中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1526-1536 DOI: 10.7536/PC170732 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery

Min Li1, Yanli Wang2, Xiaoyan Wu2, Lei Duan2, Chunming Zhang2*, Dannong He1,2*   

  1. 1. School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Shanghai Sailing Program (No. 15YF1408500),Natural Science Foundation of Shanghai (No. 14ZR1429500), and the National Program on Key Basic Research Project (No.2015CB931900).
PDF ( 951 ) Cited
Export

EndNote

Ris

BibTeX

The lithium-rich layered oxide material is a kind of lithium ion battery cathode material,which has a solid solution structure. It exhibits a high reversible specific capacity exceeding 250 mAh/g, and its price is very cheap. It has been considered as the most promising candidate for the next generation of cathode material. However, the lithium-rich layered oxide cathode material is facing some problems such as high irreversible capacity loss in the first cycle, poor rate capability, as well as serious capacity fading and voltage decay, which hinder its commercial application. In this paper, the structure of lithium-rich layered oxides cathode material and its typical initial charge and discharge curve are introduced, and the mechanism of ion-doping, surface coating, and surface oxygen vacancy modification are mainly focused. Then, the reasons why different doping ions and coating materials applied to lithium-rich layered oxides cathode material have the different effects, and the advantages of co-doping and double coating are further analyzed. At last, considering the limitations of ion-doping, surface coated and surface oxygen vacancy modification during the modification of lithium-rich layered oxide cathode material, the joint mechanisms based on the above three modification methods are proposed, and a brief introduction of this joint mechanism is given.
Contents
1 Introduction
2 Structure and initial charge and discharge curve
3 Modification of lithium-rich layer material
3.1 Ion-doping
3.2 Surface coating
3.3 Surface oxygen vacancy modification
3.4 The joint mechanism
4 Outlook

CLC Number: 

[1] Zhang L S, Wang H, Wang L Z, Fang H, Li X F, Gao H L, Zhang A Q, Song Y H. Mater Lett., 2016, 185:100.
[2] Wang L, Mu D B, Wu B R, Yang G C, Gai L, Liu Q, Fan Y J, Peng Y Y, Wu F. Electrochim. Acta, 2016, 222:806.
[3] Ji M D, Xu Y L, Zhao Z, Zhang H, Liu D, Zhao C J, Qian X Z, Zhao C H. J. Power Sources, 2014, 263:296.
[4] Peralta D, Colin J F, Boulineau A, Simonin L, Fabre F, Bouvet J, Feydi P, Chakir M, Chapuis M, Patoux S. J. Power Sources, 2015, 280:687.
[5] Phadke S, Anouti M. Electrochim. Acta, 2017, 223:31.
[6] Li S, Zhu J L, Wang Y G, Howard J W, Lü X J, Li Y T, Kumar R S, Wang L P, Daemen L L, Zhao Y S. Solid State Ionics, 2016, 284:14.
[7] Qiu B, Wang J, Xia Y G, Wei Z, Han S J, Liu Z P. J. Power Sources, 2014, 268:517.
[8] Riekehr L, Liu J L, Schwarz B, Sigel F, Kerkamm I, Xia Y G, Ehrenberg H. J. Power Sources, 2016, 306:135.
[9] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G, Tarascon J M. Nat. Mater., 2015, 14:230.
[10] Shi S J, Zhang S S, Wu Z J, Wang T, Zong J B, Zhao M X, Yang G. J. Power Sources. 2017, 337:82.
[11] Strafela M, Leiste H, Seemann K, Seifert H J, Ulrich S. Vacuum., 2016, 131:240.
[12] Tu W Q, Xia P, Zheng X W, Ye C C, Xu M Q, Li W S. J. Power Sources, 2017, 341:348.
[13] Wang Z, Yin Y P, Ren Y, Wang Z Y, Gao M, Ma T Y, Zhuang W D, Lu S G, Fan A L, Amine K, Chen Z H. Nano Energy, 2017, 31:247.
