中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1983-2001 DOI: 10.7536/PC210453 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System

Xianwen Wu1, Fengni Long1, Yanhong Xiang1, Jianbo Jiang1, Jianhua Wu1, Lizhi Xiong1, Qiaobao Zhang2()   

  1. 1 School of Chemistry and Chemical Engineering, Jishou University,Jishou 416000, China
    2 College of Materials, Xiamen University,Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Contact: Qiaobao Zhang
  • Supported by:
    National Natural Science Foundation of China(52064013); National Natural Science Foundation of China(52072323); National Natural Science Foundation of China(51762017); National Natural Science Foundation of China(52064014); National Natural Science Foundation of China(51862008); Key Program of Hunan Provincial Education Department(18A285)
Richhtml ( 60 ) PDF ( 1268 ) Cited
Export

EndNote

Ris

BibTeX

Zinc is an ideal electrode material for green rechargeable batteries because of its abundant raw materials, light weights, excellent electrical conductivity and ductility, as well as high theoretical specific capacity. The zinc-based aqueous battery with the neutral or weak acidic aqueous solution as electrolyte and zinc as the anode has the characteristics of high security, low cost and non-toxic battery materials, simple preparation process, and environmentally friendly. It has abroad application prospects in the field of storage devices for energy and power-driven battery. However, the problems such as zinc dendrite, hydrogen evolution, corrosion, and passivation during the process of charging and discharging limit its practical application. In this paper, the existing problems and current solutions of zinc anode for zinc-based aqueous batteries were reviewed, and the developmental trend of the anode has prospected.

Contents

1 Introduction

2 The challenges of zinc anode

2.1 Zinc dendrite

2.2 Corrosion and passivation

2.3 Hydrogen evolution

3 Optimizing strategy for zinc anode

3.1 Additives

3.2 Zinc alloy

3.3 Surface modification

3.4 Structural design

3.5 Intercalation-type anode

3.6 Electrolyte optimization

4 Summary and outlook

Fig. 1 Vicious cycle of adverse reaction of zinc anode
Fig. 2 (a) Cycling performance of unmodified ZnAB and modified ZnAB + AC reversible Zn-ion batteries at current density of 200 mA·g-1;(b) reaction principle of anode ZnAB + AC[69];(c) SEM images of Zn-Al-LDH sample[71];(d) SEM images of Zn-Al-Cu LDH sample[72]
Table 1 Electrochemical performance of ZnAB + AC anode battery with different mass ratio[69]
Fig. 3 (a) Comparison of electrochemical performance between the Zn-Al eutectic alloy anode and pure zinc anode battery at 0.5 A·g-1;(b) the principle of Zn88Al12 anode[73];(c) Coulombic efficiency of the Cu-Zn/Zn electrode comparing with those of the bare Zn electrode;(d) schematic illustration of the function of the Cu-Zn alloy on the Cu-Zn/Zn electrode[74]
Table 2 The electrochemical performance of two batteries using Zn@ZrO2 and Zn as anode
Table 3 The electrochemical performance of two batteries using Zn@KL-Zn and Zn as anode
Fig. 4 (a) Reaction process of deposition/dissolution reaction between the pure zinc anode and the ZrO2-coated zinc anode[83];(b) reaction process of the deposition/dissolution of pure zinc anode with TiO2 coating zinc anode[85];(c) schematic illustrations of the morphology of Zn and KL-Zn anodes during the Zn2+ deposition process[84];(d) photos of zinc electrode before and after surface coating of MOF layer;(e) Schematic diagram of surface structure and reaction of zinc anode coated with MOF[86];(f) dendrite-free Ga-In@Zn anode by alloying-diffusion synergistic strategy[82]
Fig. 5 (a) Rate capability of Zn@GF//HQ-NaFe[90];(b) cycling performances of Zn@CFs//α-MnO2 full cell at 1 C rate[91];(c) charge-discharge curve of Zn@Copper foam//β-MnO2 full battery[97];(d) cycling performances of the MOF based ZIBs[98]
Table 4 Long cycle performance of β-MnO2//Zn、、Zn@Cu foil、Zn@Cu foam batteries at 1 A·g-1
Fig. 6 (a) The work mechanism of 9,10-anthraquinone//ZnMn2O4;(b) the cycle performance of 9,10-anthraquinone//ZnMn2O4[99];(c) the cycle performance of h-MoO3//Zn0.2MnO2 battery[103];(d) cycling performance of Na0.14TiS2/ZnMn2O4 full battery at a current density of 0.2 A·g-1[102]
Fig. 7 (a) Electrochemical performance of the Zn//LiMn2O4 full cell[116];(b) cyclic performance of Zn//MnO2 full cell under 100 mA·g-1 current density[117]
Fig. 8 (a) Cyclability of the batteries with zinc anode with organic additives and commercialized zinc foil;(b) XRD results of the zinc anode electroplated with different organic additives and commercial zinc[124];(c) cyclability of Zinc-based Aqueous Battery with zinc anode with inorganic additives and commercial zinc foil;(d) XRD patterns of zinc anode and commercial zinc foil prepared by electrodeposition with different inorganic additives[125]
Fig. 9 (a) Scheme of the Mg2+ functional mechanism for hybrid electrolyte;(b) discharge-charge profiles for MgVO cathode at current density of 100 mA·g-1 in different electrolytes[130]
Fig. 10 (a) The chemical structure of TpPa-SO3Zn0.5;(b) the structural model of TpPa-SO3Zn0.5 ;(c) Coulomb efficiency and cycle performance diagram of a Zn|TpPa-SO3Zn0.5|MnO2 cell[136];(d) the design of ultrathin all-in-one ZIBs schematic process[137]
Fig. 11 (a,b) SEM images of the morphologies grown at the Zn anode after plating/stripping for more than 5000 h in Zn(OTf)2-(TMP-DMC) electrolyte at a current density of 1.0 mA cm-2[142];(c) schematic illustration of the environments of solvated TMP and free TMP in concentrated(i.e., 1.0 mol·L-1 Na++0.5 mol·L-1 Zn2+) and dilute(i.e., 0.5 mol·L-1 Zn2+) electrolytes[143]
[1]
Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.

