中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1177-1186 DOI: 10.7536/PC181215 Previous Articles   Next Articles

Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors

Shaoming Qiao, Naibao Huang**(), Zhengyuan Gao, Shixian Zhou, Yin Sun   

  1. College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
  • Received: Online: Published:
  • Contact: Naibao Huang
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2016YFB0101206); National Natural Science Foundation of China(21676040); National Natural Science Foundation of China(21276036); Dalian Science and Technology Innovation Funds(2018J12GX053)
Richhtml ( 21 ) PDF ( 930 ) Cited
Export

EndNote

Ris

BibTeX

Pseudocapacitors have a higher specific capacitance than electrochemical double-layer capacitors (about 10~100 times). Since the Faraday reactions are simultaneously occur on the surface and inside of the electrode material during charging/discharging process. More electrons are generated and have a larger specific capacitance.At present, research on pseudocapacitance electrode materials mainly focuses on metal oxides and conductive polymers. Nickel-manganese-based metal oxides, as one of them, have the advantages of high theoretical specific capacitance, low cost, non-toxicity and environmental friendliness. However, its actual electrochemical performance is much lower than the theoretical value. Therefore, in order to improve the electrochemical performance of electrode materials. Some researchers have proposed many effective strategies, such as prepared of different kinds of metal oxides as electrode materials, use of different synthesis processes to prepare high specific surface area materials, the synergetic effect between the different materials and so on.In this paper, the application progress of nickel-manganese based binary metal oxides (NiMnO3, NiMn2O4 and Ni6MnO8) as pseudocapacitance electrode materials in supercapacitors has reviewed. At the same time, the future research directions of metal oxide electrode materials are further proposed.

Fig. 1 Sample preparation at different hydrothermal temperatures:(a)120,(b)140,(c)160, and (d)180 ℃[23]
Fig. 2 SEM images of(a) NiMnO3,(b) NiMnO3/Ni(OH)2,(c) Cyclic voltammetry curves and(d) galvanostatic discharge curves:1.NiMnO3/Ni(OH)2, 2.NiMnO3,3.MnOOH[27]
Fig. 3 (a) CV curves of all samples at the scan rate of 1 mV/s,(b) EIS of samples[35]
Fig. 4 (a)specific capacitance of NiMnO3 electrode material with different Fe ion mass ratios,(b)I-V plots of 15 wt% Fe-doped NiMnO3 and NiMnO3 powder[38]
Fig. 5 (a,b) SEM images of NiMn2O4 thin films[41]
Fig. 6 Porous sheets-like morphology NiMn2O4 material[42]
Fig. 7 (a) SEM image and(b) cycling performance of NiMn2O4 material[47]
Fig. 8 Characterization of the CNT@NiMn2O4 hybrid nanoarrays by SEM:(a) Low-magnification;(b) high-magnification;(c) TEM image;(d) TEM magnified images[52]
Fig. 9 SEM images of(a) Ni6MnO8,(b)NiO,(c)NiO/NMO-2,(d~f) Comparison of performance of different samples[73]
[1]
Simon P, Gogotsi Y . Nat. Mater., 2008,7:845. https://www.ncbi.nlm.nih.gov/pubmed/18956000

doi: 10.1038/nmat2297 pmid: 18956000
[2]
Bonaccorso F, Colombo L, Yu G, Stoller M, Pellegrini V . Science, 2015,347:6217.
[3]
Sheberla D, Bachman J C, Elias J S, Sun C J, Mircea D . Nat. Mater., 2016,16:220. https://www.ncbi.nlm.nih.gov/pubmed/27723738

doi: 10.1038/nmat4766 pmid: 27723738
[4]
Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L . Chem. Soc. Rev., 2017,46:6816. https://www.ncbi.nlm.nih.gov/pubmed/28868557

doi: 10.1039/c7cs00205j pmid: 28868557
[5]
Geng P, Zheng S, Tang H, Zhu R, Pang H . Adv. Energy Mater., 2018,15:1703259.
[6]
Yu M H, Zeng Y, Han Y, Cheng X Y, Zhao W X, Liang C L, Tong Y X, Tang H L, Lu X H . Adv. Func. Mater., 2015,25:3534. http://doi.wiley.com/10.1002/adfm.v25.23

doi: 10.1002/adfm.v25.23
[7]
Dubal D P, Chodankar N R, Kim D H, Gomez-Romero P . Chem. Soc. Rev., 2018,47:2065. https://www.ncbi.nlm.nih.gov/pubmed/29399689