[14] Dogan F, Long B R, Croy J R, Gallagher K G, Iddir H, Russell J T, Balasubramanian M, Key B. J. Amer. Chem. Soc., 2015, 137:2328.
[15] 张琳静(Zhang L J). 北京理工大学博士论文(Doctoral Dissertation of Beijing Institute of Technology), 2015.
[16] Yan P F, Nie A M, Zheng J M, Zhou Y G, Lu D P, Zhang X F, Xu R, Belharouak I, Zu X T, Xiao J, Amine K, Liu J, Gao F, Shahbazian-Yassar R, Zhang J G, Wang C M. Nano Lett., 2015, 15:514.
[17] Yan W W, Liu Y N, Guo S W, Jiang T. ACS Appl. Mater. Interfaces, 2016, 8:12118.
[18] Yang F F, Liu Y J, Martha S K, Wu Z Y, Andrews J C, Ice G E, Pianetta P, Nanda J. Nano Lett., 2014, 14:4334.
[19] Yang S, Wu J X, Yan B G, Li L, Sun Y, Lu L, Zeng K Y. J. Power Sources, 2017, 352:9.
[20] Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S, Ikuhara Y. Angew. Chem., 2013, 52:5969.
[21] Yu H J, So Y G, Kuwabara A, Tochigi E, Shibata N, Kudo T, Zhou H S, Ikuhara Y. Nano Lett., 2016, 16:2907.
[22] Zhang L J, Jiang J C, Zhang C P, Wu B R, Wu F. J. Power Sources, 2016, 331:247.
[23] Zhang H Z, Zhang Y T, Song D W, Shi X X, Zhang L Q, Bie L J. J. Alloys Compd., 2017, 709:692.
[24] Zhou Z X, Ma Y L, Wang L, Zuo P J, Cheng X Q, Du C Y, Yin G P, Gao Y Z. Electrochim. Acta., 2016, 216:44.
[25] Zhu Y M, Luo X Y, Xu M Q, Zhang L, Yu L P, Fan W Z, Li W S. J. Power Sources., 2016, 317:65.
[26] Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S. Nano Lett., 2013, 13:3857.
[27] Chen C, Chen S, Luo J, Xu X P, Hu D X, Shui M, Shu J, Ren Y L. Ceram. Int., 2015, 41:10319.
[28] Buchholz D, Li J, Passerini S, Aquilanti G, Wang D D, Giorgetti M. ChemElectroChem., 2015, 2:85.
[29] Chen D R, Yu Q P, Xiang X D, Chen M, Chen Z T, Song S, Xiong L W, Liao Y H, Xing L D, Li W S. Electrochim. Acta, 2015, 154:83.
[30] Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Adv. Mater., 2014, 26:6756.
[31] Cotte S, Pecquenard B, Le Cras F, Grissa R, Martinez H, Bourgeois L. Electrochim. Acta, 2015, 180:528.
[32] Ding Y, Mu D B, Wu B R, Wang R, Zhao Z K, Wu F. Appl. Energy, 2017, 195:586.
[33] Wei W F, Chen L B, Pan A Q, Ivey D G. Nano Energy, 2016, 30:580.
[34] Haferburg G, Gröning J A D, Schmidt N, Kummer N A, Erquicia J C, Schlömann M. Microbiol. Res., 2017, 199:19.
[35] He Z J, Ping J, Yi Z J, Peng C, Shen C S, Liu J S. Journal. Alloys Compd., 2017, 708:1038.
[36] Hou M Y, Guo S S, Liu J L, Yang J, Wang Y G, Wang C X, Xia Y Y. J. Power Sources, 2015, 287:370.
[37] Konishi H, Gunji A, Feng X L, Furutsuki S. J. Solid State Chem., 2017, 249:80.
[38] Jin Y C, Duh J G. Energy Storage Mater., 2017, 6:157.
[39] Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J. Adv. Energy Mater., 2015, 5:1500274.
[40] Zhao J K, Wang Z X, Guo H J, Li X H, He Z J, Li T. Ceram. Int., 2015, 41:11396.
