中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 436-447 DOI: 10.7536/PC140946 Previous Articles   Next Articles

• Review and evaluation •

Preparation and Applications of Perovskite-Type Oxides as Electrode Materials for Solid Oxide Fuel Cell and Metal-Air Battery

Zhuang Shuxin*, Lv Jianxian, Lu Mi, Liu Yimin, Chen Xiaobin   

  1. School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural Science Foundation of Fujian Province, China(No. 2014J05064), and the Research Foundation of Education Bureau of Fujian Province, China(No. JK2013034).
PDF ( 2955 ) Cited
Export

EndNote

Ris

BibTeX

This review presents current research activities concerning preparation and applications of perovskite-type oxides as electrode materials in the fields of solid-oxide fuel cells (SOFCs) and metal-air batteries. These oxides are synthesized by various methods, including thermal deposition, solid state method, co-precipitation, sol-gel method, hydrothermal method, reverse microemulsion method and template method. These methods result in various morphologies, such as nanaoplates, nanocubes,nanotubes, nanorods, nanofibers and mesoporous structures. The advantage and shortcoming of these methods are summarized, and their characters and proper ranges are listed. As a kind of important functional materials, perovskite-type oxides are extensively used as electrode materials. In the application of SOFCs, the advancement of the perovskite-based electrode materials is reviewed. In order to find a way to satisfy the strict requirements of SOFCs, this article is focused on their phase stability, electronic and/or ionic conductivity, and catalytic activity in different electrodes for SOCFs. The main problems of current perovskite-type oxides as electrode materials for practical application are pointed out and the possible future research directions are proposed. In the application of air electrodes, the parameters influencing catalytic performance and stability for oxygen reduction/evolution are mainly discussed. The possible development trend in investigations and applications of pervoskite-type oxides for electrocatalyst for oxygen reduction/evolution in the future is envisioned.

Contents
1 Introduction
2 Preparation of perovskite-type oxides
2.1 Metal salt deposition
2.2 Solid state method
2.3 Co-precipitation
2.4 Sol-gel method
2.5 Hydrothermal method
2.6 Reverse microemulsion method
2.7 Template methods
3 Applications of perovskite-electrode materials
3.1 Solid oxide fuel cells
3.2 Metal-air batteries
4 Conclusion and outlook

CLC Number: 