doi: 10.1039/c7cs00505a pmid: 29399689
[8]
Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L . Chem. Rev., 2015,11:5159. https://www.ncbi.nlm.nih.gov/pubmed/25985835

doi: 10.1021/cr5006217 pmid: 25985835
[9]
Majumder M, Choudhary R B, Thakur A K . Carbon, 2019,142:650. https://linkinghub.elsevier.com/retrieve/pii/S000862231831008X

doi: 10.1016/j.carbon.2018.10.089
[10]
Yang C Y, Zhang P F, Nautiyal A, Li S H, Liu N, Yin J L, Deng K L, Zhang X Y . ACS Appl. Mater. Inter., 2019,11:4258. https://pubs.acs.org/doi/10.1021/acsami.8b19180

doi: 10.1021/acsami.8b19180
[11]
Guo G Z, Sun Y Y, Fu Q, Ma Y B, Zhou Y Y, Xiong Z Y, Liu Y Q . Int. J. Hydrogen Energy, 2019,44:6103. https://linkinghub.elsevier.com/retrieve/pii/S0360319919302125

doi: 10.1016/j.ijhydene.2019.01.080
[12]
Vahidmohammadi A, Mojtabavi M, Caffrey N M, Wanunu M, Beidaghi M . Adv. Mater., 2019,31:1806931. http://doi.wiley.com/10.1002/adma.v31.8

doi: 10.1002/adma.v31.8
[13]
Li J H, Liu Z C, Zhang Q B, Cheng Y, Zhao B T, Dai S G, Wu H H, Zhang K L, Ding D, Wu Y P, Liu M L, Wang M S . Nano Energy, 2019,57:22. https://linkinghub.elsevier.com/retrieve/pii/S2211285518309157

doi: 10.1016/j.nanoen.2018.12.011
[14]
Mohanapriya K, Ghosh G, Jha N . Electrochim Acta, 2016,209:719. https://linkinghub.elsevier.com/retrieve/pii/S0013468616306521

doi: 10.1016/j.electacta.2016.03.111
[15]
Dubal D P, Chodankar N R, Kim D H, Gomez-Romero P . Chem. Soc. Rev., 2018,47:2065. https://www.ncbi.nlm.nih.gov/pubmed/29399689

doi: 10.1039/c7cs00505a pmid: 29399689
[16]
Wang N, Sun B L, Zhao P, Yao M Q, Hu W C, Komarneni S . Chen. Eng. J., 2018,345:31.
[17]
Zhang Y, Xu J, Zhang Y J, Hu X Y . J. Mater. Sci. Mater. Electron., 2016,27:8599. http://link.springer.com/10.1007/s10854-016-4878-6

doi: 10.1007/s10854-016-4878-6
[18]
Li X, Wu H J, Elshahawy A M, Wang L, Pennycook S J, Guan C, Wang J . Adv. Func. Mater., 2018,28:1800036. http://doi.wiley.com/10.1002/adfm.201800036

doi: 10.1002/adfm.201800036
[19]
Chen C, Yan D, Luo X, Gao W J, Huang G J, Han Z W, Zeng Y, Zhu Z H . ACS Appl. Mater. Inter., 2018,10:4662. https://www.ncbi.nlm.nih.gov/pubmed/29313663

doi: 10.1021/acsami.7b16271 pmid: 29313663
[20]
Chen C, Wang S, Luo X, Gao W J, Huang G J, Zeng Y, Zhu Z H . J. Power Sources, 2019,409:112. https://linkinghub.elsevier.com/retrieve/pii/S0378775318311741

doi: 10.1016/j.jpowsour.2018.10.066
[21]
Cai G F, Wang X, Cui M Q, Darmawan P, Wang J X, Eh A L S, Lee P S . Nano Energy, 2015,12:258. https://linkinghub.elsevier.com/retrieve/pii/S2211285514003000

doi: 10.1016/j.nanoen.2014.12.031
[22]
Zhu S J, Li L, Liu J B, Wang H T, Wang T, Zhang Y X, Zhang L L, Ruoff R S, Dong F . ACS Nano, 2018,12:1033. https://www.ncbi.nlm.nih.gov/pubmed/29365253

doi: 10.1021/acsnano.7b03431 pmid: 29365253
[23]
Qiao S M, Huang N B, Sun Y, Zhang J J, Zhang Y Y, Gao Z Y . J. Alloy. Compd., 2019,775:1109. https://linkinghub.elsevier.com/retrieve/pii/S0925838818338908

