中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 568-579 DOI: 10.7536/PC210613 Previous Articles   Next Articles

• Review •

Self-Assembled Peptide Hydrogel for Biomedical Applications

Hong Li1, Xiaodan Shi1, Jieling Li2()   

  1. 1 College of Chemistry and Chemical Engineering, Xi'an Shiyou University,Xi'an 710065, China
    2 State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences,Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Jieling Li
  • Supported by:
    National Natural Science Foundation of China(22072155); National Natural Science Foundation of China(21703169); Scientific Research Plan of Shaanxi Province of China(2021KJXX-39)
Richhtml ( 63 ) PDF ( 836 ) Cited
Export

EndNote

Ris

BibTeX

As a new type of biological material, short peptide self-assembled hydrogel holds the advantages of high biocompatibility, low immunogenicity, high water content, degradation products that can be absorbed by the body, and structure similar to natural extracellular matrix. It has broad application prospects in the fields of materials science, biomedicine and clinical medicine. In this review, we mainly introduce several commonly used methods for preparing stable and tough peptide self-assembled hydrogels, including enzyme-catalyzed hydrogelation and chemical/physical cross-linked hydrogelation and photocatalytic hydrogelation. Furthermore, some applications of peptide self-assembled hydrogels in drug delivery and anti-tumor therapy, antibacterial and wound healing, 3D bioprinting and tissue engineering are introduced. We hope that the discussion in this review can arouse more people's attention to peptide self-assembled hydrogels and promote the development of their applications in the biomedical field.

Contents

1 Introduction

2 Preparation of peptide self-assembled hydrogel

2.1 Enzyme-catalyzed hydrogelation

2.2 Chemical/physical cross-linked hydrogelation

2.3 Photocatalytic hydrogelation

3 Biomedical applications

3.1 Drug delivery and anti-tumor therapy

3.2 Antibacterial and wound healing

3.3 3D bioprinting and tissue engineering

4 Conclusion and perspective

Fig.1 Schematic diagram of the regulation of peptide assembled structure by changing the structure of the ion-induced enzyme network[49]
Fig.2 A) Peptide molecular structure; B) Morphology characterization of the hydrogel; C) Injectability characterization of the hydrogel; D) 3D printed hydrogel scaffold[54]
Fig.3 Schematic of Ru ( b p y ) 3 2 + mediated photocross-linking of tyrosine contained peptide for hydrogel formation with enhanced mechanical stability[59]
Table 1 Summary table of preparation methods for self-assembled peptide hydrogels
Fig.4 A) Molecular structures of the designed peptides; B) G3 (G(IIKK)3-NH2) release from the G3-loaded Ac-I3SLGK-NH2+MMP2 and Ac-I3SLGK-NH2 gels in the presence and absence of MMP-2; C) Viability of NIH 3T3 and HeLa cells on the two peptide gels with and without G3 loading. After incubation for 24 h, the cell viability was determined by MTT assays[65]
Fig.5 A) Schematic diagram of the formation of Fmoc-FF/PLL-SH hydrogels based on electrostatic interaction-triggered co-assembly; B) Suppression of tumor growth with or without Fmoc-FF/PLL-SH hydrogel treatment. Images of the excised B16 tumor tissues at 12 days post implantation (inset); C) The ratio of CD4+T/CD8+T after different treatment[56]
Fig.6 Schematic diagram of peptide A9K2 self-assembled hydrogel for antibacterial applications[88]
Fig.7 Schematic representation of the full-thickness burn wound model: A) A pre-heated aluminum plaque was applied to the shaved dorsum of the anesthetized mouse; followed by the removal of the injured skin and the application of the hydrogel. B) A schematic of the hydrogel-implanted wound site[92]
Fig.8 A) Molecular structure of aliphatic ultrashort peptides; B) characterization of continuous injectable properties of peptide assembled hydrogel by extruding hydrogel into a concentrated salt bath; C) printed droplet arrays via sequential deposition of peptide and PBS containing cells and/or small molecules; D) Human H1 embryonic stem cells encapsulated in the hydrogels[96]
Fig.9 Effect of presence of SWNTs in the peptide assembled hydrogel on the cell behavior[98]
[1]
van den Ent F, Amos L A, Löwe J. Nature, 2001, 413(6851): 39.

