中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1689-1704 DOI: 10.7536/PC160519 Previous Articles   Next Articles

• Review and comments •

Reaction Mechanism of Metastable Intermolecular Composite

Wang Yajun*, Li Zexue, Yu Haiyang, Feng Changgen   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No. YBKT16-06).
PDF ( 439 ) Cited
Export

EndNote

Ris

BibTeX

Due to the superfast combustion velocity and energy releasing rate, high volume energy density, low diffusion distance and being environmental friendly, metastable intermolecular composites (MIC) show great and important potential in both military and civil systems, such as microenergetic device, rocket propellant, green pyrotechnics, etc. However, the reaction mechanism of metastable intermolecular composition is still poorly clear and understood. The ultra-fast transient nature, and the complexity of probing both the vapor-phase and condensed-state chemistries of MIC materials make the reaction mechanism being different from that of traditional energetic materials, which prevents its further development in application research. The present paper summarizes the overseas and domestic research status of reaction mechanism of MIC materials so far. "Metal-oxygen flip mechanism" and "pre-combustion sintering mechanism" are discussed in detail. According to research methods, experimental research, theoretical model research, and numerical simulation research are presented respectively. Modification of MIC materials is an important method for adjusting the performances of the materials, and is one of the developing trends. We discuss the reaction mechanism of the modified materials in the end of the paper. Based on the comprehensive analysis of the study status, the challenges and prospective tendencies of reaction mechanism of MIC are also given.

Contents
1 Introduction
2 Experimental research
2.1 Partical size
2.2 Loading density
2.3 Content of reactive Al
2.4 Al/oxide ratio
2.5 Microstructure
2.6 Preparation method
2.7 Properties of oxidizer
2.8 Role of oxygen[O]
2.9 Microscale charge
2.10 Ignition mechanism
2.11 Others
3 Numerical simulation research
3.1 Molecular dynamics simulation
3.2 Thermal diffusion simulation
3.3 Output pressure simulation
3.4 Rapid oxidation simulation
3.5 Fluid dynamics simulation
3.6 Detonation simulation
4 Theoretical model research
4.1 Diffusion oxidation mechanism
4.2 Ion diffusion mechanism
4.3 Polymorphic phase change oxidation mechanism
4.4 Melt-dispersion mechanism
4.5 Metal-oxygen flip mechanism
4.6 Convective combustion mechanism
4.7 Modified Cabrera-Mott model
4.8 Pre-ignition sintering mechanism
5 Reaction mechanism of modified MIC
6 Conclusion

CLC Number: 

