中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2517-2539 DOI: 10.7536/PC220340 Previous Articles   Next Articles

• Review •

Advances in Lithium Selenium Batteries

Qi Huang1, Zhenyu Xing1,2()   

  1. 1 School of Chemistry, South China Normal University,Guangzhou 510006, China
    2 Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education,Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: Zhenyu Xing
  • Supported by:
    National Natural Science Foundation of China(22002045); Guangdong Basic and Applied Basic Research Foundation(2020A1515011549); Basic Research and Applicable Basic Research in Guangzhou City(202102020396)
Richhtml ( 19 ) PDF ( 306 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-selenium batteries have attracted much attention as secondary batteries due to their high energy density, high specific volumetric capacity, and moderate output voltage. However, the practical application of Li-Se batteries is hindered by the shuttle effect, poor conductivity, low active material utilization and fast capacity fading. In recent years, researchers investigated the charge-discharge mechanism of Li-Se batteries thoroughly, and studied effects on electrochemical performance from various new materials, including carbon materials and metal compounds, as cathode host, interlayer and electrolyte additives at the same time. This review systematically summarized the research progress of electrode materials, interlayer and electrolyte additives, with focus on charge-discharge mechanism and system optimization. We hope this review could provide perspective for the further development of Li-Se batteries.

Fig. 1 (a) Theoretical capacity of Se, S, LiCoO2, LiFePO4, Ternary material cathodes; (b) the number of publications on lithium-selenium batteries in recent years; (c) schematic of the structure composition for advanced Li-Se batteries
Fig. 2 (a) Initial charge-discharge process of lithium-selenium battery. (b) Initial charge-discharge curves of the c/a-Se[43]. (c) Cycling performance of Li/SeS2-C systems[44]. (d) Cycle performance of Li cells with SeS2-carbon composite as cathodes in ether-based electrolyte[45]. (e) Cyclic voltammetry curves of Li/SeS2 batteries in ether-based electrolyte with PVDF binder[45]; (f) Sectional view and front view showing the Li+ migration in a Sex preoccupied slit pore[51]. (g) Energy released by each electron in the direct formation of Li2Se from selenium molecules[51]. (h) Schematic illustration of the interfacial lithiation mechanism[53]. (i) Photograph of electrolyte solvent EC-EMC alone, with insoluble Se, with Li2Se, and with a combination of the two[22]
Fig. 3 Existing problems in lithium-selenium batteries
Fig. 4 (a) Illustration of the strategy behind the baked-in-salt approach for confining selenium[115]; (b) XRD patterns and (c) Raman spectra of the CMK-3, Se/CMK-3 composite and Se powder[122]; (d) Voltage profiles of Se@PCNFs[123]; (e) TEM HAADF image and associated EDXS maps of C, Se and O, respectively for Se@HHCS[124]; (f-h) TEM images of Se nanowires, Se/PANI and G@Se/PANI[41]
Fig. 5 (a) Schematic illustration for the preparation of Se@KF65 composite[138]. (b) TGA curve of hollow double-shell Se@CNx nanobelts[139]. (c) XRD patterns and (d) Raman spectra of pristine Se, Se-treated, HDHPC, and Se50/HDHPC composites[140]; (e) SEM and (f) TEM images of the synthesized Se50/SO-HPC3 composite[141]. (g) Cycling performance at a current density of 500mAh/g of the HPCNBs electrode[142]
Fig. 6 Formation mechanism of two novel one-dimensional nanostructures[151]
Fig. 7 (a) First discharge/charge curves of Se and Se-TiO2/NFF electrodes at 0.5 C in a voltage range of 1.0-3.0 V[164]. (b) Rate properties of Se-TiO2/NFF and Se at various current rates
Fig. 8 (a) Proposed advantages of CoS2@LRC/SeS2 over LRC/SeS2[180]; (b) lithiation of NiCo2S4@NC-SeS2 cathode[181]
Fig. 9 (a) The positively charged shield will repel Li+ incoming from the protrusion forcing further Li+ deposition to adjacent regions of the anode until a smooth deposition layer is formed[190]; SEM images of the morphologies of Li films deposited in electrolyte of 1 mol·L-1 LiPF6/PC with CsPF6 concentrations of (b) 0 mol·L-1 and (c) 0.01 mol·L-1, at a current density of 0.1 mA/cm2[190]; the electrochemical deposition processes of Li metal on (d) planar current collector and (e) 3D current collector[192]; (f) the synthesis process of Li/RGO composite electrode[193]
Fig. 10 (a,b) Molecular structure of TPB-DMTP-COF bifunctional separation coating material and mechanism for capturing polysulfide/polyselenide[200]; (c) the first three CV curves, (d) galvanostatic discharge and charge profiles and (e) cycling performance of Se-80% cathode based battery at 0.5 C[201]; (f) the structural design of Co-N-C@C interlayer and the LiPSs/LiPSes trapping mechanism[209]; (g) Preparation process for the Se/PCC cathode and PAN interlayer, and the brief model of the assembled Li-Se battery[208]; Schematic illustration of the structure composition of the cells (h) without interlayer, (i) with GS interlayer, and (j) with GST interlayer[211]
Fig. 11 (a) The film formation mechanism of the cathode surface and the SEM image after 500 cycles[219]. (b) Cross-sectional SEM image illustrating multilayered structure from the separator to the cathode[222]. (c) Three-dimensional configuration of PF 5 - signal[222]. (d) Optical images showing the various polymerization degrees of liquid electrolyte with different LiPF6 concentrations[222]. The electrochemistry of Li-Se batteries with ether-based LE (e) and GPE (f)[223]. (g) SEM/EDX images of the Se-KB cathode with hybrid electrolytes collected at various stages of discharge and charge at 0.2 C[225]. (h) Capacity dependent in situ Raman spectral contour plots[226]. (i) in situ Raman spectra at different discharge/charge states[226]
Table 1 Electrochemical performances of reported lithium-selenium batteries cathode materials in recent years
Fig. 12 Electrochemical performances of reported lithium-selenium batteries cathode materials in recent years
[1]
Fan E S, Li L, Wang Z P, Lin J, Huang Y X, Yao Y, Chen R J, Wu F. Chem. Rev., 2020, 120(14): 7020.

doi: 10.1021/acs.chemrev.9b00535
[2]
Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. ACS Cent. Sci., 2020, 6(7): 1095.

doi: 10.1021/acscentsci.0c00449
[3]
Gao X J, Yang X F, Wang S Z, Sun Q, Zhao C T, Li X N, Liang J W, Zheng M, Zhao Y, Wang J W, Li M S, Li R, Sham T K, Sun X L. J. Mater. Chem. A, 2020, 8(1): 278.

