中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (3): 375-389 DOI: 10.7536/PC220819 Previous Articles   Next Articles

• Review •

Review on the First-Principles Calculation in Lithium-Sulfur Battery

Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin(), Wu Yucheng()   

  1. Institute of Industry © Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials © Devices of Anhui Province, Hefei University of Technology,Hefei 230009, China
  • Received: Revised: Online: Published:
  • Contact: *jqliu@hfut.edu.cn (Jiaqin Liu); ycwu@hfut.edu.cn (Yucheng Wu)
  • Supported by:
    National Natural Science Foundation of China(51972093); National Natural Science Foundation of China(U1810204); National Natural Science Foundation of China(U1910210); Nature Science Foundation of Anhui Province(2008085ME129); Key Research and Development Plan of Anhui Province(202004b11020024); Fundamental Research Funds for the Central Universities of China(PA2021GDSK0087)
Richhtml ( 67 ) PDF ( 1126 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur (Li-S) batteries are considered as a promising next-generation high-energy battery system due to their ultrahigh theoretical capacity, energy density and the merits of sulfur in terms of abundant resource and environmental friendliness. However, their practical application is confronted with several critical problems including insulation of sulfur and discharge products, shuttle effect of soluble lithium polysulfides, and sluggish reaction kinetics of sulfur, etc. Significant progress has been achieved in addressing these problems by sulfur electrode design, functional separator/interlayer, liquid-electrolyte modification, and solid-electrolyte strategy. Nevertheless, there is still a lack of in-depth understanding of real-time dynamic reaction process and mechanism as well as electrode/electrolyte interface regulation strategy in Li-S batteries. First-principles calculation has gradually developed into an important research tool in various disciplines such as materials, chemistry and energy, facilitating to understand the properties of reaction species, interactions between molecules or/and electrons, electrochemical reaction processes and laws, and dynamic evolution of electrode/electrolyte from the molecular/atomic level. It delivers distinct advantages beyond “experimental trial and error” method in studying the multi-electron and multi-ion redox process in Li-S battery. In this paper, important advances in the application of first principles calculation to study the interactions between electrodes and polysulfides, charge-discharge reaction mechanisms, and electrolytes in Li-S batteries are comprehensively reviewed, and the current challenge and enlightening directions for application of first-principles calculation to study Li-S batteries are also prospected.