[1] Zhou X, Shen R, Ye Y, Zhu P, Hu Y, Wu L. J. Appl. Phys., 2011, 110(9):94505.
[2] 姜海晨(Jiang H C). 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2013.
[3] 薛艳(Xue Y), 张蕊(Zhang R), 杨伯伦(Yang B L). 火工品(Initiator Pyrot.), 2005(4):33.
[4] Aumann C E, Skofronick G L, Martin J A. J. Vac. Sci. Technol., A, 1996, 13(3):1178.
[5] Park K, Lee D, Rai A, Mukherjee D, Zachariah M R. J. Phys. Chem. B, 2005, 109(15):7290.
[6] Hunt E M, Pantoya M L. J. Appl. Phys., 2005, 98(3):34909.
[7] Pivkina A N, Frolov Y V, Ivanov D A. Combust. Explos. Shock Waves, 2007, 43(1):51.
[8] Trunov M A, Umbrajkar S M, Mirko S, Mang J T, Dreizin E L. J. Phys. Chem. B, 2006, 110(26):13094.
[9] Sun J, Simon S L. Thermochim. Acta, 2007, 463(1/2):32.
[10] Eckert J, Holzer J C, Ahn C C, Fu Z, Johnson W L. Nanostruct. Mater., 1993, 2:407.
[11] Zhang Z, Lü X X, Jiang Q. Physica B, 1999, 270(3/4):249.
[12] Sun J, Pantoya M L, Simon S L. Thermochim. Acta, 2006, 444(2):117.
[13] Weismiller M R, Malchi J Y, Lee J G, Yetter R A, Foley T J. Proc. Combust. Inst., 2011, 33(2):1989.
[14] Queenie S M K, Robert C F, Anne-Marie T, Phillip D L, Richard B, David E G J. Propell. Explos. Pyrot., 2002, 27(4):229.
[15] 莫红军(Mo H J), 赵凤起(Zhao F Q). 火炸药学报(Chin. J. Explos. Propell.), 2005(3):79.
[16] Rai A, Lee D, Park K, Zachariah M R. J. Phys. Chem. B, 2004, 108(39):14793.
[17] Rai A, Park K, Zhou L, Zachariah M R. Combust. Theor. Model., 2006, 10(5):843.
[18] Levitas V I, Asay B W, Son S F, Pantoya M. Appl. Phys. Lett., 2006, 89(7):71909.
[19] Puri P, Yang V. J. Nanopart. Res., 2010, 12(8):2989.
[20] Henz B J, Hawa T, Zachariah M R. J. Appl. Phys., 2010, 107(2):24901.
[21] Wang Y, Song X, Jiang W, Deng G, Guo X, Liu H, Li F. Trans. Nonferrous Met. Soc. China, 2014, 24(1):263.
[22] 郑保辉(Zheng B H), 王平胜(Wang P S), 罗观(Luo G), 卢校军(Lu X J). 含能材料(Chin. J. Energ. Mater.), 2015, 23(10):1004.
[23] Bockmon B S, Pantoya M L, Son S F, Asay B W, Mang J T. J. Appl. Phys., 2005, 98(6):64903.
[24] Chakraborty P, Zachariah M R. Combust. Flame, 2014, 161(5):1408.
[25] Sullivan K T, Kuntz J D, Gash A E. Propell. Explos. Pyrot., 2014, 39(3):407.
[26] Kim K. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8(7):685.
[27] Weir C, Pantoya M L, Daniels M A. Combust. Flame, 2013, 160(10):2279.
[28] Prentice D, Pantoya M L, Gash A E. Energy Fuels, 2006, 20(6):2370.
[29] Pantoya M L, Granier J J. Propell. Explos. Pyrot., 2005, 30(1):53.
[30] Mann A B, Gavens A J, Reiss M E, Van Heerden D, Bao G, Weihs T P. J. Appl. Phys., 1997, 82(3):1178.
[31] Lee S H, Lee J H, Lee Y H, Shin D H, Kim Y S. Mater. Sci. Eng., A, 2000, 281(1/2):275.
[32] Farley C W, Pantoya M L, Levitas V I. Combust. Flame, 2014, 161(4):1131.
[33] Pantoya M L, Levitas V I, Granier J J, Henderson J B. J. Propul. Power, 2009, 25(2):465.
[34] Collins E S, Gesner J P, Pantoya M L, Daniels M A. J. Electrostat., 2013, 72(1):28.
[35] Gesner J, Pantoya M L, Levitas V I. Combust. Flame, 2012, 159(11):3448.
