中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1682-1688 DOI: 10.7536/PC160517 Previous Articles   Next Articles

• Review and comments •

Bacterial Cellulose Based Electrode Material for Supercapacitors

Xia Wen1, Li Zheng1*, Xu Yinli1, Zhuang Xupin1, Jia Shiru2, Zhang Jianfei1   

  1. 1. Key Laboratory of Advanced Textile Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31200719,51403152,51473122) and the Tianjin Sci-Tech Commissioner System(No. 16JCTPJC44400,No. 14JCQNJC14200).
PDF ( 1540 ) Cited
Export

EndNote

Ris

BibTeX

Supercapacitors as a new-type energy storage devices have drawn much attention because they can provide higher power density than batteries and higher energy density than traditional dielectric capacitors. But at present their application are still exist the defect of low energy density. Carbon materials, metal oxides and conductive polymers are three more commonly utilized electrode materials for supercapacitors, and the different forms of carbon materials are the most widely research and application of capacitor electrode materials.Bacterial cellulose (BC) is a porous and biological polymer which secreted by some bacterias, and BC has special properties of high mechanical strength and modulus, high porosity, good size and thermal stability. Consequently, significant research interest has been directed into the research of the carbon electrode materials which use bacterial cellulose as a raw material. In this paper, we present a review of the research progress of the BC based electrode material for supercapacitor application in term of the types of materials, preparation methods and performances. Furthermore, the optimum configuration, synthesizing method and the developing trend for the bacterial cellulose composite are summarized.

Contents
1 Introduction
2 BC and BC based carbon nanofiber electrode material for supercapacitors
2.1 BC based flexible electrical double-layer capacitive supercapacitor
2.2 BC based pseudo-capacitive supercapacitor
3 Conclusion

CLC Number: 