doi: 10.1039/C9TA10623E
[4]
Lei Z Y, Lei Y Y, Liang X M, Yang L, Feng J W. J. Power Sources, 2020, 473: 228611.

doi: 10.1016/j.jpowsour.2020.228611
[5]
Zhao P, Shiraz M H A, Zhu H Z, Liu Y H, Tao L, Liu J. Electrochimica Acta, 2019, 325: 134931.

doi: 10.1016/j.electacta.2019.134931
[6]
Zheng Z J, Su Q, Xu H Y, Zhang Q, Ye H, Wang Z B. Mater. Lett., 2019, 244: 134.

doi: 10.1016/j.matlet.2019.02.076
[7]
Park G D, Kim J H, Lee J K, Kang Y C. J. Mater. Chem. A, 2018, 6(43): 21410.

doi: 10.1039/C8TA08727J
[8]
Pang P P, Tan X X, Wang Z, Cai Z J, Nan J M, Xing Z Y, Li H. Electrochimica Acta, 2021, 365: 137380.

doi: 10.1016/j.electacta.2020.137380
[9]
Pang P P, Wang Z, Deng Y M, Nan J M, Xing Z Y, Li H. ACS Appl. Mater. Interfaces, 2020, 12(24): 27339.

doi: 10.1021/acsami.0c02459
[10]
Pang P P, Wang Z, Tan X X, Deng Y M, Nan J M, Xing Z Y, Li H. Electrochimica Acta, 2019, 327: 135018.

doi: 10.1016/j.electacta.2019.135018
[11]
Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49(5): 1569.

doi: 10.1039/C7CS00863E
[12]
Kundu D P, Krumeich F, Nesper R. J. Power Sources, 2013, 236: 112.

doi: 10.1016/j.jpowsour.2013.02.050
[13]
Gu X X, Xin L B, Li Y, Dong F, Fu M, Hou Y L. Nano Micro Lett., 2018, 10(4): 59.

doi: 10.1007/s40820-018-0213-5
[14]
Cui Y, Zhou X W, Guo W, Liu Y Z, Li T Y, Fu Y Z, Zhu L K. Batter. Supercaps, 2019, 2(9): 784.

doi: 10.1002/batt.201900050
[15]
Chen C, Zhao C H, Hu Z B, Liu K Y. Funct. Mater. Lett., 2017, 10(2): 1650074.

doi: 10.1142/S1793604716500740
[16]
Lim H D, Lee B, Bae Y, Park H, Ko Y, Kim H, Kim J, Kang K. Chem. Soc. Rev., 2017, 46(10): 2873.

doi: 10.1039/C6CS00929H
[17]
Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K. Adv. Mater., 2018, 30(1): 1704162.

doi: 10.1002/adma.201704162
[18]
Fang R P, Zhao S Y, Sun Z H, Wang W, Cheng H M, Li F. Advanced Materials, 2017, 29(48): 25.
[19]
He J R, Manthiram A. Energy Storage Mater., 2019, 20: 55.
[20]
Xing Z Y, Tan G Q, Yuan Y F, Wang B, Ma L, Xie J, Li Z S, Wu T P, Ren Y, Shahbazian-Yassar R, Lu J, Ji X L, Chen Z W. Adv. Mater., 2020, 32(31): 2002403.

doi: 10.1002/adma.202002403
[21]
Yu S L, Cai W L, Chen L, Song L X, Song Y Z. J. Energy Chem., 2021, 55: 533.

doi: 10.1016/j.jechem.2020.07.020
[22]
Cui Y J, Abouimrane A, Sun C J, Ren Y, Amine K. Chem. Commun., 2014, 50(42): 5576.

doi: 10.1039/C4CC00934G
[23]
Shen C L, Wang T, Xu X, Tian X C. Electrochimica Acta, 2020, 349: 136331.

doi: 10.1016/j.electacta.2020.136331
[24]
Jia M, Niu Y B, Mao C P, Liu S G, Zhang Y, Bao S J, Xu M W. J. Colloid Interface Sci., 2017, 490: 747.

doi: 10.1016/j.jcis.2016.12.012
[25]
Gu X X, Lai C. Energy Storage Mater., 2019, 23: 190.
[26]
Hu J L, Zhang C C, Zhang L Z. J. Alloys Compd., 2019, 806: 146.

doi: 10.1016/j.jallcom.2019.07.224
[27]
Sun J M, Du Z Z, Liu Y H, Ai W, Wang K, Wang T, Du H F, Liu L, Huang W. Adv. Mater., 2021, 33(10): 2170073.

doi: 10.1002/adma.202170073
[28]
Singh A, Kalra V. J. Mater. Chem. A, 2019, 7(19): 11613.

doi: 10.1039/C9TA00327D
[29]
Li J, Zhang C, Wu C J, Tao Y, Zhang L, Yang Q H. Rare Met., 2017, 36(5): 425.

doi: 10.1007/s12598-017-0903-z
[30]
Zhang S F, Wang W P, Xin S, Ye H, Yin Y X, Guo Y G. ACS Appl. Mater. Interfaces, 2017, 9(10): 8759.

doi: 10.1021/acsami.6b16708
[31]
Liu Y X, Si L, Du Y C, Zhou X S, Dai Z H, Bao J C. J. Phys. Chem. C, 2015, 119(49): 27316.

doi: 10.1021/acs.jpcc.5b09553
[32]
Xu J T, Ma J M, Fan Q H, Guo S J, Dou S X. Adv. Mater., 2017, 29(28): 1606454.

doi: 10.1002/adma.201606454
[33]
Du H, Feng S H, Luo W, Zhou L, Mai L Q. J. Mater. Sci. Technol., 2020, 55: 1.

doi: 10.1016/j.jmst.2020.01.001
[34]
Plaza-Rivera C O, Walker B A, Tran N X, Viggiano R P, Dornbusch D A, Wu J J, Connell J W, Lin Y. ACS Appl. Energy Mater., 2020, 3(7): 6374.

doi: 10.1021/acsaem.0c00582
[35]
Aboonasr Shiraz M H, Zhu H Z, Liu Y L, Sun X L, Liu J. J. Power Sources, 2019, 438: 227059.

doi: 10.1016/j.jpowsour.2019.227059
[36]
Ge J M, Zhang Q F, Liu Z M, Yang H G, Lu B G. J. Alloy. Compd., 2019, 8(10): 6.
[37]
Liu S C, Lu Q P, Zhao C H. Solid State Sci., 2018, 84: 15.