Contents

1 Introduction

2 Overview of first-principles

3 Interaction between electrode materials and polysulfides

3.1 Carbon materials

3.2 Transition metal compounds

3.3 Heterostructure

3.4 MOF and COF

3.5 Other materials

4 Reaction mechanism during charge and discharge

5 Electrolyte

6 Conclusion and outlook

Fig. 1 (a) The binding energy Eb (eV) of Li2S, Li2S4, Li2S8, and S8 interacting with X-doped graphene nanoribbons with zigzag edge and the Eb with Li2S4 versus electronegativity of dopant elements[28]; (b) The schematic diagram of anchoring and catalyzing LiPS on MN4@graphene[40]
Fig. 2 (a) Optimized geometries of the most stable Li2S and S8, (b) experimental and simulated adsorption amount of Li2S8 and (c) potential energy profiles for Li+ diffusion along different adsorption sites on CeO2 (111), Al2O3 (110), La2O3 (001), MgO (100) and CaO (100) surfaces[44]; (d) the energy profile for the catalytic Li2S2 → Li2S conversion process on La2O3 surface[45]
Fig. 3 (a, b) Energy profiles of polysulfide conversion mechanism and (c, d) charge density comparison of MoS2 (001) and MoS2-x (001) surfaces[53]
Fig. 4 (a) Differential charge density between Li2S8 and M3C2O2, and the binding energies as a function of the lattice constants of M3C2 O 2 [63]; (b) adsorption energies of LiPS, (c) decomposition barriers of Li2S, Li2S6 and diffusion barriers of Li+ on Ti3C2 T 2 [62]
Fig. 5 (a) Optimized structure of Nb-terminated and Se-terminated C2N@NbSe2 configurations and charge density difference plot; (b) Li2S4-adsorbed structures on the surfaces of C2N@NbSe2 and NbSe2 and (c) the binding energies between LiPS and C2N@NbSe2, NbSe2 and C2N surfaces[70]; (d) the adsorption models and energies of LiPS on the WX2@NCF‖MoX2@NCF[71]; (e) the conversion process of LiPS on Co5.47N/Fe3N, (f) the adsorption visualization test and (g) the Li2S6 binding energy[72]
Fig. 6 (a) Adsorption analyses of Li2S8@ZIF-8, Li2S8@ZIF-67 and Li2S8@MOF-5[77]; (b) Cu3(HITP)2 as promising electrocatalysts for lithium sulfur battery and (c) binding energy vs the descriptor φ in 2D MOFs[78]
Fig.7 (a) Optimized geometries, structural parameters and the selected bond lengths (?) of Li2Sx (1≤x≤8) at B3LYP/6-311G (3df) level[107]; (b) discharge mechanism of lithium sulfur batteries[108]
Fig.8 (a) Reaction net and (b) reaction pathway of DOL decomposition[119]; (c) schematic of LiPS conversion cycle with recyclable NiDME additive[131]
[1]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741
[2]
Larcher D, Tarascon J M. Nat. Chem., 2015, 7(1): 19.

doi: 10.1038/nchem.2085 pmid: 25515886
[3]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

doi: 10.1038/nmat3191
[4]
Chen Y, Wang T Y, Tian H J, Su D W, Zhang Q, Wang G X. Adv. Mater., 2021, 33(29): 2003666.
[5]
Chung S H, Manthiram A. Adv. Mater., 2019, 31(27): 1901125.
[6]
Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42(7): 3018.

doi: 10.1039/c2cs35256g
[7]
He J R, Manthiram A. Energy Storage Mater., 2019, 20: 55.
[8]
Huang L, Li J J, Liu B, Li Y H, Shen S H, Deng S J, Lu C W, Zhang W K, Xia Y, Pan G X, Wang X L, Xiong Q Q, Xia X H, Tu J P. Adv. Funct. Mater., 2020, 30(22): 1910375.
[9]
Zhang M, Chen W, Xue L X, Jiao Y, Lei T Y, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X F, Xiong J. Adv. Energy Mater., 2020, 10(2): 1903008.
[10]
Yang X F, Luo J, Sun X L. Chem. Soc. Rev., 2020, 49(7): 2140.

doi: 10.1039/C9CS00635D
[11]
Feng S, Fu Z H, Chen X, Zhang Q. InfoMat, 2022, 4(3): e12304.
[12]
Fan Y C, Chen X, Legut D, Zhang Q F. Energy Storage Mater., 2019, 16: 169.
[13]
Meng Y S, Elena Arroyo-de Dompablo M. Energy Environ. Sci., 2009, 2(6): 589.

doi: 10.1039/b901825e
[14]
Sendek A D, Yang Q, Cubuk E D, Duerloo K A N, Cui Y, Reed E J. Energy Environ. Sci., 2017, 10(1): 306.

doi: 10.1039/C6EE02697D
[15]
Yao N, Chen X, Fu Z H, Zhang Q. Chem. Rev., 2022, 122(12): 10970.

doi: 10.1021/acs.chemrev.1c00904
[16]
Hohenberg P, Kohn W. Phys. Rev., 1964, 136(3B): B864.

doi: 10.1103/PhysRev.136.B864
[17]
Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Rev. Mod. Phys., 2001, 73(1): 33.

doi: 10.1103/RevModPhys.73.33
[18]
Geerlings P, De Proft F, Langenaeker W. Chem. Rev., 2003, 103(5): 1793.

doi: 10.1021/cr990029p pmid: 12744694
[19]
Myers W D, Swiatecki W J. Nucl. Phys. A, 1996, 601(2): 141.

doi: 10.1016/0375-9474(95)00509-9
[20]
Görling A. Phys. Rev. A, 1999, 59(5): 3359.