[1] Tanaka H, Misono M. Curr. Opin. Solid State Mater. Sci.,2001, 5: 381.
[2] Chen X, Hu J, Chen Z, Feng X, Li A. Biosens. Bioelectron., 2009, 24: 3448.
[3] Li S, Nechache R, Davalos I A V, Goupil G, Nikolova L, Nicklaus M, Laverdiere J, Ruediger A, Rosei F. J. Am. Ceram. Soc., 2013, 96: 3155.
[4] Leng J, Li S, Wang Z, Xue Y, Xu D. Mater. Lett., 2010, 64: 1912.
[5] Li S, Kato R, Wang Q, Yamanaka T, Takeguchi T, Ueda W. Appl. Catal. B: Environ., 2010, 93: 383.
[6] Zhu X, Liu Z, Ming N. J. Mater. Chem., 2010, 20: 4015.
[7] Wang J, Manivannan A, Wu N. Thin Solid Films, 2008, 517: 582.
[8] Chen X, Tang Y, Fang L, Zhang H, Hu C, Zhou H. J. Mater. Sci.: Mater. Electron., 2012, 23: 1500.
[9] Wang W, Bi J, Wu L, Li Z, Fu X. Scripta Mater., 2009, 60: 186.
[10] Deng J, Zhang L, Dai H, Au C T. Catal. Lett., 2009, 130: 622.
[11] Nakashima K, Kera M, Fujii I, Wada S. Ceram. Int., 2013, 39: 3231.
[12] Lamminen J. J. Electrochem. Soc., 1991, 138: 905.
[13] 夏 熙(Xia X), 潘存信(Pan C X). 应用化学(Chinese Journal of Applied Chemistry), 2001, 18: 96.
[14] Wang K, Wu X, Wu W, Li Y, Liao S. Ceram. Int., 2014, 40: 5997.
[15] Farhadi S, Sepahvand S. J. Alloy. Compd., 2010, 489: 586.
[16] Schaak R E, Mallouk T E. Chem. Mater., 2002, 14: 1455.
[17] Rudskaya A G, Pustovaya L E, Kofanova N B, Kupriyanov M F. J. Struct. Chem., 2005, 46: 647.
[18] Bhella S S, Kuti L M, Li Q, Thangadurai V. Dalton. Trans., 2009, 9520.
[19] Isupova L. A, Alikina G M, Tsybulya S V, Boldyreva N N, Kryukova G N, Yakovleva I S, Isupov V P, Sadykov V A. Int. J. Inorg. Mater., 2001, 3: 559.
[20] Wong Y J, Hassan J, Hashim M. J. Alloy. Compd., 2013, 571: 138.
[21] Liu L, Zheng S, Huang R, Shi D, Huang Y, Wu S, Li Y, Fang L, Hu C. Adv. Powder Technol., 2013, 24: 908.
[22] Ablat A, Wu R, Mamat M, Li J, Muhemmed E, Si C, Wu R, Wang J, Qian H, Ibrahim K. Ceram. Int., 2014, 40: 14083.
[23] Bhalla A S, Guo R, Roy R. Mater. Res. Innov., 2000, 4: 3.
[24] Zhang S, Xia R, Shrout T R, Zang G, Wang J. J. Appl. Phys., 2006, 100: 104108.
[25] Navale S C, Samuel V, Ravi V. Ceram. Int., 2006, 32: 847.
[26] Jadhav A D, Gaikwad A B, Samuel V, Ravi V. Mater. Lett., 2007, 61: 2030.
[27] Ma J, Theingi M, Chen Q, Wang W, Liu X, Zhang H. Ceram. Int., 2013, 39: 7839.
[28] Veith M, Mathur S, Lecerf N, Huch V, Decker T. J. Sol-Gel Sci. Technol., 2000, 15: 145.
[29] Chilibon I, Marat-Mendes J N. J. Sol-Gel Sci. Technol., 2012, 64: 571.
[30] Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N. J. Electrochem. Soc., 1990, 137: 3430.
[31] Zhu J, Yang X, Xu X, Wei K. J. Phys. Chem. C, 2007, 111: 1487.
[32] Graça M P F, Prezas P R, Costa M M, Valente M A. J. Sol-Gel Sci. Technol., 2012, 64: 78.
[33] Marinšek M, Zupan K, Maèek J. J. Power Sources, 2002, 106: 178.
[34] Chakroborty A, Das Sharma A, Maiti B, Maiti H S. Mater. Lett., 2002, 57: 862.
[35] Deganello F, Marcì G, Deganello G. J. Eur. Ceram. Soc., 2009, 29: 439.