doi: 10.1038/451652a
[2]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741
[3]
Cai Y Z, Huang D Q, Ma Z L, Wang H Q, Huang Y G, Wu X W, Li Q Y. Electrochimica Acta, 2019, 305: 563.

doi: 10.1016/j.electacta.2019.02.114
[4]
Obama B. Science, 2017, 355(6321): 126.

doi: 10.1126/science.aam6284
[5]
Schmidt O, Hawkes A, Gambhir A, Staffell I. Nat. Energy, 2017, 2(8): 1.

doi: 10.1038/ng0992-1
[6]
Jiang Z, Li Y H, Han C, Huang Z Q, Wu X W, He Z X, Meng W, Dai L, Wang L. J. Electrochem. Soc., 2020, 167(2): 020550.
[7]
Deng N P, Ma X M, Ruan Y L, Wang X Q, Kang W M, Cheng B W. Prog. Chem., 2016, 28(9): 1435.
(邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 化学进展, 2016, 28(9): 1435.)

doi: 10.7536/PC160203
[8]
Zhong M E, Guan J D, Feng Q J, Wu X W, Xiao Z B, Zhang W, Tong S, Zhou N, Gong D X. Carbon, 2018, 128: 86.

doi: 10.1016/j.carbon.2017.11.084
[9]
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.

doi: 10.1021/acs.chemrev.8b00288
[10]
Shang H, Zuo Z C, Li L, Wang F, Liu H B, Li Y J, Li Y L. Angew. Chem. Int. Ed., 2018, 57(3): 774.

doi: 10.1002/anie.v57.3
[11]
Xiang Y H, Jiang Y L, Liu S Q, Wu J H, Liu Z X, Zhu L, Xiong L Z, He Z Q, Wu X W. Front Chem, 2020, 8: 9.

doi: 10.3389/fchem.2020.00009
[12]
Chen Y H, Tang Z Y, Lu X H, Tan C Y. Prog. Chem., 2006, 18(06): 823.
(陈玉红, 唐致远, 卢星河, 谭才渊. 化学进展, 2006, 18(6): 823.)
[13]
Larcher D, Tarascon J M. Nat. Chem., 2015, 7(1): 19.

doi: 10.1038/nchem.2085 pmid: 25515886
[14]
Li X Y, Chen G, Le Z Y, Li X R, Nie P, Liu X Y, Xu P C, Wu H B, Liu Z, Lu Y F. Nano Energy, 2019, 59: 464.

doi: 10.1016/j.nanoen.2019.02.061
[15]
Wang S T, Yang Y, Dong Y H, Zhang Z T, Tang Z L. J. Adv. Ceram., 2019, 8(1): 1.

doi: 10.1007/s40145-018-0292-2
[16]
Li Y H, Wu X W, Wang S L, Wang W Q, Xiang Y H, Dai C H, Liu Z X, He Z Q, Wu X M. RSC Adv., 2017, 7(59): 36909.

