中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1591-1603 DOI: 10.7536/PC150512 Previous Articles   Next Articles

• Review and comments •

Progress in Graphene-Based Hydrogels

Liu Jingjing, Chu Huijuan, Wei Hongliang*, Zhu Hongzheng, Zhu Jing, He Juan   

  1. School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by Henan Province University Innovation Talents of Science and Technology Support Program(No.2012HASTIT017), the Science and Technology Department of Henan Province(No.142300410011, 102102210131,152102110073), and Henan University of Technology(No.2012JCYJ07).
PDF ( 4455 ) Cited
Export

EndNote

Ris

BibTeX

The unique properties of graphene, such as high electrical conductivity, high thermal conductivity and excellent mechanical properties, have made graphene not only a gelator to self-assemble into the graphene hydrogel with extraordinary electromechanical performance, but also a filler to blend with small molecules and macromolecules for the preparation of multifunctional graphene-based hybrid hydrogels, which fully exploits the practical applications of traditional hydrogels. Herein, recent progress in graphene-based hybrid hydrogels has been reviewed and the whole article can be divided into four sections. In the first section, a brief introduction on the development of graphene as well as the significance of the fabrication of graphene-based hydrogels is devoted. In the second section, the graphene-based hybrid hydrogels are roughly divided into three categories: graphene hydrogel, graphene/small molecules and graphene/macromolecules hybrid hydrogels according to their composition. The preparation methods of various hydrogels, as well as the mechanisms of their gelation process and the hydrogels' performance, are also presented. With the presentation of graphene/small molecules hybrid hydrogels, emphasis is given to the development of graphene-based supramolecular hydrogels, while with the presentation of graphene/macromolecules hybrid hydrogels, graphene-based intelligent hydrogels contributed a much higher proportion. In the third section, the applications of graphene-based hybrid hydrogels in supercapacitor, water purification, controlled release drug, microfluidic switch, catalyst support, etc., are introduced respectively. Finally, challenges in the development of graphene-based hydrogels are summarized briefly and future prospect is given as well.

Contents
1 Introduction
2 Categories of graphene-based hydrogels
2.1 Graphene hydrogels
2.2 Graphene/small molecules hybrid hydrogels
2.3 Graphene/macromolecules hybrid hydrogels
3 Applications of graphene-based hydrogels
3.1 Supercapacitor
3.2 Water purification
3.3 Drug-controlled release
3.4 Microfluidic switch
3.5 Catalyst support
3.6 Others
4 Conclusion