doi: 10.1103/PhysRevA.59.3359
[21]
Städele M, Moukara M, Majewski J A, Vogl P, Görling A. Phys. Rev. B, 1999, 59(15): 10031.

doi: 10.1103/PhysRevB.59.10031
[22]
Islam M S, Fisher C A J. Chem. Soc. Rev., 2014, 43(1): 185.

doi: 10.1039/C3CS60199D
[23]
Laasonen K. Methods in Molecular Biology. Totowa: Humana Press, 2012. 29.
[24]
Wang M Y, Xia X H, Zhong Y, Wu J B, Xu R C, Yao Z J, Wang D H, Tang W J, Wang X L, Tu J P. Chem. Eur. J., 2019, 25(15): 3710.

doi: 10.1002/chem.v25.15
[25]
Ye H, Yin Y X, Xin S, Guo Y G. J. Mater. Chem. A, 2013, 1(22): 6602.

doi: 10.1039/c3ta10735c
[26]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

doi: 10.1038/nmat2460
[27]
Li T T, He C, Zhang W X. J. Energy Chem., 2021, 52: 121.

doi: 10.1016/j.jechem.2020.04.042
[28]
Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Small, 2016, 12(24): 3283.

doi: 10.1002/smll.v12.24
[29]
Wasalathilake K C, Roknuzzaman M, Ostrikov K K, Ayoko G A, Yan C. RSC Adv., 2018, 8(5): 2271.

doi: 10.1039/C7RA11628D
[30]
Yi Z L, Su F Y, Huo L, Cui G Y, Zhang C L, Han P D, Dong N, Chen C M. Appl. Surf. Sci., 2020, 503: 144446.
[31]
Jand S P, Chen Y X, Kaghazchi P. J. Power Sources, 2016, 308: 166.

doi: 10.1016/j.jpowsour.2016.01.062
[32]
Yin L C, Liang J, Zhou G M, Li F, Saito R, Cheng H M. Nano Energy, 2016, 25: 203.

doi: 10.1016/j.nanoen.2016.04.053
[33]
Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. 2D Mater., 2015, 2(1): 014011.
[34]
Li F, Su Y, Zhao J J. Phys. Chem. Chem. Phys., 2016, 18(36): 25241.

doi: 10.1039/C6CP04071C
[35]
VÉlez P, Laura Para M, Luque G L, Barraco D, Leiva E P M. Electrochimica Acta, 2019, 309: 402.

doi: 10.1016/j.electacta.2019.04.062
[36]
Gong B J, Song X D, Shi Y T, Liu J H, Hao C. J. Phys. Chem. C, 2020, 124(6): 3644.

doi: 10.1021/acs.jpcc.9b10314
[37]
Sinthika S, Pushpa Selvi M, Nimma Elizabeth R, Gavali D S, Thapa R. Int. J. Energy Res., 2022, 46(4): 4405.

doi: 10.1002/er.v46.4
[38]
Yi Z L, Su F Y, Cui G Y, Han P D, Dong N, Chen C M. ChemistrySelect, 2019, 4(43): 12612.

doi: 10.1002/slct.v4.43
[39]
Cheviri M, Lakshmipathi S. Chem. Phys. Lett., 2020, 739: 136942.

doi: 10.1016/j.cplett.2019.136942
[40]
Zhang L, Liang P, Shu H B, Man X L, Du X Q, Chao D L, Liu Z G, Sun Y P, Wan H Z, Wang H. J. Colloid Interface Sci., 2018, 529: 426.

doi: 10.1016/j.jcis.2018.06.036
[41]
Liu X, Huang J Q, Zhang Q, Mai L Q. Adv. Mater., 2017, 29(20): 1601759.
[42]
Balach J, Linnemann J, Jaumann T, Giebeler L. J. Mater. Chem. A, 2018, 6(46): 23127.