doi: 10.1016/j.jallcom.2018.10.216
[24]
Wang F D, Richards V N, Shields S P, Buhro W E . Chem Mater., 2014,26:5. https://www.ncbi.nlm.nih.gov/pubmed/24803724

doi: 10.1021/cm404044n pmid: 24803724
[25]
Patzke G R, Zhou Y, Kontic R, Conrad F . Angew. Chem. Int. Edit, 2011,50:826. 39353dc0-b32e-45af-89bf-4a88ee647b96http://dx.doi.org/10.1002/anie.201000235

doi: 10.1002/anie.201000235
[26]
Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna P L, Grey C P, Dunn B, Simon P . Nat. Energy, 2016,1:16070. https://doi.org/10.1038/nenergy.2016.70

doi: 10.1038/nenergy.2016.70
[27]
Ge Z, Wang X, Huo Y, Fang C . ChemistrySelect, 2018,3:8547. http://doi.wiley.com/10.1002/slct.201800236

doi: 10.1002/slct.201800236
[28]
Liu S, Hui K S, Hui K N . ACS Appl. Mater. Inter., 2016,8:3258. https://www.ncbi.nlm.nih.gov/pubmed/26757795

doi: 10.1021/acsami.5b11001 pmid: 26757795
[29]
Ye C J, Qin Q Q, Liu J Q, Mao W P, Yan J, Wang Y, Cui J W, Zhang Q, Yang L P, Wu Y C . J. Mater. Chem. A, 2019,7:4998. http://xlink.rsc.org/?DOI=C8TA11948A

doi: 10.1039/C8TA11948A
[30]
Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J . Adv. Mater., 2017,29:1605336. http://doi.wiley.com/10.1002/adma.201605336

doi: 10.1002/adma.201605336
[31]
Yang Z, Xiao Z, Wang K, Guo M, He C, Xu F . Appl. Surf. Sci., 2015,347:690. https://linkinghub.elsevier.com/retrieve/pii/S0169433215010260

doi: 10.1016/j.apsusc.2015.04.160
[32]
Sanchez J S, Pendashteh A, Palma J, Anderson M, Marcilla R . Appl. Surf. Sci., 2018,460:74. https://linkinghub.elsevier.com/retrieve/pii/S0169433218305208

doi: 10.1016/j.apsusc.2018.02.165
[33]
Kakvand P, Rahmanifar M S, Elkady M F, Pendashteh A, Kiani M A, Hashami M, Najafi M, Abbasi A, Mousavi M F, Kaner R B . Nanotechnology, 2016,27:315401. https://www.ncbi.nlm.nih.gov/pubmed/27324723

doi: 10.1088/0957-4484/27/31/315401 pmid: 27324723
[34]
Wang H B, Maiyalagan T, Wang X . ACS Catal., 2012,2:781. 6bb16005-1ad3-4c85-bd3d-64488e7ddeb4http://dx.doi.org/10.1021/cs200652y

doi: 10.1021/cs200652y
[35]
Giri S, Ghosh D, Das C K . Dalton Transo, 2013,42:14361. https://www.ncbi.nlm.nih.gov/pubmed/23999950

doi: 10.1039/c3dt51807h pmid: 23999950
[36]
Wang F F, Zhu Y F, Tian W, Lv X B, Zhang H L, Hu Z F, Zhang Y X, Ji J Y, Jiang W . J. Mater. Chem. A, 2018,6:10490. http://xlink.rsc.org/?DOI=C8TA03131B

doi: 10.1039/C8TA03131B
[37]
Gao Q, Wang J X, Ke B, Wang J F, Li Y Q . Cream. Int., 2018,44:18770. https://linkinghub.elsevier.com/retrieve/pii/S0272884218318352

doi: 10.1016/j.ceramint.2018.07.108
[38]
Qiao S, Huang N, Zhang J, Zhang Y, Sun Y, Gao Z . J. Solid State Electrochem., 2018,23:63. https://doi.org/10.1007/s10008-018-4115-8

doi: 10.1007/s10008-018-4115-8
[39]
Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu Z H . Electrochim. Acta, 2013,87:546. https://linkinghub.elsevier.com/retrieve/pii/S0013468612015630

doi: 10.1016/j.electacta.2012.09.085
[40]
Apurba R, Atanu R, Monalisa G, Alberto Ramos-Ramón J, Samik S, Umapada P, Kumar B S, Sachindranath D . Appl. Surf. Sci., 2019,463:513. https://linkinghub.elsevier.com/retrieve/pii/S0169433218324036