[36] Jiang L, Liu W, Wu A, Xu J, Liu Q, Qian G, Zhang H. Ceram. Int., 2012, 38: 3667.
[37] Benali A, Azizi S, Bejar M, Dhahri E, Graça M F P. Ceram. Int., 2014, 40: 14367.
[38] Ji L, Zhang J, Gao Y, Li Y, Wang J. Ceram. Int., 2014, 40: 11419.
[39] Yang X, Ren Z, Xu G, Chao C, Jiang S, Deng S, Shen G, Wei X, Han G. Ceram. Int., 2014, 40: 9663.
[40] Guo H Y, Lin J G. J. Cryst. Growth, 2013, 364: 145.
[41] Zhang J, Shen B, Zhai J, Yao X. Ceram. Int., 2013, 39: 5943.
[42] Basavalingu B, Vijaya Kumar M S, Girish H N, Yoda S. J. Alloy. Compd., 2013, 552: 382.
[43] Sun Z, Pu Y, Dong Z, Hu Y, Liu X, Wang P, Ge M. Mater. Lett., 2014, 118: 1.
[44] Fuentes S, Céspedes F, Padilla-Campos L, Diaz-Droguett D E. Ceram. Int., 2014, 40:4975.
[45] Boukriba M, Sediri F, Gharbi N. Mater. Res. Bull., 2013, 48: 574.
[46] Zhou Z, Guo L, Ye F. J. Alloy. Compd., 2013, 571: 123.
[47] Wang S, Huang K, Zheng B, Zhang J, Feng S. Mater. Lett., 2013, 101: 86.
[48] Makovec D, Goršak T, Zupan K, Lisjak D. J. Cryst. Growth, 2013, 375: 78.
[49] Kumar R D, Jayavel R. Mater. Lett., 2013, 113: 210.
[50] Zhang D, Shi F, Cheng J, Yang X, Yan E, Cao M. Ceram. Int., 2014, 40: 14279.
[51] Wang J, Durussel A, Sandu C S, Sahini M G, He Z, Setter N. J. Cryst. Growth, 2012, 347: 1.
[52] Ai Z, Lu G, Lee S. J. Alloy. Compd., 2014, 613: 260.
[53] Xu G, Zhang Y, He W, Zhao Y, Liu Y, Shen G, Han G. J. Cryst. Growth, 2012, 346: 101.
[54] Choi B H, Park S, Park B K, Chun H H, Kima Y, Mater. Res. Bull., 2013, 48: 3651.
[55] Ji K, Dai H, Deng J, Song L, Xie S, Han W. J. Solid State Chem., 2013, 199: 164.
[56] Wang Z, Zhu J, Xu W, Sui J, H Peng, Tang X. Mater. Chem. Phys., 2012, 135: 330.
[57] Ponzoni C, Rosa R, Cannio M, Buscaglia V, E Finocchio, Nanni P, Leonelli C. J. Alloy. Compd.,2013, 558: 150.
[58] López-Juárez R, Castañeda-Guzmán R, Villafuerte-Castrejón M E. Ceram. Int., 2014, 40: 14757.
[59] He H, Liu M, Dai H, Qiu W, Zi X. Catal. Today, 2007, 126: 290.
[60] Aman D, Zaki T, Mikhail S, Selim S A. Catal. Today, 2011, 164: 209.
[61] Zhao Y, L Xu, Mai L, Han C, An Q, Xu X, Liu X, Zhang Q. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 19569.
[62] Shojaei S, Hassanzadeh-Tabrizi S A, Ghashangc M. Ceram. Int., 2014, 40: 9609.
[63] Abazari R, Sanati S. Superlattice. Microst., 2013, 64: 148.
[64] Wang Y, Ren J, Wang Y, Zhang F, Liu X, Guo Y, Lu G. J. Phys. Chem. C, 2008, 112: 15293.
[65] Wang N, Yu X, Wang Y, Chu W, M Liu. Catal. Today, 2013, 212: 98.
[66] Gao B, Deng J, Liu Y, Zhao Z, Li X, Wang Y, Dai H. Chinese J. Catal., 2013, 34: 2223.
[67] Wang Y, Cui X, Li Y, Shu Z, Chen H, Shi J. Micropor. Mesopor. Mat., 2013, 176: 8.
[68] Xu J, Liu J, Zhao Z, Zheng J, Zhang G, Duan A, Jiang G. Catal. Today, 2010, 153: 136.
[69] Sadakane M, Horiuchi T, Kato N, Sasaki K, Ueda W. J. Solid State Chem., 2010, 183: 1365.
[70] Xiao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J. ChemCatChem, 2014, 6: 1774.