doi: 10.1039/C8TA07220E
[43]
Xu J, Lawson T, Fan H B, Su D W, Wang G X. Adv. Energy Mater., 2018, 8(10): 1702607.
[44]
Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Nat. Commun., 2016, 7: 11203.

doi: 10.1038/ncomms11203
[45]
Zhang X F, Chen M S, Zhang Q, Liu J Q, Wu Y C. Appl. Surf. Sci., 2021, 563: 150172.
[46]
Wang L, Hu Z H, Wan X, Hua W X, Li H, Yang Q H, Wang W C. Adv. Energy Mater., 2022, 12(20): 2200340.
[47]
Liu J Q, Li K H, Zhang Q, Zhang X F, Liang X, Yan J, Tan H H, Yu Y, Wu Y C. ACS Appl. Mater. Interfaces, 2021, 13(38): 45547.

doi: 10.1021/acsami.1c13193
[48]
Chen X, Peng H J, Zhang R, Hou T Z, Huang J Q, Li B, Zhang Q. ACS Energy Lett., 2017, 2(4): 795.

doi: 10.1021/acsenergylett.7b00164
[49]
Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(28): 8178.

doi: 10.1002/anie.v56.28
[50]
Wu Q, Chen Y C, Hao X Q, Zhu T J, Cao Y A, Wang W J. J. Electrochem. Soc., 2021, 168(12): 120516.

doi: 10.1149/1945-7111/ac3ab2
[51]
Wang Y S, Ma Z, Song N H, Zhang T J, Zhang Q L, Yang D P, Wang F. Chem. Phys. Lett., 2020, 741: 137121.

doi: 10.1016/j.cplett.2020.137121
[52]
Jayan R, Islam M M. J. Phys. Chem. C, 2020, 124(50): 27323.

doi: 10.1021/acs.jpcc.0c08170
[53]
Zhang Q, Zhang X F, Li M, Liu J Q, Wu Y C. Appl. Surf. Sci., 2019, 487: 452.

doi: 10.1016/j.apsusc.2019.05.138
[54]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306
[55]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1): 72.

doi: 10.1039/C8CS00324F
[56]
Xiao Y, Hwang J Y, Sun Y K. J. Mater. Chem. A, 2016, 4(27): 10379.

doi: 10.1039/C6TA03832H
[57]
Zhao Q, Zhu Q Z, Liu Y, Xu B. Adv. Funct. Mater., 2021, 31(21): 2100457.
[58]
Zhang C J, Cui L F, Abdolhosseinzadeh S, Heier J. InfoMat, 2020, 2(4): 613.

doi: 10.1002/inf2.v2.4
[59]
Fan K, Ying Y R, Luo X, Huang H T. J. Mater. Chem. A, 2021, 10(1): 337.

doi: 10.1039/D1TA90264D
[60]
Liu X B, Shao X F, Li F, Zhao M W. Appl. Surf. Sci., 2018, 455: 522.

doi: 10.1016/j.apsusc.2018.05.200
[61]
Zhang Q, Zhang X F, Xiao Y H, Li C, Tan H H, Liu J Q, Wu Y C. ACS Omega, 2020, 5(45): 29272.

doi: 10.1021/acsomega.0c04043 pmid: 33225158
[62]
Wang D S, Li F, Lian R Q, Xu J, Kan D X, Liu Y H, Chen G, Gogotsi Y, Wei Y J. ACS Nano, 2019, 13(10): 11078.

doi: 10.1021/acsnano.9b03412
[63]
Li N, Meng Q Q, Zhu X H, Li Z, Ma J L, Huang C X, Song J, Fan J. Nanoscale, 2019, 11(17): 8485.

doi: 10.1039/c9nr01220f pmid: 30990497
[64]
Song X H, Qu Y Y, Zhao L L, Zhao M W. ACS Appl. Mater. Interfaces, 2021, 13(10): 11845.

doi: 10.1021/acsami.0c21136
[65]
Zhang H K, Wang Z L, Cai J F, Wu S C, Li J J. ACS Appl. Mater. Interfaces, 2021, 13(45): 53388.