doi: 10.1039/C7RA06172B
[17]
Liu Y C, Huang B, Shao Y J, Shen M Y, Du L, Liao S J. Prog. Chem., 2019, 31(9): 1329.
(刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 化学进展, 2019, 31(9): 1329.)

doi: 10.7536/PC190212
[18]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[19]
Wang J, Liu G Y, Fan K L, Zhao D, Liu B B, Jiang J B, Qian D, Yang C M, Li J H. J. Colloid Interface Sci., 2018, 517: 134.

doi: 10.1016/j.jcis.2018.02.001
[20]
Fan L, Ma R F, Zhang Q F, Jia X X, Lu B G. Angew. Chem. Int. Ed., 2019, 58(31): 10500.

doi: 10.1002/anie.v58.31
[21]
Fang G Z, Wang Q C, Zhou J, Lei Y P, Chen Z X, Wang Z Q, Pan A Q, Liang S Q. ACS Nano, 2019, 13(5): 5635.

doi: 10.1021/acsnano.9b00816
[22]
Li J H, Zhang J, Rui B L, Lin L, Chang L M, Nie P. Prog. Chem., 2019, 31(9): 1283.
(李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. 化学进展, 2019, 31(9): 1283.)

doi: 10.7536/PC190219
[23]
Kong P, Zhu L, Li F R, Xu G B. ChemElectroChem, 2019, 6(22): 5642.

doi: 10.1002/celc.v6.22
[24]
Chen S Q, Wu C, Shen L F, Zhu C B, Huang Y Y, Xi K, Maier J, Yu Y. Adv. Mater., 2017, 29(48): 1700431.
[25]
Ni J F, Fu S D, Wu C, Maier J, Yu Y, Li L. Adv. Mater., 2016, 28(11): 2259.

doi: 10.1002/adma.201504412
[26]
Pramudita J C, Sehrawat D, Goonetilleke D, Sharma N. Adv. Energy Mater., 2017, 7(24): 1602911.
[27]
Kundu D P, Adams B D, Duffort V, Vajargah S H, Nazar L F. Nat. Energy, 2016, 1(10): 1.

doi: 10.1038/ng0492-1
[28]
Yang S N, Zhang M S, Wu X W, Wu X S, Zeng F H, Li Y T, Duan S Y, Fan D H, Yang Y, Wu X M. J. Electroanal. Chem., 2019, 832: 69.

doi: 10.1016/j.jelechem.2018.10.051
[29]
Meng W W, Li C, Yao M, He Z X, Wu X W, Jiang Z, Dai L, Wang L. Adv. Powder Technol., 2020, 31(4): 1359.

doi: 10.1016/j.apt.2020.01.015
[30]
Li Y G, Lu J. ACS Energy Lett., 2017, 2(6): 1370.

doi: 10.1021/acsenergylett.7b00119
[31]
Laska C A, Auinger M, Biedermann P U, Iqbal D, Laska N, De Strycker J, Mayrhofer K J J. Electrochimica Acta, 2015, 159: 198.

doi: 10.1016/j.electacta.2015.01.217
[32]
Wu X W, Zhou S H, Li Y T, Yang S N, Xiang Y H, Jiang J B, Liu Z X, Fan D H, Zhang H T, Zhu L. J. Alloys Compd., 2021, 858: 157744.
[33]
Huang J T, Zhou J, Liang S Q. Acta Phys. Chim. Sin., 2021, 37(3): 1.
(黄江涛, 周江, 梁叔全. 物理化学学报, 2021, 37(3): 1.)
[34]
Gabano J P, Morignat B, Laurent J F. Power Sources. Amsterdam: Elsevier, 1967, 1:49.
[35]
Mainar A R, Iruin E, Colmenares L C, Kvasha A de Meatza I, Bengoechea M, Leonet O, Boyano I, Zhang Z C, Blazquez J A. J. Energy Storage, 2018, 15: 304.

doi: 10.1016/j.est.2017.12.004
[36]
Takakazu Y, Takayuki S. Inorg Chim Acta, 1986, 117: L27.

doi: 10.1016/S0020-1693(00)82175-1
[37]
Xu C J, Li B H, Du H D, Kang F Y. Angew. Chem. Int. Ed., 2012, 51(4): 933.

doi: 10.1002/anie.v51.4
[38]
Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P. J. Power Sources, 2012, 216: 222.

doi: 10.1016/j.jpowsour.2012.05.063
[39]
Han Z X, Askhatova D, Doan T N L, Hoang T K A, Chen P. J. Power Sources, 2015, 279: 238.

