang B J, Peng H S. Carbon, 2017, 124: 79.
[9]
Wen L, Li F, Cheng H M. Adv. Mater., 2016, 28: 4306.

pmid: 26748581
[10]
Zhang C H, Li N W, Yao H R, Liu L, Yin Y X, Guo Y G. Acta Chim. Sinica, 2017, 75(2): 206.
[11]
Yousaf M, Shi H T H, Wang Y S, Chen Y J, Ma Z M, Cao A Y, Naguib H E, Han R P S. Adv. Energy Mater., 2016, 6(17): 1600490.
[12]
Ma Y, Asfaw H D, Edström K. Chem. Mater., 2015, 27(11): 3957.
[13]
Wang J F, Xu H J, Huo Y P, Wang Y T, Dong M D. Nanotechnology, 2020, 31(13): 132001.

pmid: 31665706
[14]
Zhang C, Liang Y, Yao L, Qiu Y. Solid State Ion., 2014, 267: 74.
[15]
Li W H, Zeng L C, Wu Y, Yu Y. Sci. China Mater., 2016, 59(4): 287.
[16]
Xia J, Liu L, Jamil S, Xie J, Yan H X, Yuan Y T, Zhang Y, Nie S, Pan J, Wang X Y, Cao G Z. Energy Storage Mater., 2019, 17: 1.
[17]
Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J L. J. Am. Chem. Soc., 2015, 137(26): 8356.

pmid: 26091246
[18]
Hao J N, Zhang J, Xia G L, Liu Y J, Zheng Y, Zhang W C, Tang Y B, Pang W K, Guo Z P. ACS Nano, 2018, 12(10): 10430.
[19]
Chen H, He J, Li Y L, Luo S, Sun L N, Ren X Z, Deng L B, Zhang P X, Gao Y, Liu J H. J. Mater. Chem. A, 2019, 7(13): 7691.
[20]
Zhang Q, Zhou K, Lei J H, Hu W C. Appl. Surf. Sci., 2019, 467/468: 992.
[21]
Baughman R H, Zakhidov A, de Heer W A. Science, 2002, 297: 787.

pmid: 12161643
[22]
Park S, Vosguerichian M, Bao Z N. Nanoscale, 2013, 5(5): 1727.

pmid: 23381727
[23]
Huang L, Guan Q, Cheng J L, Li C, Ni W, Wang Z P, Zhang Y, Wang B. Chem. Eng. J., 2018, 334: 682.
[24]
Yang H, Xu G B, Wei X L, Cao J X, Yang L W, Chu P K. J. Power Sources, 2018, 395: 295.
[25]
Yang Y B, Yang X D, Chen S, Zou M C, Li Z H, Cao A Y, Yuan Q. ACS Appl. Mater. Interfaces, 2017, 9(27): 22819.
[26]
Zhang C, Yao L, Qiu Y. J. Appl. Polym. Sci., 2016, 133(9): 43001.
[27]
Zhang M, Lu R C, Yuan H X, Amin K, Mao L J, Yan W, Wei Z X. ACS Appl. Mater. Interfaces, 2019, 11(23): 20873.

pmid: 31074604
[28]
Yan Y R, Li C L, Liu C, Mutlu Z, Dong B, Liu J, Ozkan C S, Ozkan M. Carbon, 2019, 142: 238.
[29]
Han P X, Zhang B, Huang C S, Gu L, Li H, Cui G L. Electrochem. Commun., 2014, 44: 70.
[30]
Xu G, Han P, Wang X, Zhou X, Han X, Lu D, Liu H, Zhao J, Ma J, Cui G. ACS Appl. Mater. Interfaces, 2020, 12: 9468.

pmid: 32003965
[31]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A. Science, 2004, 306: 666.

pmid: 15499015
[32]
Zhang M W, Hou C Y, Halder A, Wang H Z, Chi Q J. Mater. Chem. Front., 2017, 1(1): 37.
[33]
Gao T, Xu C Y, Li R Q, Zhang R, Wang B L, Jiang X F, Hu M, Bando Y, Kong D S, Dai P C, Wang X B. ACS Nano, 2019, 13(10): 11901.
[34]
Mo R W, Rooney D, Sun K N, Yang H Y. Nat. Commun., 2017, 8: 13949.

pmid: 28051065
[35]
Zhou X M, Liu Y, Du C Y, Ren Y, Li X L, Zuo P J, Yin G P, Ma Y L, Cheng X Q, Gao Y Z. ACS Appl. Mater. Interfaces, 2018, 10(35): 29638.