doi: 10.1021/acsami.1c10749
[66]
Zhang H K, Wang Z L, Ren J H, Liu J Y, Li J J. Energy Storage Mater., 2021, 35: 88.
[67]
He J R, Hartmann G, Lee M, Hwang G S, Chen Y F, Manthiram A. Energy Environ. Sci., 2019, 12(1): 344.

doi: 10.1039/C8EE03252A
[68]
Zhang C Y, He Q, Chu W, Zhao Y. Appl. Surf. Sci., 2020, 534: 147575.

doi: 10.1016/j.apsusc.2020.147575
[69]
Mao X T, Yu Y, Zhu L, Fu A P. Chem. Phys., 2021, 548: 111220.

doi: 10.1016/j.chemphys.2021.111220
[70]
Yang D W, Liang Z F, Zhang C Q, Biendicho J J, Botifoll M, Spadaro M C, Chen Q L, Li M Y, Ramon A, Moghaddam A O, Llorca J, Wang J A, Morante J R, Arbiol J, Chou S L, Cabot A. Adv. Energy Mater., 2021, 11(36): 2101250.
[71]
Song Y C, Zhou H P, Long X, Xiao J S, Yang J, Wu N N, Chen Z, Li P Y, Chen C, Liao J X, Wu M Q. Chem. Eng. J., 2021, 418: 129388.

doi: 10.1016/j.cej.2021.129388
[72]
Nguyen T T, Balamurugan J, Go H W, Ngo Q P, Kim N H, Lee J H. Chem. Eng. J., 2022, 427: 131774.

doi: 10.1016/j.cej.2021.131774
[73]
Gao D Y, Li Y, Guo Z L, Liu Z Y, Guo K, Fang Y, Xue Y M, Huang Y, Tang C C. J. Alloys Compd., 2021, 887: 161273.

doi: 10.1016/j.jallcom.2021.161273
[74]
Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Nano Micro Lett., 2021, 13(1): 203.

doi: 10.1007/s40820-021-00726-z
[75]
Kong L J, Liu M, Huang H, Xu Y H, Bu X H. Adv. Energy Mater., 2022, 12(4): 2100172.
[76]
Zhang H H, Gu C, Yao M S, Kitagawa S. Adv. Energy Mater., 2022, 12(4): 2270014.
[77]
Li C, Zhang X F, Zhang Q, Xiao Y H, Fu Y Y, Tan H H, Liu J Q, Wu Y C. Comput. Theor. Chem., 2021, 1196: 113110.

doi: 10.1016/j.comptc.2020.113110
[78]
Wang J R, Li F, Liu Z C, Dai Z H, Gao S X, Zhao M W. ACS Appl. Mater. Interfaces, 2021, 13(51): 61205.

doi: 10.1021/acsami.1c19381
[79]
Cao Y, Wang M D, Wang H J, Han C Y, Pan F S, Sun J. Adv. Energy Mater., 2022, 12(20): 2200057.
[80]
Zhan X J, Chen Z, Zhang Q C. J. Mater. Chem. A, 2017, 5(28): 14463.

doi: 10.1039/C7TA02105D
[81]
Song X D, Zhang M R, Yao M, Hao C, Qiu J S. ACS Appl. Mater. Interfaces, 2018, 10(50): 43896.

doi: 10.1021/acsami.8b16172
[82]
Schütze Y, de Oliveira Silva R, Ning J Y, Rappich J, Lu Y, Ruiz V G, Bande A, Dzubiella J. Phys. Chem. Chem. Phys., 2021, 23(47): 26709.

doi: 10.1039/D1CP04550D
[83]
Song L H, Zhang M G, Guo J. Chem. Phys. Lett., 2021, 777: 138711.

doi: 10.1016/j.cplett.2021.138711
[84]
Adekoya D, Qian S S, Gu X X, Wen W, Li D S, Ma J M, Zhang S Q. Nano Micro Lett., 2021, 13(1): 13.