doi: 10.1016/j.solidstatesciences.2018.08.005
[38]
Lu L, Zhang L, Zeng H, Xu B, Wang L M, Li Y M. J. Alloys Compd., 2017, 695: 1294.

doi: 10.1016/j.jallcom.2016.10.259
[39]
Jia M, Mao C P, Niu Y B, Hou J K, Liu S G, Bao S J, Jiang J, Xu M W, Lu Z S. RSC Adv., 2015, 5(116): 96146.

doi: 10.1039/C5RA19000B
[40]
Sun K L, Zhao H B, Zhang S Q, Yao J, Xu J Q. Ionics, 2015, 21(9): 2477.

doi: 10.1007/s11581-015-1451-x
[41]
Zhang J J, Xu Y H, Fan L, Zhu Y C, Liang J W, Qian Y T. Nano Energy, 2015, 13: 592.

doi: 10.1016/j.nanoen.2015.03.028
[42]
Saji V S, Lee C W. RSC Adv., 2013, 3(26): 10058.

doi: 10.1039/c3ra40678d
[43]
Zhou X M, Gao P, Sun S C, Bao D, Wang Y, Li X B, Wu T T, Chen Y J, Yang P P. Chem. Mater., 2015, 27(19): 6730.

doi: 10.1021/acs.chemmater.5b02753
[44]
Abouimrane A, Dambournet D, Chapman K W, Chupas P J, Weng W, Amine K. J. Am. Chem. Soc., 2012, 134(10): 4505.

doi: 10.1021/ja211766q pmid: 22364225
[45]
Cui Y J, Abouimrane A, Lu J, Bolin T, Ren Y, Weng W, Sun C J, Maroni V A, Heald S M, Amine K. J. Am. Chem. Soc., 2013, 135(21): 8047.

doi: 10.1021/ja402597g
[46]
Zhou J, Chen M X, Wang T, Li S Y, Zhang Q S, Zhang M, Xu H J, Liu J L, Liang J F, Zhu J, Duan X F. iScience, 2020, 23(3): 100919.

doi: 10.1016/j.isci.2020.100919
[47]
Pongilat R, Nallathamby K. J. Phys. Chem. C, 2019, 123(10): 5881.

doi: 10.1021/acs.jpcc.8b12396
[48]
Feng N X, Xiang K X, Xiao L, Chen W H, Zhu Y R, Liao H Y, Chen H. J. Alloys Compd., 2019, 786: 537.

doi: 10.1016/j.jallcom.2019.01.348
[49]
Zhao C H, Hu Z B, Luo J S. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 560: 69.

doi: 10.1016/j.colsurfa.2018.10.003
[50]
Mukkabla R, Kuldeep, Deepa M. ACS Appl. Energy Mater., 2018, 1(12): 6964.

doi: 10.1021/acsaem.8b01382
[51]
Xin S, Yu L, You Y, Cong H P, Yin Y X, Du X L, Guo Y G, Yu S H, Cui Y, Goodenough J B. Nano Lett., 2016, 16(7): 4560.

doi: 10.1021/acs.nanolett.6b01819
[52]
Yang C P, Xin S, Yin Y X, Ye H, Zhang J, Guo Y G. Angew. Chem. Int. Ed., 2013, 52(32): 8363.

doi: 10.1002/anie.201303147
[53]
Li Y H, Lu J X, Cheng X P, Shi H F, Zhang Y F. Nano Energy, 2018, 48: 441.

doi: 10.1016/j.nanoen.2018.03.004
[54]
Yu X W, Manthiram A. Energy Environ. Sci., 2018, 11(3): 527.

doi: 10.1039/C7EE02555F
[55]
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G X. Chem, 2019, 5(9): 2326.

doi: 10.1016/j.chempr.2019.05.009
[56]
Xu G L, Liu J Z, Amine R, Chen Z H, Amine K. ACS Energy Lett., 2017, 2(3): 605.

doi: 10.1021/acsenergylett.6b00642
[57]
Gu X X, Tang T Y, Liu X T, Hou Y L. J. Mater. Chem. A, 2019, 7(19): 11566.

doi: 10.1039/C8TA12537F
[58]
Huang K, Zhou P, Chen H N. Energy Technol., 2021, 9(8): 2100371.

doi: 10.1002/ente.202100371
[59]
Jin J, Tian X C, Srikanth N, Kong L B, Zhou K. J. Mater. Chem. A, 2017, 5(21): 10110.

doi: 10.1039/C7TA01384A
[60]
Soochan K, Misuk C, Youngkwan L. Adv. Energy Mater., 2020, 105: 1903477.
[61]
Jie Y L, Ren X D, Cao R G, Cai W B, Jiao S H. Adv. Funct. Mater., 2020, 30(25): 1910777.

doi: 10.1002/adfm.201910777
[62]
Ye H, Yin Y X, Zhang S F, Guo Y G. J. Mater. Chem. A, 2014, 2(33): 13293.

doi: 10.1039/C4TA02017K
[63]
Xia Y, Lu C W, Fang R Y, Huang H, Gan Y P, Liang C, Zhang J, He X P, Zhang W K. Electrochem. Commun., 2019, 99: 16.

doi: 10.1016/j.elecom.2018.12.013
[64]
Lai Y Q, Yang F H, Zhang Z A, Jiang S F, Li J. RSC Adv., 2014, 4(74): 39312.

doi: 10.1039/C4RA06856D
[65]
Li Z, Yuan L X, Yi Z Q, Liu Y, Huang Y H. Nano Energy, 2014, 9: 229.

doi: 10.1016/j.nanoen.2014.07.012
[66]
Liu L L, Hou Y Y, Yang Y Q, Li M X, Wang X W, Wu Y P. RSC Adv., 2014, 4(18): 9086.

doi: 10.1039/C3RA48034H
[67]
Bucur C B, Bonnick P, Jones M, Muldoon J. Sustain. Energy Fuels, 2018, 2(4): 759.

doi: 10.1039/C8SE00017D
[68]
Li J, Zhao X X, Zhang Z A, Lai Y Q. J. Alloys Compd., 2015, 619: 794.

doi: 10.1016/j.jallcom.2014.09.099
[69]
Liu Y X, Si L, Zhou X S, Liu X, Xu Y, Bao J C, Dai Z H. J. Mater. Chem. A, 2014, 2(42): 17735.