[41] Li Q, Li G S, Fu C C, Luo D, Fan J M, Li L P. ACS Appl. Mater. Interfaces, 2014, 6:10330.
[42] Wang Y Q, Yang Z Z, Qian Y M, Gu L, Zhou H S. Adv. Mater., 2015, 27:3915.
[43] Jafta C J, Raju K, Mathe M K, Manyala N, Ozoemena K I. J. Electrochem. Soc., 2015, 162:A768.
[44] Tang T, Zhang H L. Electrochim. Acta, 2016, 191:263.
[45] Iftekhar M, Drewett N E, Armstrong A R, Hesp D, Braga F, Ahmed S, Hardwick L J. J. Electrochem. Soc., 2014, 161:A2109.
[46] He Z, Wang Z, Chen H, Huang Z, Li X, Guo H, Wang R. J. Power Sources, 2015, 299:334.
[47] Chen H, Hu Q Y, Huang Z M, He Z J, Wang Z X, Guo H J, Li X H. Ceram. Int., 2016, 42:263.
[48] Yu R Z, Wang G, Liu M H, Zhang X H, Wang X Y, Shu H B, Yang X K, Huang W H. J. Power Sources, 2016, 335:65.
[49] Ma Q X, Li R H, Zheng R J, Liu Y L, Huo H, Dai C S. J. Power Sources, 2016, 331:112.
[50] Sun L N, Yi X W, Ren X Z, Zhang P X, Liu J H. J. Electrochem. Soc., 2016, 163:A766.
[51] Ma J, Yan H J, Li B, Xia Z H, Huang W F, An L, Xia D G. J. Phys. Chem. C, 2016, 120:13421.
[52] Song B H, Zhou C F, Wang H L, Liu H W, Liu Z W, Lai M O, Lu L. J. Electrochem. Soc., 2014, 161:A1723.
[53] Park J H, Lim J S, Yoon J G, Park K S, Gim J Y, Song J J, Park H, Im D M, Park M S, Ahn D C, Paik Y K, Kim J K. Dalton Transactions., 2012, 41:3053.
[54] Jin X, Xu Q J, Liu X N, Yuan X L, Liu H M. Ionics., 2016, 22:1369.
[55] Tamilarasan S, Mukherjee D, Sampath S, Natarajan S, Gopalakrishnan J. Solid State Ionics., 2016, 297:49.
[56] Yi T F, Li Y M, Cai X D, Yang S Y, Zhu Y R. Mater. Today Energy., 2017, 4:25.
[57] Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X L, Furutsuki S. Electrochim. Acta, 2015, 169:310.
[58] Crompton K R, Staub J W, Hladky M P, Landi B J. J. Power Sources, 2017, 343:109.
[59] Guo L C, Zhao N Q, Li J J, He C N, Shi C S, Liu E Z. ACS Appl. Mater. Interfaces, 2015, 7:391.
[60] Hou C X, Oaki Y, Hosono E, Lin H, Imai H, Fan Y Q, Dang F. Materials. Des., 2016, 109:718.
[61] Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou Y F. ACS Appl. Mater. Interfaces., 2016, 8:18832.
[62] Luo W B, Zhou F, Zhao X M, Lu Z H, Li X H, Dahn J R. Chem. Mater., 2010, 22(3):1164.
[63] Wang Y X, Shang K H, He W, Ai X P, Cao Y L, Yang H X. ACS Appl. Mater. Interfaces, 2015, 7:13014.
[64] Feng X, Gao Y R, Ben L B, Yang Z Z, Wang Z X, Chen L Q. J. Power Sources, 2016, 317:74.
[65] Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G. Adv. Energy Mater., 2016, 6:1501914.
[66] Liu Y H, Takasaki T, Nishimura K, Yanagida M, Sakai T. J. Power Sources, 2015, 290:153.
[67] Luo K, Roberts M R, Hao R, Guerrini N, Liberti E, Allen C S, Kirkland A I, Bruce P G. Nano Lett., 2016, 16:7503.