doi: 10.1007/s40820-020-00522-1
[85]
Hao Q, Jia G H, Wei W, Vinu A, Wang Y, Arandiyan H, Ni B J. Nano Res., 2020, 13(1): 18.

doi: 10.1007/s12274-019-2589-z
[86]
Yamsang N, Sittiwong J, Srifa P, Boekfa B, Sawangphruk M, Maihom T, Limtrakul J. Appl. Surf. Sci., 2021, 565: 150378.

doi: 10.1016/j.apsusc.2021.150378
[87]
Lin H, Jin R C, Wang A L, Zhu S G, Li H Z. Ceram. Int., 2019, 45(14): 17996.

doi: 10.1016/j.ceramint.2019.06.018
[88]
Li T T, He C, Zhang W X. J. Mater. Chem. A, 2019, 7(8): 4134.

doi: 10.1039/C8TA10933H
[89]
Wang Z H, Zeng Z H, Nong W, Yang Z, Qi C Z, Qiao Z P, Li Y, Wang C X. Phys. Chem. Chem. Phys., 2022, 24(1): 180.

doi: 10.1039/D1CP04192D
[90]
Wang D D, Li H B, Zhang L L, Sun Z H, Han D X, Niu L, Zhao J L. Adv. Theory Simul., 2019, 2(2): 1800165.
[91]
Dong Y N, Xu B, Hu H Y, Yang J S, Li F Y, Gong J, Chen Z F. Phys. Chem. Chem. Phys., 2021, 23(23): 12958.

doi: 10.1039/D1CP01022K
[92]
Liang J, Yin L C, Tang X N, Yang H C, Yan W S, Song L, Cheng H M, Li F. ACS Appl. Mater. Interfaces, 2016, 8(38): 25193.

doi: 10.1021/acsami.6b05647
[93]
Jiang H R, Shyy W, Liu M, Ren Y X, Zhao T S. J. Mater. Chem. A, 2018, 6(5): 2107.

doi: 10.1039/C7TA09244J
[94]
Singh D, Gupta S K, Hussain T, Sonvane Y, Gajjar P N, Ahuja R. Energy Fuels, 2021, 35(10): 9001.

doi: 10.1021/acs.energyfuels.1c00607
[95]
Zhang Q, Xiao Y H, Fu Y Y, Li C, Zhang X F, Yan J, Liu J Q, Wu Y C. Appl. Surf. Sci., 2020, 512: 145639.

doi: 10.1016/j.apsusc.2020.145639
[96]
Zhao E Y, Nie K H, Yu X Q, Hu Y S, Wang F W, Xiao J, Li H, Huang X J. Adv. Funct. Mater., 2018, 28(38): 1707543.
[97]
Tan J, Liu D N, Xu X, Mai L Q. Nanoscale, 2017, 9(48): 19001.

doi: 10.1039/C7NR06819K
[98]
Pascal T A, Wujcik K H, Velasco-Velez J, Wu C H, Teran A A, Kapilashrami M, Cabana J, Guo J H, Salmeron M, Balsara N, Prendergast D. J. Phys. Chem. Lett., 2014, 5(9): 1547.

doi: 10.1021/jz500260s pmid: 26270094
[99]
Do-Hoon Kim B S, Lee M S B, Park K Y, Kang K. Chem. Asian J., 2016, 11(8): 1288.

doi: 10.1002/asia.201600007
[100]
Liu Z X, Deng H Q, Hu W Y, Gao F, Zhang S G, Balbuena P B, Mukherjee P P. Phys. Chem. Chem. Phys., 2018, 20(17): 11713.

doi: 10.1039/C8CP01462K
[101]
Feng Z M, Kim C, Vijh A, Armand M, Bevan K H, Zaghib K. J. Power Sources, 2014, 272: 518.

doi: 10.1016/j.jpowsour.2014.07.078
[102]
Park H, Koh H S, Siegel D J. J. Phys. Chem. C, 2015, 119(9): 4675.