doi: 10.1039/C4TA03141E
[70]
Zhang J J, Fan L, Zhu Y C, Xu Y H, Liang J W, Wei D H, Qian Y T. Nanoscale, 2014, 6(21): 12952.

doi: 10.1039/C4NR03705G
[71]
Luo C, Xu Y H, Zhu Y J, Liu Y H, Zheng S Y, Liu Y, Langrock A, Wang C S. ACS Nano, 2013, 7(9): 8003.

doi: 10.1021/nn403108w
[72]
Jin Y, Liu K, Lang J L, Jiang X, Zheng Z K, Su Q H, Huang Z Y, Long Y Z, Wang C G, Wu H, Cui Y. Joule, 2020, 4(1): 262.

doi: 10.1016/j.joule.2019.09.003
[73]
Tang S W, Liu C C, Sun W, Zhang X, Shen D, Dong W, Yang S B. Nanoscale, 2021, 13(38): 16316.

doi: 10.1039/D1NR03406E
[74]
Hu J L, Wang B, Zhang L Z. J. Alloy. Compd., 2021, 8(86): 8.
[75]
Cao Y Q, Lei F F, Li Y L, Qiu S L, Wang Y, Zhang W, Zhang Z T. J. Mater. Chem. A, 2021, 9(29): 16196.

doi: 10.1039/D1TA04529F
[76]
Ye W K, Li W Y, Wang K, Yin W H, Chai W W, Qu Y, Rui Y C, Tang B. J. Phys. Chem. C, 2019, 123(4): 2048.

doi: 10.1021/acs.jpcc.8b10598
[77]
Yang J, Gao H C, Ma D J, Zou J S, Lin Z, Kang X W, Chen S W. Electrochimica Acta, 2018, 264: 341.

doi: 10.1016/j.electacta.2018.01.105
[78]
He J R, Lv W Q, Chen Y F, Xiong J, Wen K C, Xu C, Zhang W L, Li Y R, Qin W, He W D. J. Power Sources, 2017, 363: 103.

doi: 10.1016/j.jpowsour.2017.07.065
[79]
Li X W, Xiang Y, Qu B H, Su S J. Mater. Lett., 2017, 203: 1.

doi: 10.1016/j.matlet.2017.05.085
[80]
Li Z Q, Yin L W. Nanoscale, 2015, 7(21): 9597.

doi: 10.1039/C5NR00903K
[81]
Wang H Q, Li S, Chen Z X, Liu H K, Guo Z P. RSC Adv., 2014, 4(106): 61673.

doi: 10.1039/C4RA10967H
[82]
Zhang Q, Cai L T, Liu G Z, Li Q H, Jiang M, Yao X Y. ACS Appl. Mater. Interfaces, 2020, 12(14): 16541.

doi: 10.1021/acsami.0c01996
[83]
Seungmin L, Haeun L, Naram H, Jung Tae L, Jaehan J, KwangSup E. Adv. Funct. Mater., 2020, 30(19): 2000028.

doi: 10.1002/adfm.202000028
[84]
Lei Y Y, Liang X M, Yang L, Jiang P, Lei Z Y, Wu S S, Feng J W. J. Mater. Chem. A, 2020, 8(8): 4376.

doi: 10.1039/C9TA13753J
[85]
Qu Y H, Zhang Z A, Lai Y Q, Liu Y X, Li J. Solid State Ion., 2015, 274: 71.

doi: 10.1016/j.ssi.2015.03.007
[86]
Liu L, Wei Y J, Zhang C F, Zhang C, Li X, Wang J T, Ling L C, Qiao W M, Long D H. Electrochimica Acta, 2015, 153: 140.

doi: 10.1016/j.electacta.2014.11.199
[87]
Luo C, Wang J J, Suo L M, Mao J F, Fan X L, Wang C S. J. Mater. Chem. A, 2015, 3(2): 555.

doi: 10.1039/C4TA04611K
[88]
Zheng Y, Zheng S S, Xue H G, Pang H. J. Mater. Chem. A, 2019, 7(8): 3469.

doi: 10.1039/c8ta11075a
[89]
Hao J W, Xu X K, You H R, Min H H, Liu X M, Yang H. Chem. Eng. J., 2021, 418: 129475.

doi: 10.1016/j.cej.2021.129475
[90]
Cong J W, Zheng Z J, Hao J W, You H R, Liu X M, Yang H. J. Alloys Compd., 2021, 867: 159089.

doi: 10.1016/j.jallcom.2021.159089
[91]
Bui H T, Jang H, Ahn D, Han J, Sung M, Kutwade V, Patil M, Sharma R, Han S H. Electrochimica Acta, 2021, 368: 137556.

doi: 10.1016/j.electacta.2020.137556
[92]
Liu J, Lan D Y, Huang X Y, Zhang F T, Huang A Q, Xiao Y X, Zhao Z Z, Liu L Y, Ke X, Shi Z C, Guo Z P. J. Electrochem. Soc., 2018, 166(3): A5259.

doi: 10.1149/2.0411903jes
[93]
Luo R J, Lu Y, Hou X Y, Yu Q H, Peng T, Yan H L, Liu X M, Kim J K, Luo Y S. J. Solid State Electrochem., 2017, 21(12): 3611.

doi: 10.1007/s10008-017-3696-y
[94]
Lee J T, Kim H, Oschatz M, Lee D C, Wu F X, Lin H T, Zdyrko B, Cho W I, Kaskel S, Yushin G. Adv. Energy Mater., 2015, 5(1): 1400981.

doi: 10.1002/aenm.201400981
[95]
Luo C, Zhu Y J, Wen Y, Wang J J, Wang C S. Adv. Funct. Mater., 2014, 24(26): 4082.

doi: 10.1002/adfm.201303909
[96]
Chen X, Xu L H, Zeng L X, Wang Y Y, Zeng S H, Li H Z, Li X Y, Qian Q R, Wei M D, Chen Q H. Dalton Trans., 2020, 49(41): 14536.

doi: 10.1039/d0dt03035j pmid: 33048101
[97]
Wang X W, Tan Y Q, Liu Z X, Fan Y Q, Li M N, Younus H A, Duan J F, Deng H Q, Zhang S G. Small, 2020, 16(17): 2000266.

doi: 10.1002/smll.202000266
[98]
Jin W W, Li H J, Zou J Z, Inguva S, Zhang Q, Zeng S Z, Xu G Z, Zeng X R. Mater. Lett., 2019, 252: 211.

doi: 10.1016/j.matlet.2019.05.131
[99]
Kim W, Lee J, Lee S, Eom K, Pak C, Kim H J. Appl. Surf. Sci., 2020, 512: 145632.