[71] Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T. J. Catal., 2012, 287: 149.
[72] Ji K, Dai H, Deng J, Zhang L, Wang F, Jiang H, Au C T. Appl. Catal. A: Gen., 2012, 425/426: 153.
[73] Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z. Appl. Catal. B: Environ., 2012, 119/120: 20.
[74] Zhao Z, Dai H, Deng J, Du Y, Liu Y, Zhang L. Micropor. Mesopor. Mat., 2012, 163: 131.
[75] Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J. J. Catal., 2013, 307: 327.
[76] Zhao Z, Dai H, Deng J, Du Y, Liu Y, Zhang L. J. Mol. Catal. A: Chem., 2013, 366: 116.
[77] Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G. J. Catal., 2013, 305: 146.
[78] Peña M A, Fierro J L G. Chem. Rev., 2001, 101: 1981.
[79] Jacobson A J. Chem. Mater., 2010, 22: 660.
[80] Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y. Solid State Ionics, 1999, 118: 187.
[81] Yu H C, Zhao F, Virkar A V, Fung K Z. J. Power Sources, 2005, 152: 22.
[82] Dong F, Chen D, Ran R, Park H, Kwak C, Shao Z. Int. J. Hydrogen Energy, 2012, 37: 4377.
[83] Tu H Y, Takeda Y, Imanishi N, Yamamoto O. Solid State Ionics, 1999, 117: 277.
[84] Kindermann L, Das D, Nickel H, Hilpert K. Solid State Ionics, 1996, 89: 215.
[85] Ko H J, Myung J H, Lee J H, Hyun S H, Chung J S. Int. J. Hydrogen Energy, 2012, 37: 17209.
[86] Wang Y, Zhang L, Chen F, Xia C. Int. J. Hydrogen Energy, 2012, 37: 8582.
[87] Bansal N P, Wise B. Ceram. Int., 2012, 38: 5535.
[88] Park S Y, Ji H I, Kim H R, Yoon K J, Son J W, Kim B K, Je H J, Lee H W, Lee J H. J. Power Sources, 2013, 228: 97.
[89] Park Y M, Kim H. Int. J. Hydrogen Energy, 2012, 37: 5320.
[90] Gong Y, Palacio D, Song X, Patel R L, Liang X, Zhao X, Goodenough J B, Huang K. Nano Lett., 2013, 13: 4340.
[91] Banerjee K, Mukhopadhyay J, Basu R N. Int. J. Hydrogen Energy, 2014, 39: 15754.
[92] Liu Y, Chen J, Wang F, Chi B, Pu J, Jian L. Int. J. Hydrogen Energy, 2014, 39: 3404.
[93] Liu Y, Chen K, Zhao L, Chi B, Pu J, Jiang S P, Jian L. Int. J. Hydrogen Energy, 2014, 39: 15868.
[94] Yu T, Mao X, Ma G. Ceram. Int., 2014, 40: 13747.
[95] Li W, Pu J, Chi B, Jian L. Electrochim. Acta, 2014, 141: 189.
[96] Hou J, Zhu Z, Qian J, Liu W. J. Power Sources, 2014, 264: 67.
[97] Prakash B S, Kumar S S, Aruna S T. Renew. Sust. Energy Rev., 2014, 36: 149.
[98] Steele B C H, Heinzel A. Nature, 2001, 414: 345.
[99] Atkinson A, Barnett S A, Gorte R J, Irvine J T S, Mcevoy A J, Mogensen M, Singhal S C, Vohs J. Nat. Mater., 2004, 3: 17.
[100] Hui S Q, Petric A. J. Eur. Ceram. Soc., 2002, 22: 1673.
[101] Hui S Q, Petric A. J. Electrochem. Soc., 2002, 149: 1.
[102] Hui S Q, Petric A. Mater. Res. Bull., 2002,37:1215.
[103] Li X, Zhao H, Xu N, Zhou X, Zhang C, Chen N. Int. J. Hydrogen Energy, 2009, 34: 6407.
[104] Li X, Zhao H, Zhou X, Xu N, Xie Z, Chen N. Int. J. Hydrogen Energy, 2010, 35: 7913.
[105] Ma Q, Tietz F, Leonide A, Ivers-Tiffée E. J. Power Sources, 2011, 196: 7308.
[106] Ma Q, Tietz F, Stöver D. Solid State Ionics, 2011, 192: 535.