doi: 10.1038/35092500
[2]
Salgado E N, Radford R J, Tezcan F A. Acc. Chem. Res., 2010, 43(5): 661.

doi: 10.1021/ar900273t
[3]
Qi G B, Gao Y J, Wang L, Wang H. Adv. Mater., 2018, 30(22): 1703444.

doi: 10.1002/adma.201703444
[4]
Abbas M, Zou Q L, Li S K, Yan X H. Adv. Mater., 2017, 29(12): 1605021.

doi: 10.1002/adma.201605021
[5]
Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev., 2016, 45(14): 3935.

doi: 10.1039/C5CS00889A
[6]
Wang J, Liu K, Xing R R, Yan X H. Chem. Soc. Rev., 2016, 45(20): 5589.

doi: 10.1039/C6CS00176A
[7]
Han J J, Gong H N, Ren X K, Yan X H. Nano Today, 2021, 41: 101295.

doi: 10.1016/j.nantod.2021.101295
[8]
Bai S, Debnath S, Javid N, Frederix P W J M, Fleming S, Pappas C, Ulijn R V. Langmuir, 2014, 30(25): 7576.

doi: 10.1021/la501335e
[9]
Wang A H, Cui L Y, Debnath S, Dong Q Q, Yan X H, Zhang X, Ulijn R V, Bai S. ACS Appl. Mater. Interfaces, 2017, 9(25): 21390.

doi: 10.1021/acsami.7b05661
[10]
Yan X H, Zhu P L, Li J B. Chem. Soc. Rev., 2010, 39(6): 1877.

doi: 10.1039/b915765b
[11]
Zou Q L, Zhang L, Yan X H, Wang A H, Ma G H, Li J B, Möhwald H, Mann S. Angew. Chem. Int. Ed., 2014, 53(9): 2366.

doi: 10.1002/anie.201308792
[12]
Liu X C, Zhu P L, Fei J B, Zhao J, Yan X H, Li J B. Chem. Eur. J., 2015, 21(26): 9461.

doi: 10.1002/chem.201500580
[13]
Lam K S, Salmon S E, Hersh E M, Hruby V J, Kazmeierski W M, Knapp R J. Nature, 1992, 360(6406): 768.
[14]
Zhang H, Fei J B, Yan X H, Wang A H, Li J B. Adv. Funct. Mater., 2015, 25(8): 1193.

doi: 10.1002/adfm.201403119
[15]
Wu J H, Chen A P, Qin M, Huang R, Zhang G, Xue B, Wei J W, Li Y, Cao Y, Wang W. Nanoscale, 2015, 7(5): 1655.

doi: 10.1039/C4NR05798H
[16]
Ma K, Xing R R, Jiao T F, Shen G Z, Chen C J, Li J B, Yan X H. ACS Appl. Mater. Interfaces, 2016, 8(45): 30759.

doi: 10.1021/acsami.6b10754
[17]
Cui L Y, Jiao Y, Wang A H, Zhao L Y, Dong Q Q, Yan X H, Bai S. Chem. Commun., 2018, 54(18): 2208.

doi: 10.1039/C8CC00177D
[18]
Feng L, Wang A H, Ren P, Wang M Y, Dong Q Q, Li J L, Bai S. Colloid Interface Sci. Commun., 2018, 23: 29.

doi: 10.1016/j.colcom.2018.01.006
[19]
Sun J, Guo Y, Xing R, Jiao T, Zou Q, Yan X. Colloids Surf. A, 2017, 514, 155.

doi: 10.1016/j.colsurfa.2016.11.062
[20]
Zou Q L, Liu K, Abbas M, Yan X H. Adv. Mater., 2016, 28(6): 1031.

doi: 10.1002/adma.201502454
[21]
Liu K, Xing R R, Zou Q L, Ma G H, Möhwald H, Yan X H. Angew. Chem. Int. Ed., 2016, 55(9): 3036.

doi: 10.1002/anie.201509810
[22]
Liu K, Xing R, Chen C, Shen G, Yan L, Zou Q, Ma G, Moehwald H, Yan X. Angew. Chem. Int. Edit., 2015, 54 (2): 500.
[23]
Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H. Angew. Chem. Int. Ed., 2017, 56(27): 7876.