doi: 10.1016/j.apsusc.2020.145632
[100]
Xue P, Zhai Y J, Wang N N, Zhang Y H, Lu Z X, Liu Y L, Bai Z C, Han B K, Zou G F, Dou S X. Chem. Eng. J., 2020, 392: 123676.

doi: 10.1016/j.cej.2019.123676
[101]
Mukkabla R, Deshagani S, Deepa M, Shivaprasad S M, Ghosal P. Electrochimica Acta, 2018, 283: 63.

doi: 10.1016/j.electacta.2018.06.130
[102]
Guo J, Wang Q S, Qi C, Jin J, Zhu Y J, Wen Z Y. Chem. Commun., 2016, 52(32): 5613.

doi: 10.1039/C6CC00638H
[103]
Zhang L L, Wang Y J, Niu Z Q, Chen J. Carbon, 2019, 141: 400.

doi: 10.1016/j.carbon.2018.09.067
[104]
Jin W W, Li H J, Zou J Z, Zhang Q, Inguva S, Zeng S Z, Xu G Z, Zeng X R. Microporous Mesoporous Mater., 2020, 306: 110438.

doi: 10.1016/j.micromeso.2020.110438
[105]
Jayan R, Islam M M. Nanoscale, 2020, 12(26): 14087.

doi: 10.1039/D0NR02296A
[106]
Ye W K, Wang K, Yin W H, Chai W W, Rui Y C, Tang B. Dalton Trans., 2019, 48(27): 10191.

doi: 10.1039/C9DT01961H
[107]
Cheng Q X, Qin L Z, Ke C X, Zhou J N, Lin J, Lin X M, Zhang G, Cai Y P. RSC Adv., 2019, 9(26): 14750.

doi: 10.1039/C9RA02163A
[108]
Li X W, Li S Y, Zhang Z X, Liu C Q, Qu B H, Pu J X. Mater. Lett., 2018, 220: 86.

doi: 10.1016/j.matlet.2018.03.004
[109]
Hong Y J, Kang Y C. Carbon, 2017, 111: 198.

doi: 10.1016/j.carbon.2016.09.069
[110]
Yi Z Q, Yuan L X, Sun D, Li Z, Wu C, Yang W J, Wen Y W, Shan B, Huang Y H. J. Mater. Chem. A, 2015, 3(6): 3059.

doi: 10.1039/C4TA06141A
[111]
Qu Y H, Zhang Z A, Jiang S F, Wang X W, Lai Y Q, Liu Y X, Li J. J. Mater. Chem. A, 2014, 2(31): 12255.

doi: 10.1039/C4TA02563F
[112]
Hu J L, Ren Y L, Zhang L Z. J. Power Sources, 2020, 455: 227955.

doi: 10.1016/j.jpowsour.2020.227955
[113]
Dai F, Shen J M, Dailly A, Balogh M P, Lu P, Yang L, Xiao J, Liu J, Cai M. Nano Energy, 2018, 51: 668.

doi: 10.1016/j.nanoen.2018.07.015
[114]
Liu T, Dai C L, Jia M, Liu D Y, Bao S J, Jiang J, Xu M W, Li C M. ACS Appl. Mater. Interfaces, 2016, 8(25): 16063.

doi: 10.1021/acsami.6b04060
[115]
Li X N, Liang J W, Hou Z G, Zhang W Q, Wang Y, Zhu Y C, Qian Y T. Adv. Funct. Mater., 2015, 25(32): 5229.

doi: 10.1002/adfm.201501956
[116]
Wang N N, Hong Y, Liu T X, Wang Q, Huang J R. Ceram. Int., 2021, 47(1): 899.

doi: 10.1016/j.ceramint.2020.08.202
[117]
Wu F X, Lee J T, Xiao Y R, Yushin G. Nano Energy, 2016, 27: 238.

doi: 10.1016/j.nanoen.2016.07.012
[118]
Ma C H, Wang H L, Zhao X S, Wang X, Miao Y Q, Cheng L, Wang C Z, Wang L, Yue H J, Zhang D. Energy Technol., 2020, 8(9): 1901445.

doi: 10.1002/ente.201901445
[119]
Kim W, Lee J, Lee S, Eom K, Pak C, Kim H J. Carbon, 2020, 170: 236.

doi: 10.1016/j.carbon.2020.07.039
[120]
Zhao C H, Fang S Z, Hu Z B, Qiu S E, Liu K Y. J. Nanoparticle Res., 2016, 18(7): 201.

doi: 10.1007/s11051-016-3513-z
[121]
Zhang Z A, Jiang S F, Lai Y Q, Li J M, Song J X, Li J. J. Power Sources, 2015, 284: 95.

doi: 10.1016/j.jpowsour.2015.03.019
[122]
Zheng C, Liu M Y, Chen W Q, Zeng L X, Wei M D. J. Mater. Chem. A, 2016, 4(35): 13646.

doi: 10.1039/C6TA05029H
[123]
Zeng L C, Zeng W C, Jiang Y, Wei X, Li W H, Yang C L, Zhu Y W, Yu Y. Adv. Energy Mater., 2015, 5(4): 1401377.

doi: 10.1002/aenm.201401377
[124]
Wang Y X, Hao H C, Hwang S, Liu P C, Xu Y X, Boscoboinik J A, Datta D, Mitlin D. J. Mater. Chem. A, 2021, 9(34): 18582.

doi: 10.1039/D1TA04705A
[125]
Yang R, Li L, Ren B, Chen D, Chen L P, Yan Y L. Progress in Chemistry, 2018, 30(11): 1681.
[126]
Dong W D, Wang C Y, Li C F, Xia F J, Yu W B, Wu L, Mohamed H S H, Hu Z Y, Liu J, Chen L H, Li Y, Su B L. Mater. Today Energy, 2021, 21: 100808.
[127]
Li W Y, Liu F C, Shen Z L, Hu H, Fu Z W. Int. J. Electrochem. Sci., 2021, 167: 12.
[128]
Tian H, Tian H J, Wang S J, Chen S M, Zhang F, Song L, Liu H, Liu J, Wang G X. Nat. Commun., 2020, 11: 5025.

doi: 10.1038/s41467-020-18820-y pmid: 33024100
[129]
Park S K, Park J S, Kang Y C. ACS Appl. Mater. Interfaces, 2018, 10(19): 16531.