pmid: 30091890
[36]
Kirsch D J, Lacey S D, Kuang Y D, Pastel G, Xie H, Connell J W, Lin Y, Hu L B. ACS Appl. Energy Mater., 2019, 2(5): 2990.
[37]
Cranford S W, Buehler M J. Carbon, 2011, 49(13): 4111.
[38]
Li Y J, Xu L, Liu H B, Li Y L. Chem. Soc. Rev., 2014, 43(8): 2572.
[39]
He J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L. Nat. Commun., 2017, 8: 1172.
[40]
He J, Wang N, Yang Z, Shen X Y, Wang K, Huang C S, Yi Y P, Tu Z Y, Li Y L. Energy Environ. Sci., 2018, 11(10): 2893.
[41]
He J, Bao K J, Cui W, Yu J, Huang C S, Shen X Y, Cui Z L, Wang N. Chem. Eur. J., 2018, 24(5): 1187.
[42]
Yang Z, Shen X Y, Wang N, He J, Li X D, Wang X, Hou Z F, Wang K, Gao J, Jiu T G, Huang C S. ACS Appl. Mater. Interfaces, 2019, 11(3): 2608.

pmid: 29546976
[43]
Ha S H, Shin K H, Park H W, Lee Y J. Small, 2018, 14(43): 1703418.
[44]
Wu L J, Zhang Y, Li B J, Wang P X, Fan L S, Zhang N Q, Sun K N. RSC Adv., 2018, 8(12): 6540.
[45]
Ma K, Liu X, Cheng Q L, Saha P, Jiang H, Li C Z. J. Power Sources, 2017, 357: 71.
[46]
Xia J, Tian R, Guo Y P, Du Q, Dong W, Guo R J, Fu X W, Guan L, Liu H Z. Mater. Des., 2018, 156: 272.
[47]
Kang J W, Su Q M, Feng H G, Huang P, Du G H, Xu B S. Electrochimica Acta, 2019, 301: 29.
[48]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

pmid: 24357390
[49]
Yang Q, Wang Y K, Li X L, Li H F, Wang Z F, Tang Z J, Ma L T, Mo F N, Zhi C Y. Energy Environ. Mater., 2018, 1(4): 183.
[50]
Tian Y, An Y L, Feng J K. ACS Appl. Mater. Interfaces, 2019, 11(10): 10004.

pmid: 30775905
[51]
Zhao Q, Zhu Q Z, Miao J W, Zhang P, Wan P B, He L Z, Xu B. Small, 2019, 15(51): 1904293.
[52]
Liu L, Li M, Chu L, Jiang B, Lin R. Appl. Surf. Sci., 2019, 476: 501.
[53]
Hou M J, Xu M J, Li B. ACS Sustainable Chem. Eng., 2018, 6(3): 2983.
[54]
Jiang C L, Xiang L, Miao S J, Shi L, Xie D H, Yan J X, Zheng Z J, Zhang X M, Tang Y B. Adv. Mater., 2020, 32(17): 2070135.
[55]
Xue L, Savilov S V, Lunin V, Xia H. Adv. Funct. Mater., 2018, 28(7): 1705836.
[56]
Lu B, Liu J, Hu R Z, Wang H, Liu J W, Zhu M. Energy Storage Mater., 2018, 14: 118.
[57]
Wang Y, Liu P C, Zhu K J, Wang J, Liu J S. Nanoscale, 2017, 9(39): 14979.

pmid: 28953287
[58]
Xie K Y, Wei B Q. Adv. Mater., 2014, 26(22): 3592.

pmid: 24643976
[59]
Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwödiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T. Nature, 2013, 499(7459): 458.

pmid: 23887430
[60]
Bao Y H, Hong G Q, Chen Y, Chen J, Chen H S, Song W L, Fang D N. ACS Appl. Mater. Interfaces, 2020, 12(1): 780.

pmid: 31849209
[61]
Sun H, Zhang Y, Zhang J, Sun X M, Peng H S. Nat. Rev. Mater., 2017, 2(6): 17023.
[62]
Hoshide T, Zheng Y C, Hou J Y, Wang Z Q, Li Q W, Zhao Z G, Ma R Z, Sasaki T, Geng F X. Nano Lett., 2017, 17(6): 3543.

pmid: 28535338
[63]
Wang Y B, Chen C J, Xie H, Gao T, Yao Y G, Pastel G, Han X G, Li Y J, Zhao J P, Fu K, Hu L B. Adv. Funct. Mater., 2017, 27(43): 1703140.
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[3] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[4] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[5] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[6] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[7] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[8] Jinling Wang, Yuzhen Wen, Hualin Wang, Honglai Liu, Xuejing Yang. FeOCl and Its Intercalation Compounds: Structures, Properties and Applications [J]. Progress in Chemistry, 2021, 33(2): 263-280.
[9] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[10] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[11] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[12] Ye Xia, Xi Su, Li Chen, Shunbo Li, Yi Xu. Design and Application of Electrochemical Sensor in Cell Detection [J]. Progress in Chemistry, 2019, 31(8): 1129-1135.
[13] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[14] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[15] Ning Qi, Bing Zhao*, Ning Qi. Electronic Textiles Based on Silver Nanowire Conductive Network [J]. Progress in Chemistry, 2017, 29(8): 892-901.