doi: 10.1002/anie.201704678
[24]
Yan X H, Li J B, Möhwald H. Adv. Mater., 2011, 23(25): 2796.

doi: 10.1002/adma.201100353
[25]
Du X W, Zhou J, Shi J F, Xu B. Chem. Rev., 2015, 115(24): 13165.

doi: 10.1021/acs.chemrev.5b00299
[26]
Jonker A M, Löwik D W P M, van Hest J C M. Chem. Mater., 2012, 24(5): 759.

doi: 10.1021/cm202640w
[27]
Li Y, Qin M, Cao Y, Wang W. Sci. China Phys. Mech. Astron., 2014, 57(5): 849.

doi: 10.1007/s11433-014-5427-z
[28]
Wang H M, Yang Z M. Nanoscale, 2012, 4(17): 5259.

doi: 10.1039/c2nr31149f
[29]
Fu M, Zhang C Y, Dai Y X, Li X, Pan M B, Huang W L, Qian H, Ge L. Biomater. Sci., 2018, 6(6): 1480.

doi: 10.1039/C8BM00006A
[30]
Yu S J, Zhang D L, He C L, Sun W J, Cao R J, Cui S S, Deng M X, Gu Z, Chen X S. Biomacromolecules, 2017, 18(12): 4341.

doi: 10.1021/acs.biomac.7b01374
[31]
Li X, Fu M, Wu J, Zhang C Y, Deng X, Dhinakar A, Huang W L, Qian H, Ge L. Acta Biomater., 2017, 51: 294.

doi: 10.1016/j.actbio.2017.01.016
[32]
Wan S, Borland S, Richardson S M, Merry C L R, Saiani A, Gough J E. Acta Biomater., 2016, 46: 29.

doi: 10.1016/j.actbio.2016.09.033
[33]
Koss K M, Unsworth L D. Acta Biomater., 2016, 44: 2.

doi: 10.1016/j.actbio.2016.08.026 pmid: 27544809
[34]
Takeuchi T, Bizenjima T, Ishii Y, Imamura K, Suzuki E, Seshima F, Saito A. J. Clin. Periodontol., 2016, 43(3): 279.

doi: 10.1111/jcpe.12515
[35]
Paladini F, Meikle S T, Cooper I R, Lacey J, Perugini V, Santin M. J. Mater. Sci. Mater. Med., 2013, 24(10): 2461.

doi: 10.1007/s10856-013-4986-2
[36]
Altunbas A, Lee S J, Rajasekaran S A, Schneider J P, Pochan D J. Biomaterials, 2011, 32(25): 5906.

doi: 10.1016/j.biomaterials.2011.04.069 pmid: 21601921
[37]
Semino C E, Kasahara J, Hayashi Y, Zhang S G. Tissue Eng., 2004, 10(3/4): 643.

doi: 10.1089/107632704323061997
[38]
Koutsopoulos S, Zhang S G. Acta Biomater., 2013, 9(2): 5162.

doi: 10.1016/j.actbio.2012.09.010 pmid: 22995405
[39]
Huang Z, Sargeant T D, Hulvat J F, Mata A, Bringas P, Koh C Y, Stupp S I, Snead M L. J. Bone Miner. Res., 2008, 23(12): 1995.

doi: 10.1359/jbmr.080705 pmid: 18665793
[40]
Silva G A, Czeisler C, Niece K L, Beniash E, Harrington D A, Kessler J A, Stupp S I. Science, 2004, 303(5662): 1352.

doi: 10.1126/science.1093783
[41]
Standley S M, Toft D J, Cheng H, Soukasene S, Chen J, Raja S M, Band V, Band H, Cryns V L, Stupp S I. Cancer Res., 2010, 70(8): 3020.

doi: 10.1158/0008-5472.CAN-09-3267
[42]
Soukasene S, Toft D J, Moyer T J, Lu H, Lee H K, Standley S M, Cryns V L, Stupp S I. ACS Nano, 2011, 5(11): 9113.