doi: 10.1021/acsami.8b03104
[130]
Lv H L, Chen R P, Wang X Q, Hu Y, Wang Y R, Chen T, Ma L B, Zhu G Y, Liang J, Tie Z X, Liu J, Jin Z. ACS Appl. Mater. Interfaces, 2017, 9(30): 25232.

doi: 10.1021/acsami.7b04321
[131]
Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q. Sci. Adv., 2019, 5(2): aau7728.
[132]
Deshpande S S, Deshpande M D, Alhameedi K, Ahuja R, Hussain T. ACS Appl. Energy Mater., 2021, 4(4): 3891.

doi: 10.1021/acsaem.1c00283
[133]
Lin S X, Chen Y H, Wang Y F, Cai Z H, Xiao J J, Muhmood T, Hu X B. ACS Appl. Mater. Interfaces, 2021, 13(8): 9955.

doi: 10.1021/acsami.0c21065
[134]
Mendes T C, Nguyen C, Barlow A J, Cherepanov P V, Forsyth M, Howlett P C, MacFarlane D R. Sustain. Energy Fuels, 2020, 4(5): 2322.

doi: 10.1039/C9SE01074B
[135]
Kalimuthu B, Nallathamby K. ACS Sustainable Chem. Eng., 2018, 6(5): 7064.

doi: 10.1021/acssuschemeng.8b00922
[136]
Babu D B, Ramesha K. Electrochimica Acta, 2016, 219: 295.

doi: 10.1016/j.electacta.2016.10.026
[137]
Guo J, Wang Q S, Jin J, Chen C H, Wen Z Y. J. Electrochem. Soc., 2016, 163(5): A654.

doi: 10.1149/2.0661605jes
[138]
Huang J T, Lin Y M, Yu J L, Li D Z, Du J G, Yang B, Li C H, Zhu C Z, Xu J. Chem. Eng. J., 2018, 350: 411.

doi: 10.1016/j.cej.2018.06.010
[139]
Cai Q F, Li Y Y wang L, Li Q W, Xu J, Gao B, Zhang X M, Huo K F, Chu P K. Nano Energy, 2017, 32: 1.

doi: 10.1016/j.nanoen.2016.12.010
[140]
Zhao X S, Yin L C, Zhang T, Zhang M, Fang Z B, Wang C Z, Wei Y J, Chen G, Zhang D, Sun Z H, Li F. Nano Energy, 2018, 49: 137.

doi: 10.1016/j.nanoen.2018.04.045
[141]
Zhao X S, Yin L C, Yang Z Z, Chen G, Yue H J, Zhang D, Sun Z H, Li F. J. Mater. Chem. A, 2019, 7(38): 21774.

doi: 10.1039/C9TA07630A
[142]
Dong W D, Yu W B, Xia F J, Chen L D, Zhang Y J, Tan H G, Wu L, Hu Z Y, Mohamed H S H, Liu J, Deng Z, Li Y, Chen L H, Su B L. J. Colloid Interface Sci., 2021, 582: 60.

doi: 10.1016/j.jcis.2020.06.071
[143]
Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20): 7067.

doi: 10.1039/C4CS00141A
[144]
Li Z S, Lin J P, Li B L, Yu C L, Wang H Q, Li Q Y. J. Energy Storage, 2021, 44: 103437.

doi: 10.1016/j.est.2021.103437
[145]
Ma J Y, Guo X T, Yan Y, Xue H G, Pang H. Adv. Sci., 2018, 5(6): 1700986.

doi: 10.1002/advs.201700986
[146]
Zhao C H, Xu L B, Hu Z B, Qiu S E, Liu K Y. RSC Adv., 2016, 6(53): 47486.

doi: 10.1039/C6RA07837K
[147]
Liu T, Zhang Y, Hou J K, Lu S Y, Jiang J, Xu M W. RSC Adv., 2015, 5(102): 84038.

doi: 10.1039/C5RA14979G
[148]
Lai Y Q, Gan Y Q, Zhang Z A, Chen W, Li J. Electrochimica Acta, 2014, 146: 134.

doi: 10.1016/j.electacta.2014.09.045
[149]
Zhang Z A, Yang X, Wang X W, Li Q, Zhang Z Y. Solid State Ion., 2014, 260: 101.

doi: 10.1016/j.ssi.2014.03.022
[150]
Zhang Z A, Yang X, Guo Z P, Qu Y H, Li J, Lai Y Q. J. Power Sources, 2015, 279: 88.

doi: 10.1016/j.jpowsour.2015.01.001
[151]
Cho J S, Park J S, Jeon K M, Kang Y C. J. Mater. Chem. A, 2017, 5(21): 10632.

doi: 10.1039/C7TA02616A
[152]
Dai C L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T. InfoMat, 2020, 2(3): 509.

doi: 10.1002/inf2.12039
[153]
Sha L N, Gao P, Ren X C, Chi Q Q, Chen Y J, Yang P P. Chem. Eur. J., 2018, 24(9): 2151.

doi: 10.1002/chem.201704079
[154]
Zeng L X, Chen X, Liu R P, Lin L X, Zheng C, Xu L H, Luo F Q, Qian Q R, Chen Q H, Wei M D. J. Mater. Chem. A, 2017, 5(44): 22997.

doi: 10.1039/C7TA06884K
[155]
Fan S, Zhang Y, Li S H, Lan T Y, Xu J L. RSC Adv., 2017, 7(34): 21281.

doi: 10.1039/C6RA28463A
[156]
Youn H C, Jeong J H, Roh K C, Kim K B. Sci. Rep., 2016, 6: 30865.

doi: 10.1038/srep30865
[157]
Huang D K, Li S H, Luo Y P, Xiao X, Gao L, Wang M K, Shen Y. Electrochimica Acta, 2016, 190: 258.

doi: 10.1016/j.electacta.2015.12.187
[158]
Han K, Liu Z, Shen J M, Lin Y Y, Dai F, Ye H Q. Adv. Funct. Mater., 2015, 25(3): 455.

doi: 10.1002/adfm.201402815
[159]
Mukkabla R, Deshagani S, Meduri P, Deepa M, Ghosal P. ACS Energy Lett., 2017, 2(6): 1288.

doi: 10.1021/acsenergylett.7b00251
[160]
Gu X X, Lai C. J. Mater. Res., 2018, 33(1): 16.

doi: 10.1557/jmr.2017.282
[161]
Aboonasr Shiraz M H, Rehl E, Kazemian H, Liu J. Nanomaterials, 2021, 11(8): 1976.

doi: 10.3390/nano11081976
[162]
Fang R Y, Xia Y, Liang C, He X P, Huang H, Gan Y P, Zhang J, Tao X Y, Zhang W K. J. Mater. Chem. A, 2018, 6(48): 24773.