[36] Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah M R. J. Phys. Chem. C, 2010, 114(20):9191.
[37] Trunov M A, Schoenitz M, Zhu X, Dreizin E L. Combust. Flame, 2005, 140(4):310.
[38] Wang L, Luss D, Martirosyan K S. J. Appl. Phys., 2011, 110(7):74311.
[39] Levitas V I. Phil. Trans. R. Soc. A, 2013, 371:20120215.
[40] Sanders V E, Asay B W, Foley T J, Tappan B C, Pacheco A N, Son S F. J. Propul. Power, 2007, 23(4):707.
[41] Dutro G M, Yetter R A, Risha G A, Son S F. Proc. Combust. Inst., 2009, 32(2):1921.
[42] Park C D, Mileham M, Burgt L J V D, Muller E A, Stiegman A E. J. Phys. Chem. C, 2010, 114(6):2814.
[43] Sullivan K T, Piekiel N W, Wu C, Chowdhury S, Kelly S T, Hufnagel T C, Fezzaa K, Zachariah M R. Combust. Flame, 2012, 159(1):2.
[44] Ahn J Y, Kim W D, Cho K, Lee D, Kim S H. Powder Technol., 2011, 211(1):65.
[45] Wang J, Qiao Z, Shen J, Li R, Yang Y, Yang G. Propell. Explos. Pyrot., 2015, 40(4):514.
[46] Doorenbos Z, Puszynski J, Kapoor D. 2009 AIChE Annual Meeting. Nashville TN:2009.
[47] Doorenbos Z, Walters I, Redner P, Kapoor D, Balas-Hummers W, Swiatkiewicz J, Puszynski J. AIP Conf. Proc., 2012, 1426:547.
[48] Hu X, Liao X, Xiao L, Jian X, Zhou W. Propell. Explos. Pyrot., 2015, 40(6):867.
[49] Jacob R J, Jian G, Guerieri P M, Zachariah M R. Combust. Flame, 2015, 162(1):258.
[50] Egan G C, Sullivan K T, Lagrange T, Reed B W, Zachariah M R. J. Appl. Phys., 2014, 115(8):84903.
[51] Sullivan K, Zachariah M. J. Propul. Power, 2010, 26(3):467.
[52] Steelman R, Clark B, Pantoya M L, Heaps R J, Daniels M A. J. Electrostat., 2015, 76:102.
[53] Prentice D, Pantoya M L, Clapsaddle B J. J. Phys. Chem. B, 2005, 109(43):20180.
[54] Patel V K, Ganguli A, Kant R, Bhattacharya S. RSC Adv., 2015, 5:14967.
[55] Martirosyan K S, Zyskin M, Jenkins C M, Yuki Horie Y. J. Appl. Phys., 2014, 115(10):104903.
[56] Baijot V, Glavier L, Ducéré J, Djafari Rouhani M, Rossi C, Estève A. Propell. Explos. Pyrot., 2015, 40(3):402.
[57] Balakir É A, Bushuev Y G, Bareskov N A, Kosyakin A E, Kudryavtsev Y V, Fedorova O N. Combust. Explos. Shock Waves, 1975, 11(11):36.
[58] Weismiller M R, Lee J G, Yetter R A. Proc. Combust. Inst., 2011, 33:1933.
[59] Perry W L, Tappan B C, Reardon B L, Sanders V E, Son S F. J. Appl. Phys., 2007, 101(6):64313.
[60] Ingenito A, Bruno C. J. Propul. Power, 2012, 20(6):1056.
[61] Risha G A, Son S F, Yetter R A, Yang V, Tappan B C. Proc. Combust. Inst., 2007, 31(2):2029.
[62] Williams R A, Patel J V, Ermoline A, Schoenitz M, Dreizin E L. Combust. Flame, 2013, 160(3):734.
[63] Jian G, Chowdhury S, Sullivan K, Zachariah M R. Combust. Flame, 2013, 160(2):432.
[64] Lynch P, Fiore G, Krier H, Glumac N. Combust. Sci. Technol., 2010, 182(7):842.
[65] Piekiel N W, Zhou L, Sullivan K T, Chowdhury S, Egan G C, Zachariah M R. Combust. Sci. Technol., 2014, 186(9):1209.
[66] Zhou L, Piekiel N, Chowdhury S, Zachariah M R. J. Phys. Chem. C, 2010, 114(33):14269.