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7:406.
[3] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312:1191.
[4] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H. Nature, 2009, 457:706.
[5] Eizenberg M, Blakely J M. Surf. Sci., 1979, 82:228.
[6] Rangappa D, Sone K, Wang M, Gautam U K, Golberg D, Itoh H, Ichihara M, Honma I. Chem. Eur. J., 2010, 16:6488.
[7] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4:217.
[8] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39:228.
[9] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80:1339.
[10] Si Y, Samulski E T. Nano Lett., 2008, 8:1679.
[11] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4:25.
[12] Shen B, Lu D, Zhai W, Zheng W. J. Mater. Chem. C, 2013, 1:50.
[13] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem. Mater., 2007, 19:4396.
[14] Zhang H B, Wang J W, Yan Q, Zheng W G, Chen C, Yu Z Z. J. Mater. Chem., 2011, 21:5392.
[15] Peak C W, Wilker J J, Schmidt G. Colloid and Polymer Science, 2013, 291:2031.
[16] Li C, Shi G. Adv. Mater., 2014, 26:3992.
[17] Nardecchia S, Carriazo D, Ferrer M L, Gutierrez M C, del Monte F. Chem. Soc. Rev., 2013, 42:794.
[18] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4:4324.
[19] Zhang L, Shi G. J. Phys. Chem. C, 2011, 115:17206.
[20] Sui Z, Zhang X, Lei Y, Luo Y. Carbon, 2011, 49:4314.
[21] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. J. Mater. Chem., 2011, 21:6494.
[22] Sheng K X, Xu Y X, Li C, Shi G Q. New Carbon Mater., 2011, 26:9.
[23] Zhang L, Chen G, Hedhili M N, Zhang H, Wang P. Nanoscale, 2012, 4:7038.
[24] Bi H, Yin K, Xie X, Zhou Y, Wan N, Xu F, Banhart F, Sun L, Ruoff R S. Adv. Mater., 2012, 24:5124.
[25] Li H, Zhang B, Lu C. Mater. Lett., 2014, 129:24.
[26] Compton O C, An Z, Putz K W, Hong B J, Hauser B G, Brinson L C, Nguyen S T. Carbon, 2012, 50:3399.
[27] Rybtchinski B. ACS Nano, 2011, 5:6791.
[28] Adhikari B, Biswas A, Banerjee A. Langmuir, 2012, 28:1460.
[29] Delbecq F, Endo H, Kono F, Kikuchi A, Kawai T. Polymer, 2013, 54:1064.
[30] Ogoshi T, Ichihara Y, Yamagishi T A, Nakamoto Y. Chem. Commun., 2010, 46:6087.
[31] Adhikari B, Biswas A, Banerjee A. ACS Appl. Mater. Interfaces, 2012, 4:5472.
[32] Cheng Q Y, Zhou D, Gao Y, Chen Q, Zhang Z, Han B H. Langmuir, 2012, 28:3005.
[33] Ai W, Du Z-Z, Liu J-Q, Zhao F, Yi M D, Xie L H, Shi N E, Ma Y W, Qian Y, Fan Q-L, Yu T, Huang W. RSC Adv., 2012, 2:12204.
[34] Qiu L, Yang X, Gou X, Yang W, Ma Z F, Wallace G G, Li D. Chem. Eur. J., 2010, 16:10653.
[35] Zhang C, Ren L, Wang X, Liu T. J. Phys. Chem. C, 2010, 114:11435.
[36] Cong H P, Ren X C, Wang P, Yu S-H. ACS Nano, 2012, 6:2693.
[37] Szejtli J. Chem. Rev., 1998, 98:1743.
[38] Zu S Z, Han B H. J. Phys. Chem. C, 2009, 113:13651.
[39] Liu J, Chen G, Jiang M. Macromolecules, 2011, 44:7682.
[40] Luan V H, Tien H N, Hoa L T, Hien N T M, Oh E S, Chung J, Kim E J, Choi W M, Kong B S, Hur S H. J. Mater. Chem. A, 2013, 1:208.
[41] van Hoang L, Chung J S, Kim E J, Hur S H. Chem. Eng. J., 2014, 246:64.
[42] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Adv. Mater., 2013, 25:2219.
[43] Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Hayes M, Vail S A, Park C D. Langmuir, 2007, 23:224.
[44] Osada Y, Gong J P. Prog. Polym. Sci., 1993, 18:187.
[45] Liu F, Urban M W. Prog. Polym. Sci., 2010, 35:3.
[46] Alzari V, Nuvoli D, Sanna R, Peponi L, Piccinini M, Bon S B, Marceddu S, Valentini L, Kenny J M, Mariani A. Colloid Polym. Sci., 2013, 291:2681.
[47] Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Adv. Funct. Mater., 2009, 19:2297.
[48] Kim J E, Lee H S. Polymer, 2014, 55:287.
[49] Sridhar V, Oh I K. J. Colloid Interf. Sci., 2010, 348:384.
[50] Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y. J. Mater. Chem., 2011, 21:10399.
[51] Bai H, Li C, Wang X, Shi G. Chem. Commun., 2010, 46:2376.
[52] Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y. J. Mater. Chem. B, 2014, 2:3791.
[53] Zhu C H, Lu Y, Peng J, Chen J F, Yu S H. Adv. Funct. Mater., 2012, 22:4017.
[54] Huang S, Shen J, Li N, Ye M. J. Appl. Polym. Sci., 2015, doi:10.1002/app.41530.
