中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1761-1769 DOI: 10.7536/PC171129 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries

Yun Zhao1, Yuhong Jin2, Li Wang1*, Guangyu Tian3, Xiangming He1,3*   

  1. 1. Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China;
    3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.U1564205), the International Cooperation Program of the Ministry of Science and Technology of China (No.2016YFE0102200) and the Talents Program of Beijing (No.YETP0157).
PDF ( 556 ) Cited
Export

EndNote

Ris

BibTeX

Lithium ion batteries, which are secondary battery with the high specific energy, play an increasingly important role in the field of sustainable energy. In order to explore the next generation of lithium ion batteries with higher specific energy density, many electrode materials with high specific capacity are being researched and developed. However, these materials usually display the large volume change during lithiation and delithiation process. Therefore, it is necessary to prepare nanostructures to achieve better electrochemical performance. However, the nanostructure leads to low Coulombic efficiency, poor cycling stability and relatively low specific energy density, which can be ascribed to its high specific surface area and low tap density. The assembly of nanomaterials into a hierarchical structure can effectively reduce the overall specific surface area, and limit the consumption of lithium during the formation of solid state interphase(SEI) film, leading to the increase of the initial Coulombic efficiency. Compared with the disordered build-up of nanoparticles, the hierarchical structure has a higher accumulation density and contact area, thus leading to the decrease of porosity and the increase of build-up density of the electrode materials. Therefore, the hierarchical structure of electrode materials can further increased the specific energy density of lithium ion batteries. In this review,we mainly focus on the preparation of hierarchical structure in lithium ion batteries and its application in lithium ion batteries. In terms of preparation, solvothermal method, emulsion method, spray drying method and template method are mainly described as well as effect of various parameters on the final hierarchical structure. In terms of application, different hierarchical structures are reviewed with the purpose of improving performances of lithium ion batteries as the mainline.
Contents
1 Introduction
2 Fabrication for hierarchical structures
2.1 Solvothermal method
2.2 Emulsion method
2.3 Spray drying method
2.4 Template method
3 The applications of hierarchical structures in lithium ion batteries
4 Conclusion

CLC Number: 