doi: 10.1021/nn203343z pmid: 22044255
[43]
Gahane A Y, Ranjan P, Singh V, Sharma R K, Sinha N, Sharma M, Chaudhry R, Thakur A K. Soft Matter, 2018, 14(12): 2234.

doi: 10.1039/C7SM02317K
[44]
Gao J, Zheng W T, Kong D L, Yang Z M. Soft Matter, 2011, 7(21): 10443.

doi: 10.1039/c1sm06192e
[45]
Toledano S, Williams R J, Jayawarna V, Ulijn R V. J. Am. Chem. Soc., 2006, 128(4): 1070.

pmid: 16433511
[46]
Wang H M, Feng Z, Xu B. Chem. Soc. Rev., 2017, 46(9): 2421.

doi: 10.1039/C6CS00656F
[47]
Feng Z, Zhang T F, Wang H M, Xu B. Chem. Soc. Rev., 2017, 46(21): 6470.

doi: 10.1039/C7CS00472A
[48]
Hughes M, Debnath S, Knapp C W, Ulijn R V. Biomater. Sci., 2013, 1(11): 1138.

doi: 10.1039/c3bm60135h
[49]
Roy S, Javid N, Sefcik J, Halling P J, Ulijn R V. Langmuir, 2012, 28(48): 16664.

doi: 10.1021/la303388s
[50]
Liang C H, Zheng D B, Shi F, Xu T Y, Yang C H, Liu J F, Wang L, Yang Z M. Nanoscale, 2017, 9(33): 11987.

doi: 10.1039/C7NR04370H
[51]
Liyanage W, Ardoña H A M, Mao H Q, Tovar J D. Bioconjugate Chem., 2017, 28(3): 751.

doi: 10.1021/acs.bioconjchem.6b00593
[52]
Chronopoulou L, Daniele M, Perez V, Gentili A, Gasperi T, Lupi S, Palocci C. Process. Biochem., 2018, 70: 110.

doi: 10.1016/j.procbio.2018.04.005
[53]
Seow W Y, Salgado G, Lane E B, Hauser C A E. Sci. Rep., 2016, 6: 32670.

doi: 10.1038/srep32670
[54]
Wei Q C, Xu M C, Liao C N, Wu Q, Liu M Y, Zhang Y, Wu C T, Cheng L M, Wang Q G. Chem. Sci., 2016, 7(4): 2748.

doi: 10.1039/C5SC02234G
[55]
Fernández-Muiños T, Recha-Sancho L, López-Chicón P, Castells-Sala C, Mata A, Semino C E. Acta Biomater., 2015, 16: 35.

doi: 10.1016/j.actbio.2015.01.008 pmid: 25595471
[56]
Xing R R, Li S K, Zhang N, Shen G Z, Möhwald H, Yan X H. Biomacromolecules, 2017, 18(11): 3514.

doi: 10.1021/acs.biomac.7b00787
[57]
Li R X, Sun Y, Cai Z W, Li Y, Sun J, Bi W, Yang F, Zhou Q R, Ye T J, Yu Y C. Chem. Eng. J., 2021, 415: 129015.

doi: 10.1016/j.cej.2021.129015
[58]
Kim S H, Sun Y, Kaplan J A, Grinstaff M W, Parquette J R. New J. Chem., 2015, 39(5): 3225.

doi: 10.1039/C5NJ00038F
[59]
Ding Y, Li Y, Qin M, Cao Y, Wang W. Langmuir, 2013, 29(43): 13299.

doi: 10.1021/la4029639 pmid: 24090141
[60]
Min K I, Kim D H, Lee H J, Lin L W, Kim D P. Angew. Chem. Int. Ed., 2018, 57(20): 5630.

doi: 10.1002/anie.201713261
[61]
Kim I, Bang W Y, Park W H, Han E H, Lee E. Nanoscale, 2019, 11(37): 17327.

doi: 10.1039/C9NR06115K
[62]
Liu C, Hua J C, Ng P F, Fei B. J. Mater. Sci. Technol., 2021, 63: 182.

doi: 10.1016/j.jmst.2020.02.086
[63]
Karavasili C, Panteris E, Vizirianakis I S, Koutsopoulos S, Fatouros D G. Pharm. Res., 2018, 35(8): 1.
[64]
Liu J, Zhang L, Yang Z, Zhao X. Int. J. Nanomed., 2011, 6:2143.
[65]
Chen C X, Zhang Y, Hou Z, Cui X J, Zhao Y R, Xu H. Biomacromolecules, 2017, 18(11): 3563.