doi: 10.1016/j.apsusc.2018.08.259
[41]
Chavan U J, Yadav A A . J. Mater. Sci-Mater. Electron., 2017,28:4958. http://link.springer.com/10.1007/s10854-016-6148-z

doi: 10.1007/s10854-016-6148-z
[42]
Yan H, Li T, Qiu K, Lu Y, Cheng J, Liu Y, Xu J, Luo Y . J. Solid State Electrochem, 2015,19:3169. http://link.springer.com/10.1007/s10008-015-2946-0

doi: 10.1007/s10008-015-2946-0
[43]
Xu K, Li S, Yang J, Hu J . J. Colloid Interf. Sci., 2018,513:448. https://linkinghub.elsevier.com/retrieve/pii/S0021979717313577

doi: 10.1016/j.jcis.2017.11.052
[44]
Zheng D H, Zhao F, Li Y Y, Qin C L, Zhu J S, Hu Q F, Wang Z F, Inoue A . Electrochim. Acta, 2019,297:767. https://linkinghub.elsevier.com/retrieve/pii/S0013468618327336

doi: 10.1016/j.electacta.2018.12.035
[45]
Wei H, Wang J, Le Y, Zhang Y, Hou D, Li T . Ceram Int., 2016,42:14963. https://linkinghub.elsevier.com/retrieve/pii/S027288421630983X

doi: 10.1016/j.ceramint.2016.06.140
[46]
Bhagwan J, Rani S, Sivasankaran V, Yadav K L, Sharma Y . Appl. Surf. Sci., 2017,426:913. https://linkinghub.elsevier.com/retrieve/pii/S0169433217322535

doi: 10.1016/j.apsusc.2017.07.253
[47]
Sankar K V, Surendran S, Pandi K, Allin A M, Nithya V D, Lee Y S, Selvan R K . RSC Adv., 2015,5:27649. http://xlink.rsc.org/?DOI=C5RA00407A

doi: 10.1039/C5RA00407A
[48]
Dubal D P, Dhawale D S, Salunkhe R R, Pawar S M, Lokhande C D . Appl. Surf. Sci., 2010,256:4411. https://linkinghub.elsevier.com/retrieve/pii/S0169433209017668

doi: 10.1016/j.apsusc.2009.12.057
[49]
Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D . J. Mater. Chem. A, 2017,5:25.
[50]
Xiao P W, Meng Q, Zhao L, Li J J, Wei Z, Han B H . Mater. Design, 2017,129:164.
[51]
Fletcher S, Kirkpatrick I, Puttock R, Thring R, Howroyd S . J. Power Sources, 2017,345:247. https://linkinghub.elsevier.com/retrieve/pii/S0378775317301684

doi: 10.1016/j.jpowsour.2017.02.012
[52]
Nan H, Ma W, Gu Z, Geng B, Zhang X . RSC Adv., 2015,5:24607. http://xlink.rsc.org/?DOI=C5RA00979K

doi: 10.1039/C5RA00979K
[53]
Li L, Hu H, Ding S . Inorg. Chem. Front., 2018,5:1714. http://xlink.rsc.org/?DOI=C8QI00121A

doi: 10.1039/C8QI00121A
[54]
Ouyang Y, Feng Y, Zhang H, Liu L, Wang Y . ACS Sustain. Chem. Eng., 2016,5:196. https://pubs.acs.org/doi/10.1021/acssuschemeng.6b01249

doi: 10.1021/acssuschemeng.6b01249
[55]
Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y, Ou E, Xu W . Small, 2017,13:5.
[56]
Yang S, Liu Y, Hao Y, Yang X, Goddard W A, Zhang X L . Adv. Sci., 2018,5:1700659. https://www.ncbi.nlm.nih.gov/pubmed/29721414

doi: 10.1002/advs.201700659 pmid: 29721414
[57]
Hu R, Jing R, Zhang J . J. Mater. Sci-Mater. Electron., 2017,28:14568. http://link.springer.com/10.1007/s10854-017-7320-9

doi: 10.1007/s10854-017-7320-9
[58]
Hu N, Huang L, Gong W, Shen P K . ACS Sustain. Chem. Eng., 2018,6:16933. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04265

doi: 10.1021/acssuschemeng.8b04265
[59]
Wei T Y, Chen C H, Chien H C, Lu S Y, Hu C C . Adv Mater., 2010,22:347. https://www.ncbi.nlm.nih.gov/pubmed/20217716

doi: 10.1002/adma.200902175 pmid: 20217716
[60]
Hu L, Wu L, Liao M, Hu X, Fang X . Adv. Funct. Mater., 2012,22:998. http://doi.wiley.com/10.1002/adfm.v22.5