doi: 10.1016/j.jpowsour.2014.12.109
[40]
Li C X, Yuan W T, Li C, Wang H, Wang L B, Liu Y C, Zhang N. Chem. Commun., 2021, 54: 1.

doi: 10.1039/C8CC90001A
[41]
Wu X W, Li Y H, Li C C, He Z X, Xiang Y H, Xiong L Z, Chen D, Yu Y, Sun K T, He Z Q, Chen P. J. Power Sources, 2015, 300: 453.

doi: 10.1016/j.jpowsour.2015.09.096
[42]
Wu X W, Li Y H, Xiang Y H, Liu Z X, He Z Q, Wu X M, Li Y J, Xiong L Z, Li C C, Chen J. J. Power Sources, 2016, 336: 35.

doi: 10.1016/j.jpowsour.2016.10.053
[43]
Zhao H B, Hu C J, Cheng H W, Fang J H, Xie Y P, Fang W Y, Doan T N L, Hoang T K A, Xu J Q, Chen P. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[44]
Zhang N, Dong Y, Jia M, Bian X, Wang Y Y, Qiu M D, Xu J Z, Liu Y C, Jiao L F, Cheng F Y. ACS Energy Lett., 2018, 3(6): 1366.

doi: 10.1021/acsenergylett.8b00565
[45]
Cui J J, Wu X W, Yang S N, Li C C, Tang F, Chen J, Chen Y, Xiang Y H, Wu X M, He Z Q. Front. Chem., 2018, 6: 352.

doi: 10.3389/fchem.2018.00352
[46]
Zhou S H, Wu X W, Xiang Y H, Zhu L, Liu Z X, Zhao C X. Prog. Chem., 2021, 33(4): 649.
(周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 化学进展, 2021, 33(4): 649.)

doi: 10.7536/PC200512
[47]
Wang J J, Wang J G, Liu H Y, Wei C G, Kang F Y. J. Mater. Chem. A, 2019, 7(22): 13727.

doi: 10.1039/C9TA03541A
[48]
Zhang N, Cheng F Y, Liu J X, Wang L B, Long X H, Liu X S, Li F J, Chen J. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[49]
Xie C L, Li Y H, Wang Q, Sun D, Tang Y G, Wang H Y. Carbon Energy, 2020, 2(4): 540.

doi: 10.1002/cey2.v2.4
[50]
Jia H, Wang Z Q, Tawiah B, Wang Y D, Chan C Y, Fei B, Pan F. Nano Energy, 2020, 70: 104523.
[51]
Li C P, Xie X S, Liang S Q, Zhou J. Energy Environ. Mater., 2020, 3(2): 146.

doi: 10.1002/eem2.v3.2
[52]
Lu W J, Xie C X, Zhang H M, Li X F. ChemSusChem, 2018, 11(23): 3996.

doi: 10.1002/cssc.v11.23
[53]
Wan F, Niu Z Q. Angew. Chem. Int. Ed., 2019, 58(46): 16358.

doi: 10.1002/anie.v58.46
[54]
Zhao Z M, Zhao J W, Hu Z L, Li J D, Li J J, Zhang Y J, Wang C, Cui G L. Energy Environ. Sci., 2019, 12(6): 1938.

doi: 10.1039/C9EE00596J
[55]
Sajjadnejad M, Ghorbani M, Afshar A. Ceram. Int., 2015, 41(1): 217.

doi: 10.1016/j.ceramint.2014.08.061
[56]
He P, Chen Q, Yan M Y, Xu X, Zhou L, Mai L Q, Nan C W. EnergyChem, 2019, 1(3): 100022.
[57]
Hoang T K A, Doan T N L, Sun K E K, Chen P. RSC Adv., 2015, 5(52): 41677.

doi: 10.1039/C5RA00594A
[58]
Chen L N, Yan M Y, Mei Z W, Mai L Q. J. Inorg. Mater., 2017, 32(3): 225.

doi: 10.15541/jim20160192
(陈丽能, 晏梦雨, 梅志文, 麦立强. 无机材料学报, 2017, 32(3): 225.)

doi: 10.15541/jim20160192
[59]
Lu J, Xiong T L, Zhou W J, Yang L J, Tang Z H, Chen S W. ACS Appl. Mater. Interfaces, 2016, 8(8): 5065.