[67] 杨光成(Yang G C), 谯志强(Qiao Z Q). 含能材料(Chin. J. Energ. Mater.), 2014, 22(3):279.
[68] Tappan A S, Long G T, Renlund A M, Kravitz S H, 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada:AIAA Journal, 2003. 242.
[69] Son S F, Asay B W, Foley T J, Yetter R A, Wu M H, Risha G A. J. Propul. Power, 2007, 23(4):715.
[70] Dutro G. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford CT, 2008. 4717.
[71] 杨光成(Yang G C). 中国工程物理研究院科技年报(Sci. Technol. Rep. CAEP), 2015. 33.
[72] Williams R A, Patel J V, Dreizin E L. J. Propul. Power, 2014, 30(3):765.
[73] Schoenitz M, Umbrajkar S M, Dreizin E L. J. Propul. Power, 2007, 23(4):683.
[74] Stacy S C, Pantoya M L. Int. J. Energetic Mater. Chem. Propul., 2012, 11(4):293.
[75] Stacy S C, Pantoya M L. Propell. Explos. Pyrot., 2013, 38(3):441.
[76] Monk I, Williams R, Liu X, Dreizin E L. Combust. Sci. Technol., 2015, 187(8):1276.
[77] Malchi J Y, Yetter R A, Foley T J, Weismiller M R. Proc. Combust. Inst., 2009, 32(2):1895.
[78] Farley C W, Pantoya M L, Losada M, Chaudhuri S. J. Chem. Phys., 2013, 139(7):74701.
[79] Dikici B, Pantoya M L, Levitas V. Combust. Flame, 2010, 157(8):1581.
[80] Walter K C, Aumann C E, Carpenter R D, O'Neill E H, Pesiri D R. MRS Proceedings, 2003, 800:AA1.3.
[81] Puszynski J A. MRS Proceedings, 2003, 800:AA6.4.
[82] Dubois C, Lafleur P G, Roy C. J. Propul. Power, 2007, 23(4):651.
[83] Kwon Y S, Gromov A A, Ilyin A P, Rim G H. Appl. Surf. Sci., 2003, 211(1):57.
[84] Ermoline A, Schoenitz M, Dreizin E, Yao N. Nanotechnol., 2002, 13(5):638.
[85] Zhang S, Schoenitz M, Dreizin E L. MRS Proceedings, 2013, 1521:130.
[86] Tomar V, Zhou M. 14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore:2005, 413.
[87] Tomar V, Zhou M. Mater. Sci. Forum, 2004, 465/466:157.
[88] Tomar V, Zhou M. MRS Proc., 2004, 821:3.27.1.
[89] Tomar V. Doctor Dissertation of Georgia Institute of Technology, 2005.
[90] Martirosyan K S, Zyskin M, Jenkins C M, Horie Y. J. Appl. Phys., 2012, 112(9):94319.
[91] 王亚军(Wang Y Y), 江自生(Jiang Z Z), 冯长根(Feng C G). 化学进展(Prog. Chem.), 2016, 28(2/3):391.
[92] Martirosyan K S, Zyskin M. Appl. Phys. Lett., 2012, 102(5):53112.
[93] Fromhold A T, Cook E L. Phys. Rev., 1967, 163(3):650.
[94] Cabrera N, Mott N F. Rep. Prog. Phys., 1949, 12(1):163.
[95] Shaw B D, Pantoya M L, Dikici B. Combust. Theor. Model., 2013, 17(1):25.
[96] Zhou L, Piekiel N, Chowdhury S, Lee D, Zachariah M R. J. Appl. Phys., 2009, 106(8):83306.
[97] Zhdanov V P, Kasemo B. Chem. Phys. Lett., 2008, 452(4/6):285.
[98] Trunov M A, Schoenitz M, Dreizin E L. Combust. Theor. Model., 2006, 10(4):603.
[99] Trunov M A, Schoenitz M, Dreizin E L. Propell. Explos. Pyrot., 2005, 30(1):36.
[100] Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J. J. Appl. Phys., 2002, 92(3):1649.
[101] Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J. Phys. Rev. B:Condens. Matter, 2000, 62(7):4707.
[102] Dwivedi R K, Gowda G. J. Mater. Sci. Lett.,1985, 4(3):331.