[68] Mohanty D, Li J, Nagpure S C, Wood D L, Daniel C. MRS Energy Sustainability, 2015, 2:323.
[69] Fu F, Yao Y Z, Wang H Y, Xu G L, Amine K, Sun S G, Shao M H. Nano Energy, 2017, 35:370.
[70] Li N, An R, Su Y F, Wu F, Bao L Y, Chen L, Zheng Y, Shou H F, Chen S. J. Mater. Chem. A, 2013, 1:9760.
[71] Wei Z, Xia Y G, Qiu B, Zhang Q, Han S J, Liu Z P. J. Power Sources, 2015, 281:7.
[72] Luo D, Li G S, Fu C C, Zheng J, Fan J M, Li Q, Li L P. Adv. Energy Mater., 2014, 4:1400062.
[73] Mohanty D, Sefat A S, Payzant E A, Li J, Wood D L, Daniel C. J. Power Sources, 2015, 283:423.
[74] Li L, Song B H, Chang Y L, Xia H, Yang J R, Lee K S, Lu L. J. Power Sources, 2015, 283:162.
[75] Song J H, Kapylou A, Choi H S, Yu B Y, Matulevich E, Kang S H. J. Power Sources, 2016, 313:65.
[76] Guo B, Zhao J H, Fan X M, Zhang W, Li S, Yang Z H, Chen Z X, Zhang W X. Electrochim. Acta, 2017, 236:171.
[77] Muhammad S, Lee S, Kim H, Yoon J, Jang D, Yoon J, Park J H, Yoon W S. J. Power Sources, 2015, 285:156.
[78] Zhou Y K, Bai P F, Tang H Q, Zhu J T, Tang Z Y. J. Electroanal. Chem., 2016, 782:256.
[79] Zhu Z Y, Cai F Y, Yu J. Ionics., 2016, 22:1353.
[80] Liu W M, Tang X, Qin M L, Li G L, Deng J Y, Huang X W. Mater. Lett., 2016, 185:96.
[81] Wang Z Y, Liu E Z, Guo L C, Shi C S, He C N, Li J J, Zhao N Q. Surf. Coat. Technol., 2013, 235:570.
[82] Wu Y, Vadivel Murugan A, Manthiram A. J. Electrochem. Soc., 2008, 155:A635.
[83] He L, Xu J M, Han T, Han H, Wang Y J, Yang J, Wang J R, Zhu W K, Zhang C J, Zhang Y H. Ceram. Int., 2017, 43:5267.
[84] Singh G, Thomas R, Kumar A, Katiyar R S, Manivannan A. J. Electrochem. Soc., 2012, 159:A470.
[85] Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y. Solid State Ionics, 2008, 179:1794.
[86] Oh P, Myeong S, Cho W, Lee M J, Ko M, Jeong H Y, Cho J. Nano Lett., 2014, 14:5965.
[87] Shi J L, Zhang J N, He M, Zhang X D, Yin Y X, Li H, Guo Y G, Gu L, Wan L J. ACS Appl. Mater. Interfaces, 2016, 8:20138.
[88] Wu F, Li N, Su Y F, Zhang L J, Bao L Y, Wang J, Chen L, Zheng Y, Dai L Q, Peng J Y, Chen S. Nano Lett., 2014, 14:3550
[89] Xiao L, Xiao J, Yu X Q, Yan P F, Zheng J M, Engelhard M, Bhattacharya P, Wang C M, Yang X Q, Zhang J G. Nano Energy, 2015, 16:143.
[90] Chong S K, Chen Y Z, Yan W W, Guo S W, Tan Q, Wu Y F, Jiang T, Liu Y N. J. Power Sources, 2016, 332:230.
[91] Sun Y K, Lee M J, Yoon C S, Hassoun J, Amine K, Scrosati B. Adv. Mater., 2012, 24:1192.
[92] Zhang J, Lu Q W, Fang J H, Wang J L, Yang J, NuLi Y. ACS Appl. Mater. Interfaces, 2014, 6:17965.
[93] Chen C, Geng T F, Du C Y, Zuo P J, Cheng X Q, Ma Y L, Yin G P. J. Power Sources, 2016, 331:91.