doi: 10.1021/acs.biomac.7b00911
[66]
Jiang T Y, Wang T, Li T, Ma Y D, Shen S Y, He B F, Mo R. ACS Nano, 2018, 12(10): 9693.

doi: 10.1021/acsnano.8b03800
[67]
Abbas M, Xing R R, Zhang N, Zou Q L, Yan X H. ACS Biomater. Sci. Eng., 2018, 4(6): 2046.

doi: 10.1021/acsbiomaterials.7b00624
[68]
Wang H M, Feng Z, Wu D D, Fritzsching K J, Rigney M, Zhou J, Jiang Y J, Schmidt-Rohr K, Xu B. J. Am. Chem. Soc., 2016, 138(34): 10758.

doi: 10.1021/jacs.6b06075
[69]
Wang H M, Feng Z, Wang Y Z, Zhou R, Yang Z M, Xu B. J. Am. Chem. Soc., 2016, 138(49): 16046.

doi: 10.1021/jacs.6b09783
[70]
Cai Y B, Shen H S, Zhan J, Lin M L, Dai L H, Ren C H, Shi Y, Liu J F, Gao J, Yang Z M. J. Am. Chem. Soc., 2017, 139(8): 2876.

doi: 10.1021/jacs.6b12322
[71]
Zhan J, Cai Y B, He S S, Wang L, Yang Z M. Angew. Chem. Int. Ed., 2018, 57(7): 1813.

doi: 10.1002/anie.201710237 pmid: 29276818
[72]
Liu Y, Xu Y Y, Tian Y, Chen C Y, Wang C, Jiang X Y. Small, 2014, 10(22): 4505.

doi: 10.1002/smll.201401707 pmid: 25238620
[73]
Hubbell J A, Thomas S N, Swartz M A. Nature, 2009, 462(7272): 449.

doi: 10.1038/nature08604
[74]
Petersen L K, Ramer-Tait A E, Broderick S R, Kong C S, Ulery B D, Rajan K, Wannemuehler M J, Narasimhan B. Biomaterials, 2011, 32(28): 6815.

doi: 10.1016/j.biomaterials.2011.05.063
[75]
He Q, Mitchell A R, Johnson S L, Wagner-Bartak C, Morcol T, Bell S J D. Clin. Diagn. Lab. Immunol., 2000, 7(6): 899.

doi: 10.1128/CDLI.7.6.899-903.2000 pmid: 11063495
[76]
de Temmerman M L, Rejman J, Demeester J, Irvine D J, Gander B, de Smedt S C. Drug Discov. Today, 2011, 16(13/14): 569.

doi: 10.1016/j.drudis.2011.04.006
[77]
Luo Z C, Li P, Deng J Z, Gao N N, Zhang Y J, Pan H, Liu L L, Wang C, Cai L T, Ma Y F. J. Control. Release, 2013, 170(2): 259.

doi: 10.1016/j.jconrel.2013.05.027
[78]
Delgado M, Lee K J, Altobell , Spanka C, Wentworth P, Janda K D. J. Am. Chem. Soc., 2002, 124(18): 4946.

doi: 10.1021/ja025715b
[79]
Wu Y B, Wei W, Zhou M, Wang Y Q, Wu J, Ma G H, Su Z G. Biomaterials, 2012, 33(7): 2351.

doi: 10.1016/j.biomaterials.2011.11.068
[80]
Singh A, Peppas N A. Adv. Mater., 2014, 26(38): 6530.

doi: 10.1002/adma.201402105
[81]
Rudra J S, Tian Y F, Jung J P, Collier J H. PNAS, 2010, 107(2): 622.

doi: 10.1073/pnas.0912124107 pmid: 20080728
[82]
Huang Z H, Shi L, Ma J W, Sun Z Y, Cai H, Chen Y X, Zhao Y F, Li Y M. J. Am. Chem. Soc., 2012, 134(21): 8730.