[103] Levitas V I, Pantoya M L, Dikici B. Appl. Phys. Lett., 2008, 92(1):11921.
[104] Levitas V I, Asay B W, Son S F, Pantoya M. J. Appl. Phys., 2007, 101(8):83524.
[105] Levitas V I. Combust. Flame, 2009, 156(2):543.
[106] Levitas V I, Dikici B, Pantoya M L. Combust. Flame, 2011, 158(7):1413.
[107] Levitas V I, Pantoya M L, Chauhan G, Rivero I. J. Phys. Chem. C, 2009, 113(32):14088.
[108] Levitas V I, Mccollum J, Pantoya M L, Tamura N. J. Appl. Phys., 2015, 118(9):94305.
[109] Shimojo F, Nakano A, Kalia R K, Vashishta P. Phys. Rev. E:Stat. Nonlinear Soft Matter Phys., 2008, 77:066103.
[110] Shimojo F, Nakano A, Kalia R K, Vashishta P. Appl. Phys. Lett., 2009, 95(4):43114.
[111] Zhang K, Rossi C, Ardila Rodriguez G A, Tenailleau C, Alphonse P. Appl. Phys. Lett., 2007, 91(11):113117.
[112] Bulian C J, Swiatkiewicz J J, Puszynski J A. 2005 AIChE Annual Meeting, 511d.
[113] Kappagantula K, Crane C, Pantoya M. Propell. Explos. Pyrot., 2014, 39(3):434.
[114] Egan G C, Zachariah M R. Combust. Flame, 2015, 162(7):2959.
[115] Stamatis D, Ermoline A, Dreizin E L. Combust. Theor. Model., 2012, 16(6):1011.
[116] Ermoline A, Dreizin E L. Chem. Phys. Lett., 2011, 505(1/3):47.
[117] Jian G, Piekiel N W, Zachariah M R. J. Phys. Chem. C, 2012, 116(51):26881.
[118] Sullivan K T, Chiou W, Fiore R, Zachariah M R. Appl. Phys. Lett., 2010, 97(13):133104.
[119] Jacob R J, Jian G, Guerieri P M, Zachariah M R. 52nd Aerospace Sciences Meeting. National Harbor, Maryland:2014, 0816.
[120] Zhang S, Schoenitz M, Dreizin E L. Combust. Sci. Technol., 2013, 185(9):1360.
[121] Dikici B, Dean S, Pantoya M L, Levitas V I. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver:2009, 518.
[122] Kappagantula K S, Farley C, Pantoya M L, Horn J. J. Phys. Chem. C, 2012, 116(46):24469.
[123] Kappagantula K S, Pantoya M L, Horn J. Surf. Coat. Technol., 2013, 237:456.
[124] Puszynski J A, Bulian C J, Swiatkiewicz J J. J. Propul. Power, 2007, 23(4):698.
[125] Mehendale B, Shende R, Subramanian S, Gangopadhyay S, Redner P, Kapoor D, Nicolich S. J. Propul. Power, 2006, 24(4):341.
[126] Jian G, Lu L, Zachariah M R. Adv. Funct. Mater., 2013, 23:1341.
[127] Patel V K, Bhattacharya S. ACS Appl. Mater. Interfaces, 2013, 5:13364.
[128] Mulamba O, Pantoya M L. Appl. Surf. Sci., 2014, 315:90.
[129] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005, 156(2/3):164.
[130] Sullivan K, Young G, Zachariah M. Combust. Flame, 2009, 156(2):302.
[131] Malchi J Y, Yetter R A, Foley T J, Son S F. Combust. Sci. Technol., 2008, 180(7):1278.
[132] Poper K H, Collins E S, Pantoya M L, Daniels M A. J. Electrostat., 2014, 72(5):428.
[133] Zachariah M R. Propell. Explos. Pyrot., 2013, 38(1):7.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[3] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[11] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[12] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[13] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.