[107] Du Z, Zhao H, X Zhou, Z Xie, Zhang C. Int. J. Hydrogen Energy, 2013, 38: 1068.
[108] Périllat-Merceroz C, Gauthier G, Roussel P, Huvé M, Gélin P, Vannier R N. Chem. Mater., 2011, 23: 1539.
[109] Ma Q, Tietz F. Solid State Ionics, 2012, 225: 108.
[110] Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116: 3801.
[111] Feng M, Goodenough J. Eur. J. Solid State Inorg. Chem., 1994, 31: 663.
[112] Laguna-Bercero M A. J. Power Sources, 2012, 203: 4.
[113] Saribo D?a V, Özdemir H, Faruk Öksüzömer M A. J. Eur. Ceram. Soc., 2013, 33: 1435.
[114] Biswal R C, Biswas K. J. Eur. Ceram. Soc., 2013, 33: 3053.
[115] Hao G, Liu X, Wang H, Be H, Pei L, Su W. Solid State Ionics, 2012, 255: 81.
[116] Hao G, Li B, Liu S, Liu X, Wang H, Su W. Int. J. Hydrogen Energy, 2013, 38: 11392.
[117] Raghvendra, Singh R K, Singh P. Solid State Ionics, 2014, 262: 428.
[118] Raghvendra, Singh R K, Sinha A S K, Singh P. Cera. Int., 2014, 40: 10711.
[119] Iwahara H, Uchida H, Ono K, Ogaki K. J. Electrochem. Soc., 1988, 135: 529.
[120] Zuo C D, Zha S W, Liu M L, Hatano M. Adv. Mater., 2006, 18: 3318.
[121] Fabbri E, D’Epifanio A, Bartolomeo E D, Licoccia S, Traversa E. Solid State Ion., 2008, 179: 558.
[122] Yang L, Wang S Z, Blinn K, Liu M F, Liu Z, Cheng Z, Liu M L. Science, 2009, 326: 126.
[123] Bi L, Traversa E. Electrochem. Commun., 2013, 36: 42.
[124] Zhang L, Lan R, Tao S. Int. J. Hydrogen Energy, 2013, 38: 16546.
[125] Gewirth A A, Thorum M S. Inorg. Chem., 2010, 49: 3557.
[126] Li Y, Gong M, Liang Y, Feng J, Kim J E, Wang H, Hong G, Zhang B, Dai H. Nat. Commun., 2013, 4: 1805.
[127] Lee J S, Kim S T, Cao R, Choi N S, Liu M, Lee K T, Cho J. Adv. Energy Mater., 2011, 1: 34.
[128] Dong H, Y Kiros, Noréus D. Inter. J. Hydrogen Energy, 2010, 35: 4336.
[129] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Horn Y S. Nat. Chem., 2011, 3: 546.
[130] Zhang T, Imanishi N, Takeda Y, Yamamoto O. Chem. Lett., 2011, 40, 668.
[131] Ohkuma H, Uechi I, Imanishi N, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2013, 223: 319.
[132] Chang Y M, Wu P W, Wu C Y, Hsieh Y F, Chen J Y. Electrochem. Solid State Lett., 2008, 11: B47.
[133] Chang Y M, Hsieh Y C, Wu P W, Lai C H, Chang T Y. Mater. Lett., 2008, 62: 4220.
[134] Chang Y M, Wu P W, Wu C Y, Hsien Y C. J. Power Sources, 2009, 189: 1003.
[135] Zhuang S, Huang K, Huang C, Huang H, Liu S, Fan M. J. Power Sources, 2011, 196: 4019.
[136] Deng J G, Zhang L, Dai H X, Au C T. Appl. Catal. A, 2009, 352: 43.
[137] Hu J, Wang L, Shi L, H Huang. J. Power Sources, 2014, 269: 144.
[138] Park H W, Lee D U, Zamani P, Seo M H, Nazar L F, Chen Z. Nano Energy, 2014, 10: 192.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[8] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[13] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[14] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[15] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.