doi: 10.1021/ja211725s
[83]
Wang H M, Luo Z C, Wang Y Z, He T, Yang C B, Ren C H, Ma L S, Gong C Y, Li X Y, Yang Z M. Adv. Funct. Mater., 2016, 26(11): 1822.

doi: 10.1002/adfm.201505188
[84]
Liu Y H, Wang Y Z, Yu F, Zhang Z Q, Yang Z M, Zhang W P, Wang P G, Zhao W. Chem. Commun., 2017, 53(68): 9486.

doi: 10.1039/C7CC04386D
[85]
Malhotra K, Shankar S, Rai R, Singh Y. Biomacromolecules, 2018, 19(3): 782.

doi: 10.1021/acs.biomac.7b01582 pmid: 29384665
[86]
Nandi N, Gayen K, Ghosh S, Bhunia D, Kirkham S, Sen S K, Ghosh S, Hamley I W, Banerjee A. Biomacromolecules, 2017, 18(11): 3621.

doi: 10.1021/acs.biomac.7b01006
[87]
Wan Y M, Liu L B, Yuan S S, Sun J, Li Z B. Langmuir, 2017, 33(13): 3234.

doi: 10.1021/acs.langmuir.6b03986
[88]
Bai J K, Chen C X, Wang J X, Zhang Y, Cox H, Zhang J, Wang Y M, Penny J, Waigh T, Lu J R, Xu H. ACS Appl. Mater. Interfaces, 2016, 8(24): 15093.

doi: 10.1021/acsami.6b03770
[89]
Bai J K, Gong Z Y, Wang J X, Wang C D. RSC Adv., 2017, 7(77): 48631.

doi: 10.1039/C7RA09743C
[90]
Carrejo N C, Moore A N, Lopez Silva T L, Leach D G, Li I C, Walker D R, Hartgerink J D. ACS Biomater. Sci. Eng., 2018, 4(4): 1386.

doi: 10.1021/acsbiomaterials.8b00031 pmid: 29687080
[91]
Loo Y, Wong Y C, Cai E Z, Ang C H, Raju A, Lakshmanan A, Koh A G, Zhou H J, Lim T C, Moochhala S M, Hauser C A E. Biomaterials, 2014, 35(17): 4805.

doi: 10.1016/j.biomaterials.2014.02.047
[92]
Yergoz F, Hastar N, Cimenci C E, Ozkan A D, Tekinay T, Guler M O, Tekinay A B. Biomaterials, 2017, 134: 117.

doi: S0142-9612(17)30277-6 pmid: 28458029
[93]
Raphael B, Khalil T, Workman V L, Smith A, Brown C P, Streuli C, Saiani A, Domingos M. Mater. Lett., 2017, 190: 103.

doi: 10.1016/j.matlet.2016.12.127
[94]
Sun W X, Xue B, Li Y, Qin M, Wu J Y, Lu K, Wu J H, Cao Y, Jiang Q, Wang W. Adv. Funct. Mater., 2016, 26(48): 9044.

doi: 10.1002/adfm.201603512
[95]
Li L, Zhang K J, Wang T K, Wang P, Xue B, Cao Y, Zhu L Y, Jiang Q. Mater. Des., 2020, 189: 108492.

doi: 10.1016/j.matdes.2020.108492
[96]
Loo Y, Lakshmanan A, Ni M, Toh L L, Wang S, Hauser C A E. Nano Lett., 2015, 15(10): 6919.

doi: 10.1021/acs.nanolett.5b02859
[97]
Hoffman A S. Adv. Drug Deliv. Rev., 2012, 64: 18.

doi: 10.1016/j.addr.2012.09.010
[98]
Sheikholeslam M, Wheeler S D, Duke K G, Marsden M, Pritzker M, Chen P. Acta Biomater., 2018, 69: 107.

doi: S1742-7061(17)30768-7 pmid: 29248638
[99]
Cheng B C, Yan Y F, Qi J J, Deng L F, Shao Z W, Zhang K Q, Li B, Sun Z L, Li X M. ACS Appl. Mater. Interfaces, 2018, 10(15): 12474.

doi: 10.1021/acsami.8b01725
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[4] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[7] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[8] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[9] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[10] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[11] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[12] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[13] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[14] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[15] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.