doi: 10.1021/jp513023v
[103]
Yang G C, Shi S Q, Yang J H, Ma Y M. J. Mater. Chem. A, 2015, 3(16): 8865.

doi: 10.1039/C5TA00499C
[104]
Paolella A, Zhu W, Marceau H, Kim C S, Feng Z M, Liu D Q, Gagnon C, Trottier J, Abdelbast G, Hovington P, Vijh A, Demopoulos G P, Armand M, Zaghib K. J. Power Sources, 2016, 325: 641.

doi: 10.1016/j.jpowsour.2016.06.086
[105]
Song Y W, Shen L, Yao N, Li X Y, Bi C X, Li Z, Zhou M Y, Zhang X Q, Chen X, Li B Q, Huang J Q, Zhang Q. Chem, 2022, 8(11): 3031.

doi: 10.1016/j.chempr.2022.07.004
[106]
Liu Q, Mu D B, Wu B R, Wang L, Gai L, Wu F. RSC Adv., 2017, 7(53): 33373.

doi: 10.1039/C7RA04673A
[107]
Wang L J, Zhang T R, Yang S Q, Cheng F Y, Liang J, Chen J. J. Energy Chem., 2013, 22(1): 72.

doi: 10.1016/S2095-4956(13)60009-1
[108]
Assary R S, Curtiss L A, Moore J S. J. Phys. Chem. C, 2014, 118(22): 11545.

doi: 10.1021/jp5015466
[109]
Arneson C, Wawrzyniakowski Z D, Postlewaite J T, Ma Y. J. Phys. Chem. C, 2018, 122(16): 8769.

doi: 10.1021/acs.jpcc.8b00478
[110]
Li C, Zhang Q, Sheng J Z, Chen B, Gao R H, Piao Z H, Zhong X W, Han Z Y, Zhu Y F, Wang J L, Zhou G M, Cheng H M. Energy Environ. Sci., 2022, 15(10): 4289.

doi: 10.1039/D2EE01820A
[111]
Liu J Q, Li M, Zhang X F, Zhang Q, Yan J, Wu Y C. Phys. Chem. Chem. Phys., 2019, 21(30): 16435.

doi: 10.1039/C9CP01036J
[112]
Feng S, Fu Z H, Chen X, Li B Q, Peng H J, Yao N, Shen X, Yu L G, Gao Y C, Zhang R, Zhang Q. Angew. Chem. Int. Ed., 2022, 61(52): e202211448.
[113]
Cheviri M, Lakshmipathi S. Comput. Theor. Chem., 2021, 1202: 113323.

doi: 10.1016/j.comptc.2021.113323
[114]
Velasco J J, VÉlez P, Zoloff Michoff M E, Visintín A, Versaci D, Bodoardo S, Luque G L, Leiva E P M. J. Phys.: Condens. Matter, 2021, 33(34): 344003.
[115]
Zhang C Y, Zhang C Q, Sun G W, Pan J L, Gong L, Sun G Z, Biendicho J J, Balcells L, Fan X L, Morante J R, Zhou J Y, Cabot A. Angew. Chem. Int. Ed., 2022, 61(49): e202211570.
[116]
Sun G W, Jin M J, Liu Q Y, Zhang C Y, Pan J L, Wang Y C, Gao X P, Sun G Z, Pan X J, Zhou J Y. Chem. Eng J, 2023, 453: 139752.

doi: 10.1016/j.cej.2022.139752
[117]
Lin Y X, Zheng J, Wang C S, Qi Y. Nano Energy, 2020, 75: 104915.

doi: 10.1016/j.nanoen.2020.104915
[118]
Kaiser M R, Chou S L, Liu H K, Dou S X, Wang C S, Wang J Z. Adv. Mater., 2017, 29(48): 1700449.
[119]
Chen X, Hou T Z, Li B, Yan C, Zhu L, Guan C, Cheng X B, Peng H J, Huang J Q, Zhang Q. Energy Storage Mater., 2017, 8: 194.
[120]
Kamphaus E P, Balbuena P B. J. Power Sources, 2021, 485: 229289.
[121]
Camacho-Forero L E, Balbuena P B. J. Power Sources, 2020, 472: 228449.
[122]
Han J, Balbuena P B. Phys. Chem. Chem. Phys., 2018, 20(27): 18811.