doi: 10.1039/C8TA09758E
[163]
Choi D S, Yeom M S, Kim Y T, Kim H, Jung Y. Inorg. Chem., 2018, 57(4): 2149.

doi: 10.1021/acs.inorgchem.7b03001
[164]
Zhao X S, Jiang L, Ma C H, Cheng L, Wang C Z, Chen G, Yue H J, Zhang D. J. Power Sources, 2021, 490: 229534.

doi: 10.1016/j.jpowsour.2021.229534
[165]
Pham V H, Boscoboinik J A, Stacchiola D J, Self E C, Manikandan P, Nagarajan S, Wang Y X, Pol V G, Nanda J, Paek E, Mitlin D. Energy Storage Mater., 2019, 20: 71.
[166]
Xu Q T, Xue H G, Guo S P. Inorg. Chem. Front., 2019, 6(6): 1326.

doi: 10.1039/C9QI00278B
[167]
Wang Y C, Chu F L, Zeng J, Wang Q J, Naren T Y, Li Y Y, Cheng Y, Lei Y P, Wu F X. ACS Nano, 2021, 15(1): 210.

doi: 10.1021/acsnano.0c08652
[168]
Yang M, Zhou Z. Advanced Science, 2017, 48: 10.
[169]
Wang Y Z, Ke C X, Zhou J N, Qin L Z, Lin X M, Cheng Q X, Liu J C. Inorg. Chem. Commun., 2019, 108: 107538.

doi: 10.1016/j.inoche.2019.107538
[170]
Park S K, Park J S, Kang Y C. Mater. Charact., 2019, 151: 590.

doi: 10.1016/j.matchar.2019.03.032
[171]
Jia M, Lu S Y, Chen Y M, Liu T, Han J, Shen B L, Wu X S, Bao S J, Jiang J, Xu M W. J. Power Sources, 2017, 367: 17.

doi: 10.1016/j.jpowsour.2017.09.038
[172]
Wang M, Guo Y, Wang B Y, Luo H, Zhang X M, Wang Q, Zhang Y, Wu H, Liu H K, Dou S X. J. Mater. Chem. A, 2020, 8(6): 2969.

doi: 10.1039/C9TA11124G
[173]
Ning G Q, Ma X L, Zhu X, Cao Y M, Sun Y Z, Qi C L, Fan Z J, Li Y F, Zhang X, Lan X Y, Gao J S. ACS Appl. Mater. Interfaces, 2014, 6(18): 15950.

doi: 10.1021/am503716k
[174]
Zhao C H, Luo J S, Hu Z B. Micro & Nano Lett., 2018, 13(10): 1386.

doi: 10.1049/mnl.2018.5154
[175]
Song J P, Wu L, Dong W D, Li C F, Chen L H, Dai X, Li C, Chen H, Zou W, Yu W B, Hu Z Y, Liu J, Wang H E, Li Y, Su B L. Nanoscale, 2019, 11(14): 6970.

doi: 10.1039/C9NR00924H
[176]
Wang W, Tang M Q, Yan Z W. Ceram. Int., 2020, 46(14): 22999.

doi: 10.1016/j.ceramint.2020.06.075
[177]
Lee S, Lee J, Kim W, Kim H J, Pak C, Lee J T, Eom K. J. Power Sources, 2018, 408: 111.

doi: 10.1016/j.jpowsour.2018.09.095
[178]
Hu J L, Zhong H X, Yan X D, Zhang L Z. Appl. Surf. Sci., 2018, 457: 705.

doi: 10.1016/j.apsusc.2018.06.296
[179]
Dong P P, Han K S, Lee J I, Zhang X H, Cha Y, Song M K. ACS Appl. Mater. Interfaces, 2018, 10(35): 29565.

doi: 10.1021/acsami.8b09062
[180]
Zhang J T, Li Z, Lou X W D. Angew. Chem. Int. Ed., 2017, 56(45): 14107.

doi: 10.1002/anie.201708105
[181]
Guo B S, Yang T T, Du W Y, Ma Q R, Zhang L Z, Bao S J, Li X Y, Chen Y M, Xu M W. J. Mater. Chem. A, 2019, 7(19): 12276.

doi: 10.1039/C9TA02695A
[182]
Xu J J, Wang Z L, Xu D, Meng F Z, Zhang X B. Energy Environ. Sci., 2014, 7(7): 2213.

doi: 10.1039/c3ee42934b
[183]
Chang Z W, Xu J J, Zhang X B. Advanced Energy Materials, 2017, 7(23): 21.
[184]
Hong Y J, Roh K C, Kang Y C. J. Mater. Chem. A, 2018, 6(9): 4152.

doi: 10.1039/C7TA11112F
[185]
Park S K, Park J S, Kang Y C. J. Mater. Chem. A, 2018, 6(3): 1028.

doi: 10.1039/C7TA09676C
[186]
Zhao C X, Li X Y, Zhao M, Chen Z X, Song Y W, Chen W J, Liu J N, Wang B, Zhang X Q, Chen C M, Li B Q, Huang J Q, Zhang Q. J. Am. Chem. Soc., 2021, 143(47): 19865.

doi: 10.1021/jacs.1c09107
[187]
Wu K W, Wang J, Xu C S, Jiao X, Hu X B, Guan W. ACS Appl. Energy Mater., 2021, 4(9): 10203.

doi: 10.1021/acsaem.1c02078
[188]
Cao R G, Xu W, Lv D P, Xiao J, Zhang J G. Adv. Energy Mater., 2015, 5(16): 1402273.

doi: 10.1002/aenm.201402273
[189]
Zhao H J, Deng N P, Yan J, Kang W M, Ju J G, Ruan Y L, Wang X Q, Zhuang X P, Li Q X, Cheng B W. Chem. Eng. J., 2018, 347: 343.

doi: 10.1016/j.cej.2018.04.112
[190]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.

doi: 10.1021/ja312241y pmid: 23448508
[191]
Dong P P, Zhang X H, Cha Y, Lee J I, Song M K. Nano Energy, 2020, 69: 104434.

doi: 10.1016/j.nanoen.2019.104434
[192]
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6: 8058.

doi: 10.1038/ncomms9058
[193]
Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11(7): 626.

doi: 10.1038/nnano.2016.32
[194]
Huang X S. J. Solid State Electrochem., 2011, 15(4): 649.

doi: 10.1007/s10008-010-1264-9
[195]
Zhang H, Jia D D, Yang Z W, Yu F Q, Su Y L, Wang D J, Shen Q. Carbon, 2017, 122: 547.