doi: 10.1021/acsami.6b00233
[60]
Lv X, Wei W, Wang H, Huang B B, Dai Y. Appl. Catal. B: Environ., 2020, 264: 118521.
[61]
Zhu J Q, Wang Z C, Dai H J, Wang Q Q, Yang R, Yu H, Liao M Z, Zhang J, Chen W, Wei Z, Li N, Du L J, Shi D X, Wang W L, Zhang L X, Jiang Y, Zhang G Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[62]
Zhao J W, Zhang J, Yang W H, Chen B B, Zhao Z M, Qiu H Y, Dong S M, Zhou X H, Cui G L, Chen L Q. Nano Energy, 2019, 57: 625.

doi: 10.1016/j.nanoen.2018.12.086
[63]
Shin J, Lee J, Park Y, Choi J W. Chem. Sci., 2020, 11(8): 2028.

doi: 10.1039/D0SC00022A
[64]
TrÓcoli R, La Mantia F. ChemSusChem, 2015, 8(3): 481.

doi: 10.1002/cssc.v8.3
[65]
Fu J, Cano Z P, Park M G, Yu A P, Fowler M, Chen Z W. Adv. Mater., 2017, 29(7): 1604685.
[66]
Liu W B, Dong L B, Jiang B Z, Huang Y F, Wang X L, Xu C J, Kang Z, Mou J, Kang F Y. Electrochimica Acta, 2019, 320: 134565.
[67]
Fang G Z, Zhou J, Pan A Q, Liang S Q. ACS Energy Lett., 2018, 3(10): 2480.

doi: 10.1021/acsenergylett.8b01426
[68]
Xia Y, Zhu D R, Si S H, Li D G, Wu S. J. Power Sources, 2015, 283: 125.

doi: 10.1016/j.jpowsour.2015.02.123
[69]
Li H F, Xu C J, Han C P, Chen Y Y, Wei C G, Li B H, Kang F Y. J. Electrochem. Soc., 2015, 162(8): A1439.

doi: 10.1149/2.0141508jes
[70]
Zhang C, Wang J M, Zhang L, Zhang J Q, Cao C N. J. Appl. Electrochem., 2001, 31(9): 1049.

doi: 10.1023/A:1017923924121
[71]
González M A, TrÓcoli R, Pavlovic I, Barriga C, La Mantia F. Electrochem. Commun., 2016, 68: 1.

doi: 10.1016/j.elecom.2016.04.006
[72]
Bani Hashemi A, Kasiri G, Glenneberg J, Langer F, Kun R, La Mantia F. ChemElectroChem, 2018, 5(15): 2073.

doi: 10.1002/celc.v5.15
[73]
Wang S B, Ran Q, Yao R Q, Shi H, Wen Z, Zhao M, Lang X Y, Jiang Q. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[74]
Cai Z, Ou Y T, Wang J D, Xiao R, Fu L, Yuan Z, Zhan R M, Sun Y M. Energy Storage Mater., 2020, 27: 205.
[75]
Ganesan S, Prabhu G, Popov B N. Surf. Coat. Technol., 2014, 238: 143.

doi: 10.1016/j.surfcoat.2013.10.062
[76]
Yao C Z, Chen W W, Zhu T P, Tay S L, Gao W. Surf. Coat. Technol., 2014, 249: 90.

doi: 10.1016/j.surfcoat.2014.03.055
[77]
Lan B X, Zhang W W, Luo P, Tang C, Tang W, Zuo C L, Dong S J, Chen L N. Mater. Rep., 2020, 34(13): 13068.
(蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 材料导报, 2020, 34(13): 13068.)
[78]
Li B, Xue J, Han C, Liu N, Ma K X, Zhang R C, Wu X W, Dai L, Wang L, He Z X. J. Colloid Interface Sci., 2021, 599: 467.

doi: 10.1016/j.jcis.2021.04.113
[79]
Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Adv. Energy Mater., 2018, 8(25): 1801090.
[80]
Shen C, Li X, Li N, Xie K Y, Wang J G, Liu X R, Wei B Q. ACS Appl. Mater. Interfaces, 2018, 10(30): 25446.

doi: 10.1021/acsami.8b07781
[81]
Xia A L, Pu X M, Tao Y Y, Liu H M, Wang Y G. Appl. Surf. Sci., 2019, 481: 852.

doi: 10.1016/j.apsusc.2019.03.197
[82]
Liu C, Luo Z, Deng W T, Wei W F, Chen L B, Pan A Q, Ma J M, Wang C W, Zhu L M, Xie L L, Cao X Y, Hu J G, Zou G Q, Hou H S, Ji X B. ACS Energy Lett., 2021, 6(2): 675.