doi: 10.1039/C8CP02912A
[123]
Krauskopf T, Richter F H, Zeier W G, Janek J. Chem. Rev., 2020, 120(15): 7745.

doi: 10.1021/acs.chemrev.0c00431 pmid: 32786669
[124]
Phuc N H H, Hikima K, Muto H, Matsuda A. Crit. Rev. Solid State Mater. Sci., 2022, 47(3): 283.

doi: 10.1080/10408436.2021.1886045
[125]
Umeshbabu E, Zheng B Z, Yang Y. Electrochem. Energy Rev., 2019, 2(2): 199.

doi: 10.1007/s41918-019-00029-3
[126]
Xu G Y, Kushima A, Yuan J R, Dou H, Xue W J, Zhang X G, Yan X H, Li J. Energy Environ. Sci., 2017, 10(12): 2544.

doi: 10.1039/C7EE01898C
[127]
Shi X M, Zeng Z C, Sun M Z, Huang B L, Zhang H T, Luo W, Huang Y H, Du Y P, Yan C H. Nano Lett., 2021, 21(21): 9325.

doi: 10.1021/acs.nanolett.1c03573
[128]
Sun C G, Wang Z X, Yin L C, Xu S J, Ali Ghazi Z, Shi Y, An B G, Sun Z H, Cheng H M, Li F. Nano Energy, 2020, 75: 104976.

doi: 10.1016/j.nanoen.2020.104976
[129]
Zhao Q S, Xue H T, Tang F L, Wei C D. Solid State Ion., 2021, 373: 115797.

doi: 10.1016/j.ssi.2021.115797
[130]
Wei C D, Xue H T, Li Z, Zhao F N, Tang F L. J. Phys. D: Appl. Phys., 2022, 55(10): 105305.

doi: 10.1088/1361-6463/ac3c75
[131]
Luo C, Liang X, Sun Y F, Lv W, Sun Y W, Lu Z Y, Hua W X, Yang H T, Wang R C, Yan C L, Li J, Wan Y, Yang Q H. Energy Storage Mater., 2020, 33: 290.
[132]
Wu F, Qian J, Chen R J, Lu J, Li L, Wu H M, Chen J Z, Zhao T, Ye Y S, Amine K. ACS Appl. Mater. Interfaces, 2014, 6(17): 15542.

doi: 10.1021/am504345s
[133]
Ebadi M, Lacey M J, Brandell D, Araujo C M. J. Phys. Chem. C, 2017, 121(42): 23324.

doi: 10.1021/acs.jpcc.7b07847
[134]
Wang H, Zhang L F, Han J Q, Weinan E. Comput. Phys. Commun., 2018, 228: 178.

doi: 10.1016/j.cpc.2018.03.016
[135]
Lu D H, Wang H, Chen M H, Lin L, Car R, Weinan E, Jia W L, Zhang L F. Comput. Phys. Commun., 2021, 259: 107624.

doi: 10.1016/j.cpc.2020.107624
[136]
Liu X Y, Peng H J, Li B Q, Chen X, Li Z, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2022, 61(48): e202214037.
[137]
Chen X, Liu X Y, Shen X, Zhang Q. Angew. Chem. Int. Ed., 2021, 60(46): 24354.

doi: 10.1002/anie.v60.46
[1] Bingyi Ma, Sheng Huang, Shuanjin Wang, Min Xiao, Dongmei Han, Yuezhong Meng. Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(9): 1327-1340.
[2] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[3] Qimeng Ren, Qinglei Wang, Yinwen Li, Xuesheng Song, Xuehui Shangguan, Faqiang Li. High Voltage Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(7): 1077-1096.
[4] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[5] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[6] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[7] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[8] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[9] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[10] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[11] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[12] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[13] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[14] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[15] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.