doi: 10.1016/j.carbon.2017.07.004
[196]
Zhou J J, Yang J, Xu Z X, Zhang T, Chen Z Y, Wang J L. J. Mater. Chem. A, 2017, 5(19): 9350.

doi: 10.1039/C7TA01564J
[197]
Xiang Y Y, Li J S, Lei J H, Liu D, Xie Z Z, Qu D Y, Li K, Deng T F, Tang H L. ChemSusChem, 2016, 9(21): 3023.

doi: 10.1002/cssc.201600943
[198]
Xie L S, Yu S X, Yang H J, Yang J, Ni J L, Wang J L. Rare Met., 2017, 36(5): 434.

doi: 10.1007/s12598-017-0910-0
[199]
Yuan M Q, Liu K. J. Energy Chem., 2020, 43: 58.

doi: 10.1016/j.jechem.2019.08.008
[200]
Yang Y, Hong X J, Song C L, Li G H, Zheng Y X, Zhou D D, Zhang M, Cai Y P, Wang H X. J. Mater. Chem. A, 2019, 7(27): 16323.

doi: 10.1039/c9ta04614c
[201]
Si L P, Wang J Y, Li G H, Hong X J, Wei Q, Yang Y, Zhang M, Cai Y P. Mater. Lett., 2019, 246: 144.

doi: 10.1016/j.matlet.2019.03.057
[202]
Wei Z H, Ren Y Q, Sokolowski J, Zhu X D, Wu G. InfoMat, 2020, 2(3): 483.

doi: 10.1002/inf2.12097
[203]
Mukkabla R, Kuldeep, Killi K, Shivaprasad S M, Deepa M. Chem. Eur. J., 2018, 24(65): 17327.

doi: 10.1002/chem.201803980
[204]
Zhang Z A, Zhang Z Y, Zhang K, Yang X, Li Q. RSC Adv., 2014, 4(30): 15489.

doi: 10.1039/C4RA00446A
[205]
Fang R P, Zhou G M, Pei S F, Li F, Cheng H M. Chem. Commun., 2015, 51(17): 3667.

doi: 10.1039/C5CC00089K
[206]
Jeong Y C, Kim J H, Nam S, Park C R, Yang S J. Adv. Funct. Mater., 2018, 28(38): 1870268.
[207]
Zhu D M, Long T, Xu B, Zhao Y X, Hong H T, Liu R J, Meng F C, Liu J H. J. Energy Chem., 2021, 57: 41.

doi: 10.1016/j.jechem.2020.08.039
[208]
Yang Z W, Zhu K J, Dong Z H, Jia D D, Jiao L F. ACS Appl. Mater. Interfaces, 2019, 11(43): 40069.

doi: 10.1021/acsami.9b14215
[209]
Wang B, Hu Q Q, Hu J L, Zhang L Z. Energy Technol., 2021, 9(8): 2100274.

doi: 10.1002/ente.202100274
[210]
Gu X X, Tong C J, Rehman S, Liu L M, Hou Y L, Zhang S Q. ACS Appl. Mater. Interfaces, 2016, 8(25): 15991.

doi: 10.1021/acsami.6b02378
[211]
Zhang Y, Guo Y, Wang B Y, Wei Y H, Jing P, Wu H, Dai Z D, Wang M, Zhang Y,. Carbon, 2020, 161: 413.

doi: 10.1016/j.carbon.2020.01.102
[212]
Younesi R, Veith G M, Johansson P, Edström K, Vegge T. Energy Environ. Sci., 2015, 8(7): 1905.

doi: 10.1039/C5EE01215E
[213]
Xu G L, Sun H, Luo C, Estevez L, Zhuang M H, Gao H, Amine R, Wang H, Zhang X Y, Sun C J, Liu Y Z, Ren Y, Heald S M, Wang C S, Chen Z H, Amine K. Adv. Energy Mater., 2019, 9(2): 1802235.

doi: 10.1002/aenm.201802235
[214]
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Angew. Chem. Int. Ed., 2020, 59(31): 12636.

doi: 10.1002/anie.201909339
[215]
Jozwiuk A, Berkes B B, Weiß T, Sommer H, Janek J, Brezesinski T. Energy Environ. Sci., 2016, 9(8): 2603.

doi: 10.1039/C6EE00789A
[216]
Zhang S S. Electrochimica Acta, 2012, 70: 344.

doi: 10.1016/j.electacta.2012.03.081
[217]
Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(19): 5301.

doi: 10.1002/anie.201801513
[218]
Yang H C, Chen X, Yao N, Piao N, Wang Z X, He K, Cheng H M, Li F. ACS Energy Lett., 2021: 1413.
[219]
Zhuang Z P, Dai X, Dong W D, Jiang L Q, Wang L, Li C F, Yang J X, Wu L, Hu Z Y, Liu J, Chen L H, Li Y, Su B L. Electrochimica Acta, 2021, 393: 139042.

doi: 10.1016/j.electacta.2021.139042
[220]
Shiraz M H A, Yuhai H, Jian L. ECS Trans. (UK), 2020, 977: 279.
[221]
Lai J N, Xing Y, Chen N, Li L, Wu F, Chen R J. Angew. Chem. Int. Ed., 2020, 59(8): 2974.

doi: 10.1002/anie.201903459
[222]
Wang W P, Zhang J, Yin Y X, Duan H, Chou J, Li S Y, Yan M, Xin S, Guo Y G. Adv. Mater., 2020, 32(23): 2000302.

doi: 10.1002/adma.202000302
[223]
Wang W P, Zhang J, Li X T, Yin Y X, Xin S, Guo Y G. Chem. Res. Chin. Univ., 2021, 37(2): 298.

doi: 10.1007/s40242-021-0448-4
[224]
Dirican M, Yan C Y, Zhu P, Zhang X W. Mater. Sci. Eng. R Rep., 2019, 136: 27.

doi: 10.1016/j.mser.2018.10.004
[225]
Zhou Y C, Li Z J, Lu Y C. Nano Energy, 2017, 39: 554.

doi: 10.1016/j.nanoen.2017.07.038
[226]
Li X N, Liang J W, Li X, Wang C H, Luo J, Li R Y, Sun X L. Energy Environ. Sci., 2018, 11(10): 2828.

doi: 10.1039/C8EE01621F
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[6] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[7] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[10] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[11] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[12] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[13] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[14] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[15] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
Viewed
Full text


Abstract

Advances in Lithium Selenium Batteries