doi: 10.1021/acsenergylett.0c02569
[83]
Liang P C, Yi J, Liu X Y, Wu K, Wang Z, Cui J, Liu Y Y, Wang Y G, Xia Y Y, Zhang J J. Adv. Funct. Mater., 2020, 30(13): 1908528.
[84]
Deng C B, Xie X S, Han J W, Tang Y, Gao J W, Liu C X, Shi X D, Zhou J, Liang S Q. Adv. Funct. Mater., 2020, 30(21): 2000599.
[85]
Zhao K N, Wang C X, Yu Y H, Yan M Y, Wei Q L, He P, Dong Y F, Zhang Z Y, Wang X D, Mai L Q. Adv. Mater. Interfaces, 2018, 5(16): 1800848.
[86]
Cao L S, Li D, Deng T, Li Q, Wang C S. Angew. Chem., 2020, 132(43): 19454.

doi: 10.1002/ange.v132.43
[87]
Liu J H, He P G, Fan L Z. J. Chin. Ceram. Soc., 2020, 48(7): 990.
(刘佳昊, 何平鸽, 范丽珍. 硅酸盐学报, 2020, 48(7): 990.)
[88]
Xie X S, Liang S Q, Gao J W, Guo S, Guo J B, Wang C, Xu G Y, Wu X W, Chen G, Zhou J. Energy Environ. Sci., 2020, 13(2): 503.

doi: 10.1039/C9EE03545A
[89]
Qiu W D, Li Y, You A, Zhang Z M, Li G F, Lu X H, Tong Y X. J. Mater. Chem. A, 2017, 5(28): 14838.

doi: 10.1039/C7TA03274A
[90]
Wang L P, Li N W, Wang T S, Yin Y X, Guo Y G, Wang C R. Electrochimica Acta, 2017, 244: 172.

doi: 10.1016/j.electacta.2017.05.072
[91]
Dong W, Shi J L, Wang T S, Yin Y X, Wang C R, Guo Y G. RSC Adv., 2018, 8(34): 19157.

doi: 10.1039/C8RA03226B
[92]
Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Adv. Mater., 2019, 31(36): 1903675.
[93]
Kang Z, Wu C L, Dong L B, Liu W B, Mou J, Zhang J W, Chang Z W, Jiang B Z, Wang G X, Kang F Y, Xu C J. ACS Sustainable Chem. Eng., 2019, 7(3): 3364.

doi: 10.1021/acssuschemeng.8b05568
[94]
Li C P, Shi X D, Liang S Q, Ma X M, Han M M, Wu X W, Zhou J. Chem. Eng. J., 2020, 379: 122248.
[95]
Zhang Q, Luan J Y, Fu L, Wu S G, Tang Y G, Ji X B, Wang H Y. Angew. Chem. Int. Ed., 2019, 58(44): 15841.

doi: 10.1002/anie.v58.44
[96]
Wang Z, Huang J H, Guo Z W, Dong X L, Liu Y, Wang Y G, Xia Y Y. Joule, 2019, 3(5): 1289.

doi: 10.1016/j.joule.2019.02.012
[97]
Shi X D, Xu G F, Liang S Q, Li C P, Guo S, Xie X S, Ma X M, Zhou J. ACS Sustainable Chem. Eng., 2019, 7(21): 17737.

doi: 10.1021/acssuschemeng.9b04085
[98]
Yuksel R, Buyukcakir O, Seong W K, Ruoff R S. Adv. Energy Mater., 2020, 10(16): 1904215.
[99]
Yan L J, Zeng X M, Li Z H, Meng X J, Wei D, Liu T F, Ling M, Lin Z, Liang C D. Mater. Today Energy, 2019, 13: 323.
[100]
Chae M S, Hong S T. Batteries, 2019, 5(1): 3.

doi: 10.3390/batteries5010003
[101]
Cheng Y W, Luo L L, Zhong L, Chen J Z, Li B, Wang W, Mao S X, Wang C M, Sprenkle V L, Li G S, Liu J. ACS Appl. Mater. Interfaces, 2016, 8(22): 13673.

doi: 10.1021/acsami.6b03197
[102]
Li W, Wang K L, Cheng S J, Jiang K. Adv. Energy Mater., 2019, 9: 1.
[103]
Xiong T, Zhang Y X, Wang Y M, Lee W S V, Xue J M. J. Mater. Chem. A, 2020, 8(18): 9006.

