中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1722-1731 DOI: 10.7536/PC150642 Previous Articles   Next Articles

• Review and comments •

Investigation of Technology for Lithium-Oxygen Battery

Cai Kedi1,2*, Zhao Xue1, Tong Yujin2, Xiao Yao1, Gao Yong3, Wang Cheng3   

  1. 1. Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou 121013, China;
    2. Interfacial Molecular Spectroscopy Group, Fritz-Haber-Institut of the Max Planck Society, Berlin 14195, Germany;
    3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21206083,21373002).
PDF ( 2542 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-oxygen battery is a metal-air battery using lithium as the negative electrode, oxygen in the air as the positive electrode reactant. Because it has high theoretical specific energy and environmentally friendly advantages, the lithium-oxygen battery has been studied in recent years. In this work, it shows the latest research progress of key technology for lithium-oxygen battery, including positive electrode materials, catalysts, electrolyte, negative electrode and structure of battery. And on this basis, we outlook its future development, providing new ideas and methods for the research of other metal-air battery.

Contents
1 Introduction
2 Working principle of lithium-oxygen battery
3 Positive electrode
3.1 Carbon material
3.2 Composite material
3.3 Non-carbon material
3.4 Coating
4 Catalyst of positive electrode
5 Electrolyte
6 Negative electrode
7 Conclusion and outlook

CLC Number: 