[1] Merlet C, Rotenberg B, Madden P A, Taberna P, Simon P, Gogotsi Y, Salanne M. Nat. Mater., 2012, 11(4):306.
[2] Xu B, Hou S, Cao G, Wu F, Yang Y. J. Mater. Chem., 2012, 22(36):19088.
[3] Shi S, Zhuang X, Cheng B, Wang X. J. Mater. Chem. A, 2013, 1(44):13779.
[4] 周永宁(Zhou Y N), 傅正文(Fu Z W). 化学进展(Prog. Chem.), 2011, 23(2/3):336.
[5] Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H. Carbohyd. Polym., 2015, 120:115.
[6] Cavka A, Guo X, Tang S, Winestrand S, Jonsson L J, Hong F. Biotechnol. Biofuels, 2013, 6(1):1.
[7] Lin D, Lopez-Sanchez P, Li R, Li Z. Bioresource Technol., 2014, 151C(1):113.
[8] Duarte E B, Das Chagas B S, Andrade F K, Brigida A I S, Borges M F, Muniz C R, Souza Filho M D S M, Morais J P S, Feitosa J P A, Rosa M F. Cellulose, 2015, 22(5):3177.
[9] Li Y, Wang S, Huang R, Huang Z, Hu B, Zheng W, Yang G, Jiang X. Biomacromolecules, 2015, 16(3):780.
[10] Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi L M, Levinson D, Rouabhia M. Amb Express, 2012, 2(1):1.
[11] Gadim T D O, Figueiredo A G P R, Rosero-Navarro N C, Vilela C, Gamelas J A F, Barros-Timmons A, Pascoal Neto C, Silvestre A J D, Freire C S R, Figueiredo F M L. ACS Appl. Mater. Interfaces, 2014, 6(10):7864.
[12] Chen C, Yu Y, Li K, Zhao M, Liu L, Yang J, Liu J, Sun D. Cellulose, 2015, 22(6):3929.
[13] Yuan D, Huang X, Yan J, Yu W, Meng H, Rong J. Sci. Adv. Mater., 2013, 5(11):1694.
[14] Kaburagi Y, Ohoyama M, Yamaguchi Y, Shindou E, Yoshida A, Iwashita N, Yoshizawa N, Kodama M. Carbon, 2012, 50(12):4757.
[15] Farjana S, Toomadj F, Lundgren P, Sanz-Velasco A, Naboka O, Enoksson P. J. Sens, 2013, 2013(1):77.
[16] Yoon S H, Jin H J, Kook M C, Pyun Y R. Biomacromolecules, 2006, 7(4):1280.
[17] Yan Z, Chen S, Wang H, Wang B, Jiang J. Carbohyd. Polym., 2008, 74(3):659.
[18] Yan Z, Chen S, Wang H, Wang B, Wang C, Jiang J. Carbohyd. Res., 2008, 343(1):73.
[19] Chen X, Yuan F, Zhang H, Huang Y, Yang J, Sun D. J. Mater. Sci., 2016, 51(12):5573.
[20] Kang Y J, Chun S, Lee S, Kim B, Kim J H, Chung H, Lee S, Kim W. ACS Nano, 2012, 6(7):6400.
[21] Kiziltas E E, Kiziltas A, Rhodes K, Emanetoglu N W, Blumentritt M, Gardner D J. Carbohyd. Polym., 2016, 136:1144.
[22] Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y. Energ. Environ. Sci., 2011, 4(8):2826.
[23] Luo H, Xiong G, Yang Z, Raman S R, Si H, Wan Y. RSC Adv., 2014, 4(28):14369.
[24] Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. Carbohyd. Polym., 2012, 87(1):644.
[25] Liang H, Guan Q, Zhu-Zhu, Song L, Yao H, Lei X, Yu S. NPG Asia Mater., 2012, 4(6):1.
[26] Bispo-Fonseca I, Aggar J, Sarrazin C, Simon P, Fauvarque J F. J. Power Sources, 1999, 79(2):238.
[27] Paraknowitsch J P, Thomas A. Energ. Environ. Sci., 2013, 6(10):2839.
[28] Lu X, Yu M, Wang G, Zhai T, Xie S, Ling Y, Tong Y, Li Y. Adv. Mater., 2013, 25(2):267.
[29] Liu S, Yan W, Cao X, Zhou Z, Yang R. Int. J. Hydrogen Energ., 2016, 41(11):5351.
[30] Miyajima N, Jinguji K, Matsumura T, Matsubara T, Sakane H, Akatsu T, Tanaike O. J. Phys. Chem. Solids, 2016, 91:122.
[31] Lai F, Miao Y, Huang Y, Zhang Y, Liu T. ACS Appl. Mater. Interfaces, 2016, 8(6):3558.
[32] Wu Z, Ren W, Wang D, Li F, Liu B, Cheng H. ACS Nano, 2010, 4(10):5835.
[33] Dai C, Chien P, Lin J, Chou S, Wu W, Li P, Wu K, Lin T. ACS Appl. Mater. Interfaces, 2013, 5(22):12168.
[34] Chen L, Huang Z, Liang H, Guan Q, Yu S. Adv. Mater., 2013, 25(34):4746.
[35] Wang B, Li X H, Luo B, Yang J X, Wang X J, Song Q, Chen S Y, Zhi L J. Small, 2013, 9(14):2399.
[36] Zhu T, Wu H B, Wang Y, Xu R, Lou X W D. Adv. Energy Mater., 2012, 2(12):1497.
[37] Yu W, Lin W, Shao X, Hu Z, Li R, Yuan D. J. Power Sources, 2014, 272:137.
[38] Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W. J. Phys. Chem. C., 2012, 116(24):13013.
[39] Wang H, Bian L, Zhou P, Tang J, Tang W. J. Mater. Chem. A, 2013, 1(3):578.
[40] Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv. Energy Mater., 2014, 4(10):867.
[41] Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy, 2014, 9:309.
[42] Liu Y, Zhou J, Tang J, Tang W. Chem. Mater., 2015, 27(20):7034.
[43] Long C, Qi D, Wei T, Yan J, Jiang L, Fan Z. Adv. Funct. Mater., 2014, 24(25):3953.
[44] Paraknowitsch J P, Thomas A. Energ. Environ. Sci., 2013, 6(10):2839.
[45] Yang S, Zhi L, Tang K, Feng X, Maier J, Muellen K. Adv. Funct. Mater., 2012, 22(17):3634.
[46] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Edit., 2012, 51(46):11496.
[47] Wu Z, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Muellen K. Adv. Mater., 2012, 24(37):5130.
[48] Xu B, Duan H, Chu M, Cao G, Yang Y. J. Mater. Chem. A, 2013, 1(14):4565.
[49] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6):2472.
[50] Chen L, Zhang X, Liang H, Kong M, Guan Q, Chen P, Wu Z, Yu S. ACS Nano, 2012, 6(8):7092.
[51] Chen L, Huang Z, Liang H, Yao W, Yu Z, Yu S. Energ. Environ. Sci., 2013, 6(11):3331.
[52] Zhao X, Zhang Q, Zhang B, Chen C M, Wang A Q, Zhang T, Su D S. J. Mater. Chem, 2012, 22(11):4963.
[53] Chen L F, Huang Z H, Liang H W, Gao H L, Yu S H.Adv. Funct. Mater., 2014, 24(32):5104.
[54] Hu Z, Li S, Cheng P, Yu W, Li R, Shao X, Lin W, Yuan D. J. Mater. Sci., 2016, 51(5):2627.
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[3] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[4] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[5] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[6] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[7] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[8] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[9] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[10] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[11] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[12] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[13] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[14] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[15] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.