doi: 10.1039/D0TA02236E
[104]
Chen L N, An Q Y, Mai L Q. Adv. Mater. Interfaces, 2019, 6: 1.
[105]
Soundharrajan V, Sambandam B, Kim S, Islam S, Jo J, Kim S, Mathew V, Sun Y K, Kim J. Energy Storage Mater., 2020, 28: 407.
[106]
Meng J L, Yang Z H, Chen L L, Qin H G, Cui F, Jiang Y N, Zeng X. Mater. Today Energy, 2020, 15: 100370.
[107]
Zhang Y, Wan F, Huang S, Wang S, Niu Z Q, Chen J. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[108]
Huang S, Zhu J C, Tian J L, Niu Z Q. Chem. Eur. J., 2019, 25(64): 14480.

doi: 10.1002/chem.v25.64
[109]
Liu C X, Xie X S, Lu B G, Zhou J, Liang S Q. ACS Energy Lett., 2021, 6(3): 1015.

doi: 10.1021/acsenergylett.0c02684
[110]
Tang F, Gao J Y, Ruan Q Y, Wu X W, Wu X S, Zhang T, Liu Z X, Xiang Y H, He Z Q, Wu X M. Electrochimica Acta, 2020, 353: 136570.
[111]
Li G Z, Huang Z X, Chen J B, Yao F, Liu J P, Li O L, Sun S H, Shi Z C. J. Mater. Chem. A, 2020, 8(4): 1975.

doi: 10.1039/C9TA11985J
[112]
Tang F, He T, Zhang H H, Wu X W, Li Y K, Long F N, Xiang Y H, Zhu L, Wu J H, Wu X M. J. Electroanal. Chem., 2020, 873: 114368.
[113]
Huang S, Wan F, Bi S S, Zhu J C, Niu Z Q, Chen J. Angew. Chem. Int. Ed., 2019, 58(13): 4313.

doi: 10.1002/anie.v58.13
[114]
Hu P, Zhu T, Wang X P, Zhou X F, Wei X J, Yao X H, Luo W, Shi C W, Owusu K A, Zhou L, Mai L Q. Nano Energy, 2019, 58: 492.

doi: 10.1016/j.nanoen.2019.01.068
[115]
Kumar S, Verma V, Chua R, Ren H, Kidkhunthod P, Rojviriya C, Sattayaporn S, Groot F M F, Manalastas W Jr, Srinivasan M. Batter. Supercaps, 2020, 3(7): 619.

doi: 10.1002/batt.v3.7
[116]
Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Nat. Mater., 2018, 17(6): 543.

doi: 10.1038/s41563-018-0063-z pmid: 29662160
[117]
Chen S G, Lan R, Humphreys J, Tao S W. Energy Storage Mater., 2020, 28: 205.
[118]
Chen C Y, Matsumoto K, Kubota K, Hagiwara R, Xu Q. Adv. Energy Mater., 2019, 9(22): 1970086.
[119]
Jiang Z M, Wang L, Shen M, Chen H C, Ma G Q, He X M. Prog. Chem., 2019, 31(5): 699.
(蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 化学进展, 2019, 31(5): 699.)

doi: 10.7536/PC180815
[120]
Wang F H, Liu H B. Chin. J. Inorg. Chem., 2019, 35(11): 1999.
(王福慧, 刘辉彪. 无机化学学报, 2019, 35(11): 1999.)
[121]
Wang X W, Wang F X, Wang L Y, Li M X, Wang Y F, Chen B W, Zhu Y S, Fu L J, Zha L S, Zhang L X, Wu Y P, Huang W. Adv. Mater., 2016, 28(24): 4904.

doi: 10.1002/adma.v28.24
[122]
Konarov A, Voronina N, Jo J H, Bakenov Z, Sun Y K, Myung S T. ACS Energy Lett., 2018, 3(10): 2620.

doi: 10.1021/acsenergylett.8b01552
[123]
Chen S, Tang F, He T, Zhang H H, Deng S S, Li Y K, Wu X W, Zhang Q B, Xiang Y H, Yan W B. Int. J. Photoenergy, 2019, 2019: 1.
[124]
Sun K E K, Hoang T K A, Doan T N L, Yu Y, Zhu X, Tian Y, Chen P. ACS Appl. Mater. Interfaces, 2017, 9(11): 9681.

doi: 10.1021/acsami.6b16560
[125]
Sun K E K, Hoang T K A, Doan T N L, Yu Y, Chen P. Chem. Eur. J., 2018, 24(7): 1667.