doi: 10.1002/adfm.v22.5
[61]
Sahoo S, Zhang S J, Shim J J . Electrochim. Acta, 2016,216:386. https://linkinghub.elsevier.com/retrieve/pii/S001346861631920X

doi: 10.1016/j.electacta.2016.09.030
[62]
Saranya P E, Selladurai S . J. Mater. Sci-Mater Electron., 2018,29:3326. http://link.springer.com/10.1007/s10854-017-8268-5

doi: 10.1007/s10854-017-8268-5
[63]
Qiu Z, Yi P, He D, Wang Y, Chen H . J. Mater. Sci., 2018,53:1.
[64]
Taguchi H, Tahara S, Okumura M, Hirota K . J. Solid. State. Chem., 2014,215:300. https://linkinghub.elsevier.com/retrieve/pii/S0022459614001674

doi: 10.1016/j.jssc.2014.04.010
[65]
Chapman J V, Sankar K, Hino A, Lin X, Chang W S, Coker D, Grinstaff M . Chem. Commun., 2018,54:5590. https://www.ncbi.nlm.nih.gov/pubmed/29766179

doi: 10.1039/c8cc01093e pmid: 29766179
[66]
Thangavel R, Kannan A G, Ponraj R, Thangavel V, Kim D W, Lee Y S . J. Power Sources, 2018,383:102. https://linkinghub.elsevier.com/retrieve/pii/S0378775318301514

doi: 10.1016/j.jpowsour.2018.02.037
[67]
Xu J, Wang Y, Cao S, Zhang J, Zhang G X, Xue H G, Xu Q, Pang H . J. Mater. Chem. A, 2018,6:17329. http://xlink.rsc.org/?DOI=C8TA05976D

doi: 10.1039/C8TA05976D
[68]
Abbasi N, Moradi M, Hajati S, Kiani M A, Toth J . J. Mol. Liq., 2017,244:269. https://linkinghub.elsevier.com/retrieve/pii/S0167732217332531

doi: 10.1016/j.molliq.2017.09.018
[69]
Joseph J, Rajagopalan R, Anoop S S, Amruthalakshmi V, Ajay A, Nair S V, Balakrishnan A . RSC Adv., 2014,4:39378. http://xlink.rsc.org/?DOI=C4RA05054A

doi: 10.1039/C4RA05054A
[70]
易锦馨(Yi J X), 霍志鹏(Huo Z P), Asiri A M, Alamry K M, 李家星(Li J X) . 化学进展( Progress in Chemistry), 2018,30(11):1624
[71]
Wang L, Duan G, Zhu J, Chen S M, Liu X . Electrochim. Acta, 2016,219:284. https://linkinghub.elsevier.com/retrieve/pii/S0013468616320369

doi: 10.1016/j.electacta.2016.09.118
[72]
Zhang J, Hu R, Dai P, Bai Z, Yu X, Wu M, Li G . J. Mater. Sci-Mater. Electron., 2018,29:7510. https://doi.org/10.1007/s10854-018-8742-8

doi: 10.1007/s10854-018-8742-8
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[3] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[4] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[5] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[6] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[9] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[10] Yongming Zhu, Yunpeng Jiang, Huili Hu*. Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage [J]. Progress in Chemistry, 2017, 29(11): 1422-1434.
[11] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[12] Zhuang Shuxin, Lv Jianxian, Lu Mi, Liu Yimin, Chen Xiaobin. Preparation and Applications of Perovskite-Type Oxides as Electrode Materials for Solid Oxide Fuel Cell and Metal-Air Battery [J]. Progress in Chemistry, 2015, 27(4): 436-447.
[13] Jin Yi, Sun Xin, Yu Yan, Ding Chuxiong, Chen Chunhua, Guan Yibiao. Research Progress in Sodium-Ion Battery Materials for Energy Storage [J]. Progress in Chemistry, 2014, 26(04): 582-591.
[14] Wu Liang, Mu Chunlei, Zhang Qunlin*, Lü Chen, Zhang Xiaoyue. Nanoparticle-Involved Luminol Chemiluminescence and Its Analytical Applications [J]. Progress in Chemistry, 2013, 25(07): 1187-1197.
[15] Zhao Beibei, Zhang Yan, Tang Tao, Wang Fengyun, Zhang Weibing, Li Tong. Silica Based Stationary Phases for High Performance Liquid Chromatography [J]. Progress in Chemistry, 2012, 24(01): 122-130.