[94] Zheng F H, Yang C H, Xiong X H, Xiong J W, Hu R Z, Chen Y, Liu M L. Angew. Chem., 2015, 54:13058
[95] Wang Z Y, Liu E Z, He C N, Shi C S, Li J, Zhao N Q. J. Power Sources, 2013, 236:25.
[96] Zhao E Y, Chen M M, Hu Z B, Chen D F, Yang L M, Xiao X L. J. Power Sources, 2017, 343:345.
[97] Zhao E Y, Liu X F, Hu Z B, Sun L M, Xiao X L. J. Power Sources, 2015, 294:141.
[98] Gao K, Zhao S X, Guo S T, Nan C W. Electrochim. Acta, 2016, 206:1.
[99] Lee Y, Lee J, Lee K Y, Mun J, Lee J K, Choi W. J. Power Sources, 2016, 315:284.
[100] Chen D R, Zheng F, Li L, Chen M, Zhong X X, Li W S, Lu L. J. Power Sources, 2017, 341:284
[101] Chen D R, Tu W Q, Chen M, Hong P B, Zhong X X, Zhu Y M, Yu Q P, Li W S. Electrochim. Acta, 2016, 193:45.
[102] James C, Wu Y, Sheldon B W, Qi Y. Solid State Ionics., 2016, 289:87.
[103] Qiao Q Q, Li G R, Wang Y L, Gao X P. J. Mater. Chem. A, 2016, 4:4440.
[104] Riekehr L, Liu J L, Schwarz B, Sigel F, Kerkamm I, Xia Y Y, Ehrenberg H. J. Power Sources, 2016, 325:391.
[105] Li Z H, Li X G, Liao Y H, Li X P, Li W S. J. Power Sources, 2016, 334:23.
[106] Qiu B, Zhang M H, Wu L J, Wang J, Xia Y G, Qian D N, Liu H D, Hy S, Chen Y, An K, Zhu Y M, Liu Z P, Meng Y S. Nat. Commun., 2016, 7:12108.
[1] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[2] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.
[3] Ning Zhang, Ying Li. Lithium-Rich Layered Oxides as Cathode Materials: Structures, Capacity Origin Mechanisms and Modifications [J]. Progress in Chemistry, 2017, 29(4): 373-387.
[4] Wuwei Yan, Yongning Liu, Shaokun Chong, Yaping Zhou, Jianguo Liu, Zhigang Zou. Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(2/3): 198-209.
[5] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[6] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[7] Wan Wenbo, Pu Weihua, Ai Desheng. Research Progress in Lithium Sulfur Battery [J]. Progress in Chemistry, 2013, 25(11): 1830-1841.
[8] Yang Xiaodong, Qu Jinqing. Organic Radical Batteries [J]. Progress in Chemistry, 2013, 25(08): 1283-1291.
[9] Qin Xueying, Wang Jinglun, Zhang Lingzhi. Organosilicon Based Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2012, 24(05): 810-822.
[10] Gao Pengfei, Yang Jun. Si-Based Composite Anode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 264-274.
[11] Xia Lan, Li Suli, Ai Xinping, Yang Hanxi. Safety Enhancing Methods for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 328-335.
[12] Li Juntao, Fang Junchuan, Su Hang, Sun Shigang. Interfacial Processes of Lithium Ion Batteries by FTIR Spectroscopy [J]. Progress in Chemistry, 2011, 23(0203): 349-356.
[13] Dong Quanfeng, Song Jie, Zheng Mingsen, Susanne Jacke, Wolfram Jaegermann. Investigation of Microscale Lithium Ion Batteries and the Key Materials [J]. Progress in Chemistry, 2011, 23(0203): 374-381.
[14] He Fei, Peng Ranran, Yang Shangfeng. Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism [J]. Progress in Chemistry, 2011, 23(0203): 477-486.
[15] Liang Xiao, Wen Zhaoyin, Liu Yu. New Development of Key Materials for High-Performance Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 520-526.