[55] Wu Y, Cai M, Pei X, Liang Y, Zhou F. Macromol. Rapid Commun., 2013, 34:1785.
[56] Zhang E, Wang T, Lian C, Sun W, Liu X, Tong Z. Carbon, 2013, 62:117.
[57] Hou C, Zhang Q, Zhu M, Li Y, Wang H. Carbon, 2011, 49:47.
[58] Hou C, Zhang Q, Li Y, Wang H. Carbon, 2012, 50:1959.
[59] Ma X, Li Y, Wang W, Ji Q, Xia Y. Eur. Polym. J., 2013, 49:389.
[60] Jang J H, Kim J K, Huh D S. Macromol. Res., 2014, 22:1132.
[61] Lee S, Lee H, Sim J H, Sohn D. Macromol. Res., 2014, 22:165.
[62] Faghihi S, Karimi A, Jamadi M, Imani R, Salarian R. Mater. Sci. Eng. C, 2014, 38:299.
[63] Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q. Colloids Surf. A, 2012, 401:97.
[64] Shen J, Yan B, Li T, Long Y, Li N, Ye M. Compos. Part A-Appl. S., 2012, 43:1476.
[65] Liu J, Cui L, Kong N, Barrow C J, Yang W. Eur. Polym. J., 2014, 50:9.
[66] Shen J, Yan B, Li T, Long Y, Li N, Ye M. Soft Matter, 2012, 8:1831.
[67] Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z Z. J. Mater. Chem., 2012, 22:14160.
[68] Shi Y, Ma C, Peng L, Yu G. Adv. Funct. Mater., 2015, 25:1219.
[69] Sun S, Wu P. J. Mater. Chem., 2011, 21:4095.
[70] Li Z, Shen J, Ma H, Lu X, Shi M, Li N, Ye M. Mater. Sci. Eng. C, 2013, 33:1951.
[71] Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25:3357.
[72] Lei W, Si W, Xu Y, Gu Z, Hao Q. Microchim. Acta, 2014, 181:707.
[73] Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W. Sens. Actuators, B, 2014, 190:707.
[74] Chen S, Bao P, Huang X, Sun B, Wang G. Nano Res., 2014, 7:85.
[75] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38:2520.
[76] Li N, Tang S, Dai Y, Meng X. J. Mater. Sci., 2014, 49:2802.
[77] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8:3498.
[78] Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. J. Phys. Chem. C, 2009, 113:13103.
[79] Quan H, Shao Y, Hou C, Zhang Q, Wang H, Li Y. Mater. Sci. Eng. B, 2013, 178:769.
[80] Chang Y, Han G, Yuan J, Fu D, Liu F, Li S. J. Power Sources, 2013, 238:492.
[81] Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X. Nano Res., 2013, 6:65.
[82] Zhang F, Xiao F, Dong Z H, Shi W. Electrochim. Acta, 2013, 114:125.
[83] She X, Sun P, Yu X, Zhang Q, Wu Y, Li L, Huang Y, Shang S, Jiang S. J. Inorg. Oraganomet. P., 2014, 24:884.
[84] Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X. Nano Energy, 2014, 7:86.
[85] Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Nano Energy, 2013, 2:249.
[86] Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L. Adv. Mater., 2013, 25:591.
[87] Xu J, Wang L, Zhu Y. Langmuir, 2012, 28:8418.
[88] Hou C, Zhang Q, Li Y, Wang H. J. Hazard. Mater., 2012, 205:229.
[89] Cong H P, Qiu J H, Yu S H. Small, 2015, 11:1165.
[90] Sun H, Xu Z, Gao C. Adv. Mater., 2013, 25:2554.
[91] Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsina R, Tiwari R N, Kim K S. Carbon, 2013, 56:173.
[92] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4:7358.
[93] Wang X, Liu Z, Ye X, Hu K, Zhong H, Yu J, Jin M, Guo Z. Appl. Surf. Sci., 2014, 308:82.
[94] Gao H, Sun Y, Zhou J, Xu R, Duan H. ACS Appl. Mater. Interfaces, 2013, 5:425.
[95] Chen Y, Chen L, Bai H, Li L. J. Mater. Chem. A, 2013, 1:1992.
[96] Liu Z, Robinson J T, Sun X, Dai H. J. Am. Chem. Soc., 2008, 130:10876.
[97] Wang J, Liu C, Shuai Y, Cui X, Nie L. Colloids Surf. B, 2014, 113:223.
[98] Ehrbar M, Schoenmakers R, Christen E H, Fussenegger M, Weber W. Nat. Mater., 2008, 7:800.
[99] Koutsopoulos S, Zhang S. J. Controlled Release, 2012, 160:451.
[100] Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, Wei J, Li Y, Cao Y, Wang W. Nanoscale, 2015, 7:1655.
[101] Zhang E, Wang T, Hong W, Sun W, Liu X, Tong Z. J. Mater. Chem. A, 2014, 2:15633.
[102] Moon Y E, Jung G, Yun J, Kim H I. Mater. Sci. Eng. B, 2013, 178:1097.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[9] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[12] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[13] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[14] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[15] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
Viewed
Full text


Abstract

Progress in Graphene-Based Hydrogels