doi: 10.1002/chem.201704440
[126]
Zeng X H, Mao J F, Hao J N, Liu J T, Liu S L, Wang Z J, Wang Y Y, Zhang S L, Zheng T, Liu J W, Rao P H, Guo Z P. Advanced materials(Deerfield Beach, Fla), 2021, 33: e2007416.
[127]
Ma L, Pollard T P, Zhang Y, Schroeder M A, Ding M S, Cresce A V, Sun R M, Baker D R, Helms B A, Maginn E J, Wang C S, Borodin O, Xu K. Angew. Chem. Int. Ed., 2021, 60(22): 12438.

doi: 10.1002/anie.v60.22
[128]
Liu N, Li B, He Z X, Dai L, Wang H Y, Wang L. J. Energy Chem., 2021, 59: 134.

doi: 10.1016/j.jechem.2020.10.044
[129]
Wu X W, Xiang Y H, Peng Q J, Wu X S, Li Y H, Tang F, Song R C, Liu Z X, He Z Q, Wu X M. J. Mater. Chem. A, 2017, 5(34): 17990.

doi: 10.1039/C7TA00100B
[130]
Zhang Y M, Li H N, Huang S Z, Fan S, Sun L N, Tian B B, Chen F M, Wang Y, Shi Y M, Yang H Y. Nano Micro Lett., 2020, 12(1): 1.
[131]
Li X J, Tang Y C, Lv H, Wang W L, Mo F N, Liang G J, Zhi C Y, Li H F. Nanoscale, 2019, 11(39): 17992.

doi: 10.1039/C9NR06721C
[132]
Wu K, Huang J H, Yi J, Liu X Y, Liu Y Y, Wang Y G, Zhang J J, Xia Y Y. Adv. Energy Mater., 2020, 10(12): 1903977.
[133]
Li H F, Han C P, Huang Y, Huang Y, Zhu M S, Pei Z X, Xue Q, Wang Z F, Liu Z X, Tang Z J, Wang Y K, Kang F Y, Li B H, Zhi C Y. Energy Environ. Sci., 2018, 11(4): 941.

doi: 10.1039/C7EE03232C
[134]
Mo F N, Li H F, Pei Z X, Liang G J, Ma L T, Yang Q, Wang D H, Huang Y, Zhi C Y. Sci. Bull., 2018, 63(16): 1077.

doi: 10.1016/j.scib.2018.06.019
[135]
Pan W D, Wang Y F, Zhao X L, Zhao Y, Liu X H, Xuan J, Wang H Z, Leung D Y C. Adv. Funct. Mater., 2021, 31(15): 2008783.
[136]
Park S, Kristanto I, Jung G Y, Ahn D B, Jeong K, Kwak S K, Lee S Y. Chem. Sci., 2020, 11(43): 11692.

doi: 10.1039/D0SC02785E
[137]
Yao M J, Yuan Z S, Li S S, He T W, Wang R, Yuan M J, Niu Z Q. Adv. Mater., 2021, 33(10): 2008140.
[138]
Han C, Li W J, Liu H K, Dou S X, Wang J Z. Nano Energy, 2020, 74: 104880.
[139]
Wang T T, Li C P, Xie X S, Lu B G, He Z X, Liang S Q, Zhou J. ACS Nano, 2020, 14(12): 16321.

doi: 10.1021/acsnano.0c07041
[140]
Hao J N, Li X L, Zeng X H, Li D, Mao J F, Guo Z P. Energy Environ. Sci., 2020, 13(11): 3917.

doi: 10.1039/D0EE02162H
[141]
Naveed A, Yang H J, Yang J, Nuli Y N, Wang J L. Angew. Chem. Int. Ed., 2019, 58(9): 2760.

doi: 10.1002/anie.v58.9
[142]
Naveed A, Yang H J, Shao Y Y, Yang J, Yanna N L, Liu J, Shi S Q, Zhang L W, Ye A J, He B, Wang J L. Adv. Mater., 2019, 31(36): 1900668.
[143]
Dong Y, Di S L, Zhang F B, Bian X, Wang Y Y, Xu J Z, Wang L B, Cheng F Y, Zhang N. J. Mater. Chem. A, 2020, 8(6): 3252.

doi: 10.1039/C9TA13068C
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[3] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[4] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[5] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[6] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[7] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[8] Jinling Wang, Yuzhen Wen, Hualin Wang, Honglai Liu, Xuejing Yang. FeOCl and Its Intercalation Compounds: Structures, Properties and Applications [J]. Progress in Chemistry, 2021, 33(2): 263-280.
[9] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[10] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[11] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[12] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[13] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[14] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[15] Xinbing Cheng, Qiang Zhang*. Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites [J]. Progress in Chemistry, 2018, 30(1): 51-72.