[1] Zhang T, Zhou H S. Angew. Chem. Int. Ed., 2012, 124(44): 11224.
[2] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Yang S H. Nat. Chem., 2011, 3: 546.
[3] Abraham K M, Jiang Z J. Electrochem. Soc.,1996,143(1): 1.
[4] Ogasawara T, Debart A, Holzapfel M, Bruce P G. J. Am. Chem. Soc., 2006, 128: 1390.
[5] Debart A, Paterson A J, Bao J L, Bruce P G. Angew. Chem. Int. Ed., 2008, 47: 4521.
[6] 张栋(Zhang D), 张存中(Zhang C Z), 穆道斌(Mu D B), 吴伯荣(Wu B R), 吴锋(Wu F).化学进展(Progress in Chemistry), 2012, 24(12): 2472.
[7] Gao Y, Wang C, Pu W H, Liu Z X, Deng C S, Zhang P, Mao Z Q. Int. J.Hydrogen Energy, 2012, 37(17): 12725.
[8] Xu J J, Xu D, Wang Z L, Wang H G, Zhang L L, Zhang X B. Angew. Chem. Int. Ed., 2013, 52(14): 3887.
[9] Zhang L L, Zhang X B, Wang Z L, Xu J J, Xu D, Wang L M. Chem.Commun., 2012, 48(61): 7598.
[10] Cai K D, Pu W H, Gao Y, Hou J B, Deng C S, Wang C, Mao Z Q. Int. J. Hydrogen Energy, 2013, 38(25): 11023.
[11] Cai K D, Jiang H J, Pu W H. Int. J. Electrochem. Soc., 2014, 9(1): 390.
[12] Lu Y, Gasteiger H A, Crumlin E,Jr R M,Shao-Horn Y. J. Electrochem. Soc., 2010, 159(9): A1016.
[13] Bryantsev V S, Blanco M, Faglioni F. J. Phys. Chem. A, 2010, 114(31): 8165.
[14] Christensen J, Albertus P, Sanchez-Carrera R S, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A. J. Electrochem. Soc., 2012, 159 (2): R1.
[15] Viswanathan V, Thygesen K S, Hummelshoj J S, Norskov J K, Girishkumar G, McCloskey B D, Luntz A C. J. Chem. Phys., 2011, 135 (21): 214704.
[16] Tran C, Yang X, Qu D. J. Power Sources, 2010, 195(7): 2057.
[17] Xiao, J, Wang D H, Xu W, Wang D Y, Williford R E, Liu J, Zhang J. J. Electrochem. Soc., 2010, 157(4): A487.
[18] Li Y L, Li X F, Geng D S, Tang Y J, Li Y Y, Dodelet J P, Michel L, Sun X L. Carbon, 2013, 64: 170.
[19] Ma S B, Lee D J, Roev V, Im D M, Doo S G. J. Power Sources, 2013, 244: 494.
[20] Song Y F, Wang X Y, Bai Y S, Wang H, Hu B A, Shu H B, Yang X K, Yi L H, Ju B W, Zhang X Y. T. Nonferr. Metal. Soc., 2013, 23(12): 3685.
[21] Cui Z H, Fan W G, Guo X X. J. Power Sources, 2013, 235: 251.
[22] Nie H J, Zhang Y N, Zhou W, Li J, Wu B S, Liu T, Zhang H M. Electrochim. Acta, 2014, 150: 205.
[23] Li J, Zhang Y N, Zhou W, Nie H J, Zhang H M. J. Power Sources, 2014, 262: 29.
[24] Cui Z H, Guo X X. J. Power Sources, 2014, 267: 20.
[25] Lin X J, Lu X, Huang T, Liu Z L, Yu A S. J. Power Sources, 2013, 242: 855.
[26] Lei Y, Lu J, Luo X Y, Wu T P, Du P, Zhang X Y, Ren Y, Wen J G, Miller D J, Miller J T, Sun Y K, Elam J W, Amine K. Nano Lett., 2013, 13(9): 4182.
[27] Riaz A, Jung K N, Chang W Y, Shin K H, Lee J W. ACS Appl. Mater.Interfaces, 2014, 6(20): 17815.
[28] Lee H, Kim Y J, Lee D J, Song J C, Lee Y M, Lim H T, Park J K. J. Mater. Chem. A, 2014, 2(30): 11891.
[29] Oh D Y, Qi J F, Han B H, Zhang G R, Garney T J, Ohmura J, Zhang Y, Yang S H, Belcher A M. Nano Lett., 2014, 14(8): 4837.
[30] Lin X J, Shang Y S, Huang T, Yu A S. Nanoscale, 2014, 6(15): 9043.
[31] Hung T F, Mohamed S G, Shen C C, Tsai Y Q, Chang W S, Liu R S. Nanoscale, 2013, 5(24): 12115.
[32] Shui J L, Wang H H, Liu D J. Electrochem. Commun., 2013, 34: 45.
[33] Riaz A, Jung K N, Chang W, Lee S B, Lim T H, Park S J, Song R H, Yoon S, Shin K H, Lee J W. Chem.Commun., 2013, 49(53): 5984.
[34] Wei Z H, Tan P, An L, Zhao T S. Appl. Energy, 2014, 130: 134.
[35] Cho S M, Lee J K, Yoon W Y. Electrochim. Acta, 2015. 158: 246.
[36] Zahoor A, Jang H S, Jeong J S, Christy M, Hwang Y J, Nahm K S. RSC Adv., 2014, 4(18): 8973.
[37] Zeng J, Francia C, Amici J, Bodoardo S, Penazzi N. J. Power Sources, 2014, 272: 1003.
[38] Bhattacharya P, Nasybulin E N, Engelhard M H, Kovarik L, Bowden M E, Li X S, Gaspar D J, Xu W, Zhang J G. Adv. Funct. Mater., 2014, 24(47): 7510.
[39] Li P F, Zhang J K, Yu Q L, Qiao J S, Wang Z H, Rooney D, Sun W, Sun K N. Electrochim. Acta, 2015, 165: 78.
[40] Yu L, Shen Y, Huang Y H. J.Alloys Compd., 2014, 595: 185.
[41] Cao Y, Cai S R, Fan S C, Hu W Q, Zheng M S, Dong Q F. Faraday Discuss., 2014, 172: 215.
[42] Jung K N, Riaz A, Lee S B, Lim T H, Park S J, Song R H, Yoon S, Shin K H, Lee J W. J. Power Sources, 2013, 244: 328.
[43] Lim S H, Kim D H, Byun J Y, Kim B K, Yoon W Y. Electrochim. Acta, 2013, 107: 681.
[44] Huang Z, Zhang M, Cheng J F, Gong Y P, Li X, Chi B, Pu J, Jian L. J. Alloys Compd., 2015, 626: 173.
[45] Ko B K, Kim M K, Kim S H, Lee M A, Shim S E, Baeck S H. J.Mol.Catal A:Chem., 2013, 379: 9.
[46] 黄洋(Huang Y), 罗仲宽(Luo Z K), 王芳(Wang F), 吴其兴(Wu Q X), 徐扬海(Xu Y H), 陈静(Chen J), 李豪君(Li H J).材料导报A(Materials Review),2015, 29(3): 8.
[47] Zheng H, Xiao D D, Li X, Liu Y L, Wu Y, Wang J P, Jiang K, Chen C, Gu L, Wei X L, Hu Y S, Chen Q, Li H. Nano Lett., 2014, 14(8): 4245.
[48] Visco S J, Nimon V Y, Petrov A, Pridatko K, Goncharenko N, Nimon E, Jonghe L D, Volfkovich Y M, Bograchev D A. J. Solid State Electrochem., 2014, 18(5): 1443.
[49] Zhang J Q, Sun B, Xie X Q, Kretschmer K, Wang G X. Electrochim. Acta, 2015. 36: 151.
[50] Lu Q, Gao Y G, Zhao Q, Li J, Wang X H, Wang F S. J. Power Sources, 2013, 242: 677.
[51] Cai K D, Pu W H, Gao Y, Hou J B, Deng C S, Wang C, Mao Z Q. Int. J. Hydrogen Energy, 2013, 38(25): 11023.
[52] Jung K N, Lee J I, Jung J H, Shin K H, Lee J W. Chem.Commun., 2014, 50(41): 5458.
[53] Lee D J, Lee H, Song J C, Ryou M H, Lee Y M, Kim H T, Park J K. Electrochem. Commun., 2014, 40: 45.
[54] Le H T, Kalubarme R S, Ngo D T, Jang S Y, Jung K N, Shin K H, Park C J. J. Power Sources, 2015, 274: 1188.
[55] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1(14): 2193.
[56] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[57] Zhang J, Xu W, Liu W. J. Power Sources, 2010, 195(21): 7438.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[6] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[7] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[8] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[9] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[10] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[11] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[14] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[15] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.