[1] Tarascon J M, Armand M. Nature, 2001, 414:359.
[2] Thackeray M M, Wolverton C, Isaacs E D. Energy Environ. Sci., 2012, 5:7854.
[3] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135:1167.
[4] Reddy M V, Rao G V S, Chowdari B V R. Chem. Rev., 2013, 113:5364.
[5] Obrovac M N, Chevrier V L. Chem. Rev., 2014, 114:11444.
[6] Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42:3018.
[7] Xia F, Kwon S S, Lee W W, Liu Z M, Kim S H, Song T, Choi K J, Paik U, Park W I. Nano Lett., 2015, 15:6658.
[8] Cho J H, Picraux S T. Nano Lett., 2013, 13:5740.
[9] Cho J H, Picraux S T. Nano Lett., 2014, 14:3088.
[10] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2008, 3:31.
[11] Yang M, Ko S, Im J S, Choi B G. J. Power Sources, 2015, 288:76.
[12] Gao J, Lowe M A, Abruna H D. Chem. Mater., 2011, 23:3223.
[13] Sun Y M, Liu N, Cui Y. Nature Energy, 2016, 2:16071.
[14] Cheng F, Li W C, Lu A H. ACS Appl. Mater. Interfaces, 2016, 8:27843.
[15] Cherian C T, Sundaramurthy J, Reddy M V, Kumar P S, Mani K, Pliszka D, Sow C H, Ramakrishna S, Chowdari B V R. ACS Appl. Mater. Interfaces, 2013, 5:9957.
[16] Zhang B, Yu Y, Huang Z, He Y B, Jang D, Yoon W S, Mai Y M, Kang F, Kim J K. Energy Environ. Sci., 2012, 5:9895.
[17] Hou X J, Zhu J, Shi S Z, He J, Mu J L, Geng W P, Chou X J, Xue C Y. Applied Surface Science, 2017, 404:94.
[18] Wu S M, Xia T, Wang J P, Lu F F, Xu C B, Zhang X F, Huo L H, Zhao H. Applied Surface Science, 2017, 406:46.
[19] Kong X Z, Wang Y P, Lin J D, Liang S Q, Pan A Q, Cao G Z. Electrochimica Acta, 2018, 259:419.
[20] Wang D, Yu R Z, Wang X Y, Ge L, Yang X K. Sci. Rep., 2015, 5:8403.
[21] Du H R, Huang K F, Dong W, Geng B Y. Electrochimica Acta, 2018, 279:66.
[22] Jin Y H, Wang L, Jiang Q L, Du X, Ji C W, He X M. Materials Letters, 2016, 177:85.
[23] Zhu C L, Zhu S M, Zhang K, Hui Z Y, Pan H, Chen Z X, Li Y, Zhang D, Wang D W. Sci. Rep., 2016, 6:25829.
[24] Jin Y H, Wang L, Shang Y M, Gao J, Li J J, He X M. Electrochimica Acta, 2015, 151:109.
[25] Jin Y H, Wang L, Shang Y M, Gao J, Li J J, He X M. Ionics, 2015, 21:2743.
[26] Jin Y H, Li Wang, Wang L, Shang Y M, Gao J, Li J J, Jiang Q L, Du X, Ji C W, He X M. Electrochimica Acta, 2016, 188:40.
[27] Jin Y H, Li Wang, Jiang Q L, Du X, Ji C W, He X M. Materials Letters, 2016, 168:166.
[28] Guo G N, Ji L, Shen X D, Wang B W, Li H W, Hu J H, Yang D, Dong A G. J. Mater. Chem. A, 2016, 4:16128.
[29] Han D D, Guo G N, Yan Y C, Li T T, Wang B W, Dong A G. Energy Storage Materials, 2018, 10:32.
[30] Yan Y C, Guo G N, Li T T, Han D D, Zheng J H, Hu J H, Yang D, Dong A G. Electrochimica Acta, 2017, 246:43.
[31] Ding T L, Wu J X, Chen Z L, Lan T B, Wei M D. J. Electroanalytical Chemistry, 2018, 818:1.
[32] Jiao Y C, Han D D, Liu L M, Ji L, Guo G N, Hu J H, Yang D, Dong A G. Angew. Chem. Int. Ed., 2015, 54:5727.
[33] Park G D, Kang Y C. Small, 2018, 14:1703957.
[34] Chae S, Ko M, Park S, Kim N, Ma J, Cho J. Energy Environ. Sci., 2016, 9:1251.
[35] Peng Y Y, Zhang Y Y, Wen Z P, Wang Y H, Chen Z Q, Hwang B J, Zhao J B. Chemical Engineering Journal, 2018, 346:57.
[36] Jung D S, Hwang T H, Park S B, Choi J W. Nano Lett., 2013, 13:2092.
[37] Jiao Y C, Han D D, Ding Y, Zhang X F, Guo G N, Hu J H, Yang D, Dong A G. Nat., Commun., 2015, 6:6420.
[38] Li W Y, Liang Z, Lu Z D, Yao H B, Seh Z W, Yan K, Zheng G Y, Cui Y. Adv. Energy Mater., 2015, 5:1500211.
[39] Zheng J H, Guo G N, Li H W, Wang L, Wang B W, Yu H J, Yan Y C, Yang D, Dong A G. ACS Energy Lett., 2017, 2; 1105.
[40] Liang Z, Zheng G, Li W, Seh Z W, Yao H, Yan K, Kong D, Cui Y. ACS Nano, 2014, 8:5249.
[41] Zhang L, Rajagopalan R, Guo H P, Hu X L, Dou S X, Liu H K. Adv. Funct. Mater., 2016, 26:440.
[42] Feckl J M, Fominykh K, Döblinger M, Fattakhova-Rohlfing D, Bein T. Angew. Chem. Int. Ed., 2012, 51:7459.
[43] Odziomek M, Chaput F, Rutkowska A, Swierczek K, Olszewska D, Sitarz M, Lerouge F, Parola S. Nat. Commun., 2017, 8:15636.
[44] Fan B B, Chen X H, Hu A P, Tang Q L, Fan H N, Liu Z, Xiao K K. RSC Adv., 2016, 6:79971.
[45] Fan H H, Li H H, Huang K C, Fan C Y, Zhang X Y, Wu X L, Zhang J P. ACS Appl. Mater. Interfaces, 2017, 9:10708.
[46] Li X Y, Ma Y Y, Qin L, Zhang Z Y, Zhang Z, Zheng Y Z, Qu Y Q. J. Mater. Chem. A, 2015, 3:2158.
[47] Lee S H, Yu S H, Lee J E, Jin A H, Lee D J, Lee N, Jo H Y, Shin K S, Ahn T Y, Kim Y W, Choe H, Sung Y E, Hyeon T. Nano Lett., 2013, 13:4249.
[48] Cui Z, Liu Q, Xu C T, Zou R J, Zhang J H, Zhang W L, Guan G Q, Hu J Q, Sun Y G. J. Mater. Chem. A, 2017, 5:21699.
[49] Liu N, Lu Z D, Zhao J, McDowell M T, Lee H W, Zhao W T, Cui Y. Nature Nanotech., 2014, 9:187.
[50] Lin D C, Lu Z D, Hsu P C, Lee H R, Liu N, Zhao J, Wang H T, Liu C, Cui Y. Energy Environ. Sci., 2015, 8:2371.
[51] Lee S H, Cho Y, Song H K, Lee K T, Cho J. Angew. Chem. Int. Ed., 2012, 51:8748.
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[3] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[4] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[5] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[6] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[7] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[8] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[9] Jinling Wang, Yuzhen Wen, Hualin Wang, Honglai Liu, Xuejing Yang. FeOCl and Its Intercalation Compounds: Structures, Properties and Applications [J]. Progress in Chemistry, 2021, 33(2): 263-280.
[10] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[11] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[12] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[13] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[14] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[15] Yun Lu, Jingpeng Li, Yan Zhang, Guorui Zhong, Bo Liu, Huiqing Wang. Wood-Derived Carbon Functional Materials [J]. Progress in Chemistry, 2020, 32(7): 906-916.